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Time delay of evanescent electromagnetic waves and the analogy to particle tunneling
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The analogy between quantum tunneling of particles and evanescent electromagnetic waves can
be used to study particle tunneling. Possibilities for the measurement of the time delay resulting

from the transmission of waves through an evanescent region, say with lower dielectric constant, are
discussed. In contrast to particle tunneling, an electromagnetic pulse can consist of many photons
and can be probed in a noninvasive way. We emphasize the delay of the center of gravity of an

electromagnetic pulse transmitted below cutoff through a portion of a waveguide with the same
cross section as the adjacent propagating guides. The boundary conditions at the interface between

the propagating and the evanescent region lead to the same transmission and reflection coefBcients as

for a square-barrier tunneling problem. For a pulse restricted to a narrow frequency range, the time

delay depends only on the frequency derivative of the phase shift associated with transmission. The
delay of a center of gravity is just that; there is no deeper physical sense which links the incoming

center of gravity to the outgoing center of gravity. For su%ciently long evanescent regions, the delay

is independent of thickness.

PACS number(s): 41.20.3a, 73.40.Gk

I. INTRODUCTION

The analogy between electrons following the
Schrodinger equation and electromagnetic (em) wave

propagation has been a central ingredient in the develop-
ment of quantum mechanics [1,2]. Furthermore, the anal-

ogy between the tunneling of electrons and the evanescent
waves found in a low-dielectric-constant region separat-
ing two regions of higher dielectric constant, has been
appreciated [3]. Such evanescent waves can be found in
optics in frustrated internal reflection, or in microwaves
in a guide with a frequency below cutoff. Control of the
refractive index in the evanescent region can be used as
a tool for modulating light [4].

The time elapsed while an electron tunnels through a
potential barrier has been a subject of considerable the-
oretical attention. Starting with the very first investi-
gation [5], many investigators followed the maximum of
a wave packet as it tunnels through the barrier. Later
on, the traversal time was analyzed by coupling a clock
to the tunneling object, such as a spin precession in a
magnetic field [6, 7]. In the last decade, attention to the
traversal-time problem has increased significantly. This
increase stems in part from the emergence of new formu-
lations for the problem, including the modulated barrier
approach [8]. In this approach, the static potential bar-
rier through which the particle tunnels is supplemented
by a very small oscillatory term at frequency ~ . At
very low modulation frequencies, the particle does not
have enough time to probe the oscillations of the barrier,
which is then essentially a static barrier: it is the depar-
ture from adiabaticity as we go towards higher frequen-
cies that reveals the traversal time. The traversal time
determined by this approach is essentially the time spent
by the particle interucting with the barrier, and this is
not necessarily a delay suR'ered in going through a barrier.
Indeed, as we shall try to make clear, the delay is deli-
cately dependent on its exact definition, and not clearly

of physical significance. An alternative and also relatively
recently developed approach for the traversal-time prob-
lem follows the center of gravity of a wave packet [9].
After the wave packet reaches the potential barrier, it
leads to a transmitted and a reflected part, and the evo-
lution of the center of gravity of the transmitted wave

packet determines the traversal time, in a manner to be
discussed later in this paper. There are a number of
other approaches to the traversal time. Two of these are
based, respectively, on the Feynman [10] and the Bohm

[11] formulations of quantum mechanics and will not be
discussed here. The reader is referred to recent reviews

of the subject [12—15], but also warned that there is no

clearly accepted consensus shared by these authors.
In contrast to the electronic case, where measuring the

arrival time of a wave packet is a quantum-mechanically
disturbing procedure, electromagnetic wave packets can
be occupied by many identical photons. Capturing a
few photons to make a measurement can leave most
of the photons undisturbed to continue on their jour-
ney. Thus, measuring the separation in arrival time of a
pulse's center of gravity, between two points, is a feasi-
ble measurement in the photon case. By contrast, wave

packet delay measurements for an electron will not be
easy. They are possible, perhaps, if we use a sequence
of many identically launched electron wave packets and
make measurements only on the side where the trans-
mitted wave packets emerge. %e stress, however, that
none of the proposed and completed experiments, in the
electron case, utilize time-delay measurements [16). In
this paper, where we analyze the electromagnetic case,
we will emphasize pulse-delay measurement. Concern
with the time required for electronic tunneling, as already
indicated, immediately leads to equivalent questions for
the evanescent em waves. Recent papers [17—19] explic-
itly emphasize this question. Yablonovitch has measured
pulse-propagation delay through a periodic filter array,
in a frequency range where propagation is blocked [20].
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We will discuss some experimental possibilities for
measuring a time related to evanescent em wave prop-
agation. Electromagnetic wave measurements present
several advantages over measurements on tunneling par-
ticles. Even with the current availability of femtosecond
measurements, the time associat, ed with electron tunnel-
ing through solid state barriers is believed to be rather
short, and diKcult to investigate. Electromagnetic waves
provide us with much longer times, more accessible to
experiment. In addition, electron tunneling can be com-
plicated by electron —electron correlations effects, such as
in the experiment of Gueret, Marclay, and Meier [21] on
GaAs/Al Gai As heterostructures. Furthermore, the
electrodynamic "environment" coupled to the tunneling
capacitor may affect the tunneling process [22]. Most
theoretical approaches to the traversal-time problem at-
tempt to determine the time taken for a particle to cross
a static potential barrier, where these complications are
neglected. It is therefore highly desirable to study an ex-
perimental system which can be described as an analog
to tunneling, but where the listed effects can be disre-
garded. Below, we distinguish three experimental possi-
bilities, and then focus on the time delay of an em pulse
propagating through a wave guide with an evanescent
region.

II. EXPERIMENTAL POSSIBILITIES

A. Amplitude-modulated incident wave

preciably (opaque, hereafter). Then at the incident end,
one of the two exponentials will be dominant, and can
be matched to the combination of incident and reflected
wave on the incident side. Thus, we have a contribution
to the phase change An from the matching at the incident
interface. Within the evanescent region the dominant de-

caying mode will have no phase variation. There is then,
an additional contribution to the phase change An from
the matching at the outgoing end. Therefore the phase
change, 60., will depend only on the matching at the in-
terfaces to the cutoff section, and will be independent of
the length of that section. Thus, the effective velocity,
derived from the delay in Eq. (1), can be made as large
as desired. That result, while perhaps puzzling, is not in
any clear sense a paradox. Our result represents exactly
that which was calculated: A delay in the appearance of
a peak. As stressed in Ref. [23], a peak in the outgoing
wave is not, in any direct and simple physical sense iden-
tifiable with a peak in the incoming wave. Furthermore a
wave, as discussed here, with two components, has very
little information, and we cannot identify each peak as an
independent information carrying feature. Our effective
peak crossing velocity is not, in any simple sense, a sig-
nal velocity. To give a simple but perhaps not irrelevant
analogy: consider a lighthouse, sending out a rotating
beam of light. The velocity of the spot projected on a
ship can exceed c; one spot is not the source of a later
adjacent spot. Nevertheless, the ease with which large
velocities can be found in this field, e.g. , Refs. [24] and
[25], is one of its poorly resolved mysteries.

In the electronic case we can have two waves at differ-
ent incident energies superimposed to give a modulation
in the incident amphtude [12,23]. This was precisely the
object of a recent microwave experiment by Ranfagni et
al. , whose wave-guide configuration is discussed briefly in
Sec. IIIA. If the incident amplitude varies slowly com-
pared to the interaction time of transmitted waves with
the barrier, we can expect a transmitted wave which con-
sists simply of the incident amplitude, currently applica-
ble, multiplied by the complex transmission coefFicient
~t(io)~e' ~ &. Due to the frequency dependence of this
latter quantity, the transmitted waves at ~ and u+ L~
have slightly different amplitudes, and are shifted in their
relative phase by an amount An compared to the inci-
dent components. Since the timing of the outgoing peaks
is independent of the relative magnitude of the two com-
ponents, the envelope of the transmitted signal will be
shifted in time by an amount

which can be identified as the time delay for amplitude
modulated waves. In the limit of small A~, this becomes
the derivative, dn/dio.

Within the evanescent region we will have a superpo-
sition of two exponentially decaying waves. They will be
comparable in magnitude at the far end, where the com-
bination of the two exponentials is needed to match to
the outgoing wave. Now let us specialize to the case of an
evanescent section long enough to attenuate the wave ap-

B. Modulated-dielectric-constant measurements

We can follow the procedure discussed in Ref. [8] and
modulate the dielectric constant in the evanescent region
and search for the frequency, as we increase frequency, at
which the adiabatic transmission calculation fails. This
requires a physical structure that will allow application
of a modulation field, say to a section of wave guide.
For an effective experiment, at least one of the two fre-
quencies (signal, modulation) should be variable. If the
modulation field propagates beyond the region in which
we intend to modulate the dielectric constant e, it should
not matter. Presumably we have taken care that only the
evanescent region is filled with a field-dependent dielec-
tric. The wave-guide side walls should not short out the
modulation field. We can eliminate side walls by using
outward radial propagation between two parallel slabs.
Launch the wave at the inner radius into a high c region,
with some angular variation, to permit cutoff effects be-
yond a subsequent interface, encountered in the outward
propagation. For example, near the inner radius of the
parallel conducting planes we can launch the outgoing
wave from two antennas, diametrically opposed in posi-
tion, and driven 18Q' out of phase. Or n antennas, spaced
periodically around the inner radius, and with suitable
chosen relative phasing. There is an alternative way [26]
to avoid shorting by the wave-guide side walls, shown in
Fig. 1. Here only a portion of the dielectric in the guide
is modulated. This approach does present some compli-
cations. First of all the slab has an effect on the precise
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FIG. l. Rectangular wave guide with material (cross-
hatched) whose dielectric constant can be controlled through
an applied voltage. The wave-guide walls have slits, located
at a position where the mode involved has no current liow

across the slit position. The slits are there to prevent short-
circuiting of the control voltage by the guide walls.

location where the slits shown in Fig. 1 can be placed;
i.e. , the slab perturbs the mode. The slab also compli-
cates the interface reflections generated at the ends of the
evanescent region.

Alternatively, as suggested by Platzman [27], we can
have a modulation field supplied through the same wave

guide as the signal. For easy interpretation the mod-
ulation signal should be relatively uniform within the
evanescent region. This can be achieved by using a fixed
modulation frequency just above cutoA'. That, however,
will cause most of the incident modulation signal to be
reflected. Attempts to introduce "matching" at the mod-
ulation signal frequency must be done carefully, lest they
interfere with the behavior at the signal frequency.

(TM) modes, at an interface between a propagating and
an evanescent region are equivalent to those of the elec-
tron tunneling problem. The experiments invoked by the
authors of Ref. [18]utilized an evanescent region obtained
not via a change in dielectric constant, but through a
section of narrower wave guide. That, of course, gener-
ates additional complicating reflections arising from the
geometrical discontinuity, and does not seem to be the
easiest way to supply interpretable results. While dis-
cussing Ref. [18], we also note that this work presented a
comparison of pulse delay to the results for the particle
tunneling case obtained from the modulated barrier anal-
ysis. It is not clear why the modulated barrier analysis
should give results relatable to delay measurements.

Figure 2 describes a wave guide of uniform cross sec-
tion. Between positions z = zq and z = zq, hereafter
labeled region II, the wave guide is filled with a material
characterized by tii and pir, such that waves are evanes-
cent for the frequency range of the pulse. The dielectric
constant er and the the permeability constant p~ on both
sides of region II (regions I and III) are chosen so that
the pulse propagates there.

In the propagating region, we look for wavelike so-
lutions [exp(ikz —i~t)] of Maxwell's equations for the
electric field E:—(Er, E, ) and the magnetic field B-:
(B„B,) [29]:

.4) .(d
ikEr +i e, x Br ———VrE„e, (Vr x Er) = & B, ,

—
C C

(2a)

C. Pulse-delay measurements

When transmitting an electromagnetic pulse through
an evanescent region, the higher frequency components
of the pulse will be attenuated less than the lower ones.
Therefore, the emerging pulse will have a higher average
frequency. This, in turn, implies a higher average group
velocity in the direction perpendicular to the low-index
slab. Thus in the photon case, as in the electron case,
the evanescent region acts as an eHective accelerator. If
a time delay is measured between points sufficiently far
from the evanescent region the insertion of the low di-
electric slab has actually speeded up the motion of the
pulse. This is the effect characterized for electron by Eqs.
(3), in Ref. [28]. As in the electronic case discussed in
Ref. [28], we can expect that the em-wave delay between
two points, separated by an evanescent region, depends
on the group velocities in the two semi-infinite regions,
supplemented by a term which (in the opaque or highly
attenuating case) depends only on the phase changes at
the interfaces. Providing a detailed discussion of that is
the primary purpose of our next section.

Vg Eg+ikE, = 0, V'g Bg+ikB, = 0 . (2c)

In the evanescent region (II), the em fields have the same
form, except that k is replaced by iz. For a wave guide
with perfectly conducting walls, the boundary conditions
are

E„.i, =0,
r. s

on the surface of the wave guide. We consider the match-
ing problem for the TE (E, = 0) and the TM (B, = 0)
waves at the two boundaries between the propagating
and the evanescent region. The displacement current D,

0
I

Zp

ikB& ipse
—e xE—r ——VrB, , e, (V& xBq) = ipse

—E, ,
—

C C

(2b)

III. TIME DELAY OF AN em PULSE IN A WAVE
GUIDE

A. Matching conditions

In this section, we will show that the matching condi-
tions imposed on the electric and magnetic field for trans-
verse electric (TE) modes, and for transverse magnetic

FIG. 2. Wave guide of uniform section with an evanescent
region: the two propagating regions, characterized by ci, pi
are separated by an evanescent region (cii, pi&), located be-
tween z = z~ and z = zp. The position of the center of gravity
of the pulse is measured at positions z = 0 and z = L.
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and B, , as well as the transverse components Et and Ht,
are continuous at z = zI and z = zq. Equations (2a)
and (2b) can be rewritten in term of these variables, and
utilizing p = pen /c —k, in the form: AIe k" + BIe k ~ = AIIe ~ + BIIe (5a)

nuity of 8, (D, ) for the TE (TM) mode, at z = zI and
z = z2 yields the conditions:

ck/pcs
Ht —,, e, xEt

Eu/ t"I- (4a) AIIe ""+ BIIe""= AIIIe'"" (5b)

E —l
2 1 r7t D

(TM

(TM

(4c)

which is equivalent to the continuity condition of the
wave function for the electron tunneling problem. From
Eq. (4b), the continuity of H& (E&) for the TE (TM)
mode becomes

—1

[A
~kJ~ 8 (k~~]

~I

With the boundary conditions of Eq. (3), Eq. (4c) de-
scribes an eigenvalue problem. Note that, in general, the
eigenvalues pg (A = 1, 2 ) for TE and TM modes are
not equal, due to the difference in boundary conditions
on 8, and D, [see Eq. (3)]. With a given solution of the
boundary value problem in Eq. (4c), we can obtain HI
and Eq from Eqs. (4a) and (4b).

Consider the propagation of a single mode A corre-
sponding to the eigenvalue yp (for a rectangular wave

guide with side wall dimensions a and 6,
m/mz/a2+ n2/bz). Given a wave which is incident on
the left-hand side of the barrier, the fields in region I
(II) consist of a superposition of +k = gpIeI4J~/cz —p&~

(ps: = gp& —)LIIIeII+z/cz) contributions, with respective
coefficients AI and BI (AII and BII). On the right-hand
side of the evanescent portion (region III), the wave has
only a +k component with coefficient AIII. The conti-

—1
@II x [A e

—Kzg 8 I sg]
CII

6a

—1
+II [A e &&e 8 e +&a]

~II

—1

=ik ~' x A e'~"
~I

Note that Eqs. (6a) and (6b) are equivalent to the con-
tinuity of the derivative of the wave function for an elec-
tron crossing a rectangular barrier if )uI = )LIII (TE) and
eI = eII (TM). The remaining boundary conditions on E&

(H&) for TE (TM) waves turn out to be equivalent to Eqs.
(5a) and (5b). From these conditions, the transmission
and reflection coefBcients associated with the evanescent
region have the form:

e
—ik(zg-z g)

i(~) = li(~)l" "=
cosh[@(zz —zI ))i (Ir,'/k' —k'/K') sinh[rc(zz —zI)]/2

' (7a)

—i(K'/k' + k'/z') exp(2ikz2) sinh[@(zz —zI)]
2 cosh[K(zz —zI)] + i(K'/k' —k'/z') sinh[K(z2 —zI)]

' (7b)

where k'/K' = pIIk/pIr, (= eIIk/eIz), for the TE (TM)
mode.

B. Time delay

We are now in a position to calculate the time delay
for an em wave packet. To specify the position of the
packet along the z—direction at a given time, we follow
the method of Hauge e$ al. [9,28], relying on the fact that
(i) initially the incident wave packet is located far from
the barrier region; (ii) after dwelling in the evanescent
region, the transmitted and reflected components of the
wave packet do not overlap with this region. The location
of the wave packet is taken to be the average value of z
after weighting by the square of a field component. For
TE or TM waves we choose to weight with lB, l~(r, t) or
lD, l (r, t), respectively, so that we can treat both modes
on the same footing (for a wave packet with a narrow

frequency range, the choice of em field components, used
as a weighting factor, does not matter).

For the waves to be propagating (evanescent) in re-

gions I and III (region II) it is necessary that the central
frequency uo of the pulse and its spectral width satisfy:

f d~ ~lA(u))l'
oo sucll t}lat 4) I ( M() ( 4)&II

d~ IA(~)l'

(8a)

f (ku (~ —~p)'lA(~) l2

f dku lA(u)) l~

such that A~ ((~,II —~,I,

(8b)

where A((d) is the pulse amplitude, and the cuttoff fre-
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quency is defined as u, r = clap/+prier (similarly for ur, rr).
A word of caution is in order here. Unless the pulse has
a sharp boundary in the frequency domain, A(~) will
have a small tail at frequencies ~ & ~,~~. As a result, in
the opaque limit [tc(z2 —zq) » 1], the transmitted wave
packet will have exponentially attenuated components at
frequencies below cutoff, as well as a contribution from
the high-frequency tail of propagating waves. It is there-
fore important for a time-delay experiment that this lat-
ter contribution is negligible.

Choosing a pulse centered at the position z = 0 at
t = 0, and requiring that the pulse is located far from the
evanescent region at time 7 = 0 imposes the additional

I

constraints, expressed here only for the TE case:

f+ drs zIB, I'

f+ drs IB, I~
(9a)

(f+ dr (z —&z&) IB, I

f+ drs IB, I2 )
((zy . (9b)

With a Fourier analysis si.milar to that of Refs.
[9, 28], making the substitution f eke A(v). . .

fo dk(du/dk)A(~(k)). . . , we rewrite this as

& z &o—— W(d~/dk) IAI'(g/d~)
~cI

(10a)

Ez = &(ch)/dk) Id((d~/dk)A)/d~I d~(der/dk) IAI && z, ,
~cI ~cl

(10b)

where g(u) is the phase of the complex amplitude A(cu).
For short times, the position of the wave packet is given

by

f d~ (d~/dk)2IAI'

f ~ (du)/dk)IAI2

f... d (d /dk) I~AI'(dP/dk+ d(/dk —zg)

j„des(oL/dk)2IrAI~

f d~(d~/dk) IAI2

f (Au((ku/dk)'IAI2
'

which means that the wave packet propagates with a ve-

locity &/dk. For long times, the position of the trans-
mitted and reflected wave packets yields:

f d~(&/dk) ItA I'(r —dg/eke —dn/der)

f ch)(d~/dk) ItAIs

(12a)

f, du(&/dk) IrAI (dg/~ + dP/~ —r)

f d~(d~/dk) IrAI'

(12b)
where n and P are the phases introduced in Eqs. (7a)
and (7b).

To determine the time delay, we propagate the inci-
dent wave packet forward in time, using Eq. (11),until it
reaches the beginning of the evanescent region (z = zq).
Similarly, we propagate the transmitted wave packet
backwards in time with Eq. (12a) until it reaches the
end of the evanescent region (z = zq). The time delay
for tunneling is then the difference between the respec-
tive times associated with these two events. The delay
due to reflection is obtained straightforwardly by prop-
agating the reflected wave packet back to the position
z = z~. With this procedure, we get:

f oL(W/dk)ItAI (de/dk+ d(/dk+ z2)

f d~(d~/dk)sItAI2

J' d~(d~/dk) I
AI'

J.', d (d /dk)'IAI'

which is equivalent to the result of Refs. [9, 28], except
that the particle velocity hk/rn is replaced by the group
velocity. In a proposed experiment, the time taken for the
pulse to cross from z = 0 to z = L is measured, and the
time of travel through the two propagating regions, [0, zq]
and [z2, L) (the velocity in I and III may be different)
is subtracted from the measurement to yield the delay
associated with transmission, to be compared with Eqs.
(13a). Similarly, the time to travel through the region
[0, zq] as an incident wave packet, and through the region
[zq, 0] as a reflected wave packet is subtracted.

To conclude, we consider the simple situation consid-
ered in Ref. [28], where the frequency width of the wave
packet is small enough that the integrals are dominated
by the contribution around ~o. A narrow frequency
band implies that the resulting wave packet must have
a large spatial extent, forcing the detection apparatus to
be placed far from the evanescent region to ensure that
the center of gravity of the complete wave packet is mea-
sured. As stated in Sec. II C, the high-frequency compo-
nents will have better transmission than lower frequen-
cies, leading to an effective acceleration of the packet.
Thus, if a delay is defined in terms of the change of the
time required for propagation from z = 0 to z = L, due
to the insertion of an evanescent region, the acceleration
effects can yield a negative delay. If we invoke Eq. (13a)
to calculate 7T, we must make allowances for the exact
form of A(u). Otherwise, we will calculate the propa-
gation time, from z = z2 to z = L incorrectly. Note
that if we reduce A~, we reduce the spread of velocities
which give rise to the acceleration effect. At the same
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t, ime, however, we lengthen the wave packet, and there-
fore the minimal allowed distance between z = z2 and
z = L. This, in turn, emphasizes the effect of the ve-
locity variation, within A~, and we have not gained in
simplicity by reducing A~. Nevertheless, if we follow the
literature, and make the unwarranted assumption that
for small enough Ako the integrands in Eq. (13a) can
be taken to be independent of ~, we do get a simpler
answer. We also make the additional assumption that
ei = eii (/ki

—/sit) for TE (TM) waves. From Eqs. (7a)
and (7b), we can extract the phase of the transmission
and reflection coeKcients:

k
n = —k(z2 —zi) —tan ———

i tanh[K(zz —zi)]
2k 2K)

(14a)

kb 7r
P = 2kzq —tan ———

~

tanh[ic(zq —zi)]
2k 2r. ) 2

(14b)

As a result, in the opaque limit [a(z2 —zi) » 1], the time
delay for transmission and reAection depend only on the
derivative of the corresponding phase shifts:

dQ Zg —Zy

d~ cko/dk1,l'K k)1+ ta,n'
i

———
i

2 (2k 2K)
( K 1 dk t'1 k dr

x —
i

—+-
(k2 a d~ (k K~ dko

(15a)

dP 2zi
d~ cko/dk

(15b)

where all quantities are evaluated at u = ~0. In this
particular case, the time delays reduce to the "energy
derivative" of the phase shifts associated with the trans-
mission and reflection process. In this case, which corre-
sponds to quantum tunneling t, hrough a square barrier,
7T and 7R are identical. Note that 7T is independent
of the width of the evanescent region. Translated to an
effective velocity for crossing the evanescent region, this
time can correspond to arbitrary large velocities in the
opaque limit. Similar problems were discussed in Sec.
II A. In the present case, in contrast to that in Sec. II A,
we are not really measuring an actual delay between zi
and z2, but one between 0 and I, extrapolated back to
zi and z~. It is therefore, perhaps, a weaker surprise.

IV. SUMMARY AND CONCLUSION

Several possibilities for the characterization of times
for em waves passing through evanescent regions have
been discussed. These include the delay of peaks of am-
plitude modulated waves, the dependence of the propa-
gation on the frequency of an imposed modulation, and
pulse-delay measurements. For this last category, we

have demonstrated that one-dimensional particle tunnel-
ing is in direct analogy wit, h em waves in a wave guide
of arbitrary, but uniform, cross section, including a sec-
tion of guide below the cutoff frequency. The proposed
experiment requires the preparation of an em pulse with
a tunable frequency, to be "fitted" between the two char-
acteristic cutoff' frequencies associated with the two ma-
terials filling the wave guide. The time delay essentially
depends on the frequency derivative of the phase shift
associated with the transmission process, weighted by
A(cu). We find that an evanescent region can also be
used to accentuate the high-frequency component of the
pulse. In this sense, the evanescent region acts like an
effective accelerator.

We emphasize that the delay of the center of grav-
ity is exactly that, and no more. There is no deeper
physical sense in which the incoming center of gravity
is mapped into the outgoing center of gravity. To stress
this we provide the following example. Consider a wave
packet which has travelled an appreciable distance in re-
gion I of Fig. 2. The higher-frequency components move
faster, and will therefore dominate in the front end of
the wave packet. It is also these higher-frequency compo-
nents which will be transmitted more effectively through
the evanescent region (II). Thus the transmitted packet
will come preferentially from the front end of the incident
packet. The center of gravity of this transmitted packet,
therefore, may have little or no causative relation to the
center of gravity of the incident packet. The transmitted
peak can, in fact, emerge before the transmitted peak has
arrived. The analysis of experiments which follow pulses
[18] must allow for this sort of effect, e.g. , by invoking
the complex value of A(ko).
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