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Cerenkov emission from an axial-wiggler-magnetoactive plasma
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The electrodynamics of a relativistic electron beam passing through a nonrelativistic plasma embed-

ded in an axial-wiggler magnetic field has been worked out in the framework of nonequilibrium statisti-
cal mechanics as developed by Prigogine and co-workers. The emerging radiation has a synergic fre-

quency that is a combination of the original frequency, the plasma frequency, and the cyclotron frequen-

cies due to the axial and wiggler magnetic fields. An exact summation of the relevant diagrams in the

Dyson series corresponding to the self-consistent-field approximation has brought out non-Markovian
nonlinear aspects of optics. The change in polarization has been evaluated due to the presence of mag-

netic fields. The axial and wiggler fields remove the degeneracy in the electronic states, and the summa-

tion over the Landau levels discriminates between the spin-up and spin-down species. The measurement

of the energy loss enables one to make an estimate of the population of these species.

PACS number(s): 41.80.Ee, 05.70.Ln, 42.65.—k, 52.35.Mw

I. INTRODUCTION

We propose to investigate the electrodynamics of a rel-
ativistic electron beam passing through a nonrelativistic
plasma embedding axial (Qo) and wiggler (Q) magnetic
fields specified by their cyclotron frequencies in the
framework of nonequilibrium statistical mechanics as
developed by Prigogine and co-workers [1]. The linear
dispersion relation in this problem has been worked out
because of its relevance to free-electron lasers and is
given in an excellent review by Roberson and Sprangle
[2]. The nonlinear aspect has recently been investigated
by Pratap and Sen [3] in the absence of an axial field
starting from the Vlasov set of equations in a nonpertur-
bative manner, to study the nonlinear saturation proper-
ties. However, it is by now well known that nonlinear dy-
namics results in the phenomenon of synergism [4—6]. It
was shown that a quantum-mechanical treatment of this
problem in both tapered [7] and helical [8] magnetic fields
introduce only small corrections over the classical results.
However, in a Dirac theory of an electron passing
through an axial-wiggler field [9] the axial component
would introduce Landau splitting of energy levels and the
wiggler field would remove degeneracy [see Eq. (29)].

The most significant results of the present analysis are
the following: (a) An axial magnetic field introduces the
Landau energy-level quantization; it is well known that
the results are different for the spin-up and spin-down
species. The summation over the Landau levels, howev-
er, results in different density profiles; this enables one to
determine experimentally the species ratios in the in-
cident beam. (b) This difference, however, does not mani-
fest itself in the classical nonrelativistic plasma which
constitutes the medium. In this case the density profile
has a single maximum as a function of PiilQ&/2, P being
the Boltzmann factor (ks T) '. For higher values of this
parameter the number density decreases and thereby re-
stricts the domain. (c) The nonlinear interactions in the

system produce synergism in the frequency and for cer-
tain specific values of the axial and wiggler synchro-
tron frequencies, the radiation passes through the system
unimpaired, or "ducts" through the system. (d) The op-
tics of the system is contained in an expression for the re-
fractive index (40) in terms of effective radiation frequen-
cy (36). This is dependent on the plasma density through
g as given by (A19) as also through vi as defined in the
Hamiltonian (7). Also there is a change in polarization.
One can define an effective polarization as &hei. (e) We
shall also define an expression for the Cerenkov cone an-
gle (32') which is a function of the synchrotron frequen-
cies Qo and 0, and also the plasma frequency co

&
through

v& and 0.. The axis of the cone is tangential to the
effective electron trajectory and as the trajectory wobbles,
so does the axis and thereby the cone.

The paper is organized in the following manner. Sec-
tion II describes the Hamiltonian of the system consisting
of a relativistic test particle interacting with a nonrela-
tivistic plasma in an axial-wiggler magnetic field and am-
bient radiation field. Sec. III gives the Liouville equation
in the natural coordinates of the system together with the
formal solution of the Liouville equation in the resolvant
formalism. Section IV gives a discussion of the operators
which are noncommuting and hence a Baker-Hausdorff
expansion is effected. Sec. V gives the one-particle distri-
bution function (OPDF) together with the collective
modes given by the response function [9], the explicit
evaluation of which is given in the Appendix. An evalua-
tion of this requires an initial state for the test particle
which is constructed out of wave functions corresponding
to the unperturbed part of the relativistic Hamiltonian
[8] which is given in Sec. VI. Using the OPDF, the ener-

gy loss suffered by the particle is evaluated in Sec. VII.
In this section we have also evaluated the Cerenkov con-
dition and the modification effected due to the two mag-
netic fields. An expression for the refractive index has
been derived and this and Sec. VIII explains the optics of
the system. Section VIII discusses the change in polar-

45 2593 1992 The American Physical Society



2594 R. PRATAP AND A. SEN 45

ization due to the two magnetic fields. The linearized re-
sults obtained earlier [10,11] have been derived as special
cases from the present formalism in Sec. IX. The paper
closes with Sec. X giving the main conclusions.

er the transverse component of the radiation field so that
e& K&=0, e& being the polarization vector and K& the
propagation vector.

The nonrelativistic medium particles Hamiltonian is
given by

II. HAMILTONIAN OF THE SYSTEM

where

1 el
PI ——Ai

2m, ' c
(4)

We propose to solve the Liouville equation defined in a
6N-dimensional phase space formally, and find the one-
particle distribution function by integrating over all the
variables except that of the test particle. The subset of
infinite diagrams selected from the Dyson series on the
basis of the interaction time scale [(m/ce )'~, m and e
being the electronic mass and charge and c the concentra-
tion in the thermodynamic limit N ~ oo; U —+ ao, N/U =c,
a constant] is then summed up to obtain the OPDF, due
to self-consistent-field approximation or the ring approxi-
mation. We now average the test particle Hamiltonian
with this OPDF; differentiating with respect to time, we
get the rate of energy loss and evaluate power loss per
unit time and per unit length. We cast this into the usual
Cerenkov form as given by Frank and Tamm [12].

The system under consideration consists of a relativis-
tic test particle ( T), a system of field particles denoted by
I, and a radiation field (A, ) embedded in a space contain-
ing an axial magnetic field (denoted by the cyclotron fre-
quency Qo) and wiggler field (0). Thus the total Hamil-
tonian is

9'=%r+ +%i+ +%i .
I

o . m
P, =P, + (jx, —iyi)+ (i cosk z+ j sink„z) .

2 k

It should be noted that the interaction vector potential is
not included in the definition of P& in (5).

The radiation field is given by the Harniltonian of a
system of harmonic oscillators in action-angle representa-
tion as

(6)

&r=mc (1+u )'

p2

2ml

e
(P, A, ),

ml c

If we expand (4), the quadratic term in the vector po-
tential would change the radiation frequency vz to v& in
random-phase approximation [6] where vi =vi +co».
Hence we write the Hamiltonian of the system as

%r and %i are functions of radiation field components
through the vector potential, hence this is not a strictly
separable Hamiltonian. Interactions in the system are
taken into account through the virtual-photon creation-
annihilation processes.

The test particle is relativistic and the Hamiltonian is
written as

mr=me (I+uz)'
where uz. is defined as

mQ,
mcur =Pr+ (jx —iy)

2

+ (icosk z+jsink z) ——A,mQ e

and we shall use the above Hamiltonian in writing the
Liouville equation.

III. LIOUVILLE EQUATION

We define a Liouville density p in the 6N-dimensional
phase space as

p=p(qr ur PI qr ~i, ~i. r)

and this density satisfies the Liouville equation as

Bp . Bp . Bp+uz. - +qz--

where i, j, and k are unit vectors in a Cartesian coordi-
nate system, and k =2m ji, is the wave number corre-
sponding to the wiggler field. In the above Pz- is the
canonical momentum, the second term is the vector po-
tential for the axial field, the third is that due to the
wiggler field, and the last term is the interaction vector
potential A which is a function of q~ the position vector
of the test particle as well as J& and w&, the radiation
field variables in action-angle representation. We consid-

p Bp . Bp Bp . Bp
BI,

(9)

Bp +Lp ——e(u. )p,
BE

(10)

The time derivatives appearing in (9) are obtained from
Hamilton's equations and we write the Liouville equation
as
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where

z=z, +z, +r,
with

0
e, =—el+ e, = (i cosk z+ j sink z}+—k,0 Q 0 0
E2=e2= —i sink z+ j cosk z,

&0 n o n .
e&= el ——el= k ——(icosk z+jsink z),0 0 0 0

(13)

a n aXr =cP' +—e&XP.
'Y

a — a+QelXPl.
Pl I Bq I

(12}

where Q=(QO+Q )'~. It may be seen that by setting
Do=0 and Q/0=1, the above reduces to the usual

wiggler coordinates relabeled. One also realizes the fact
that the Jacobian of transformation from the Cartesian as
well as the wiggler coordinates to the present one is uni-

ty.
The operators

These equations are written in coordinates natural to the
present system defined as

I

5L =A T+A l+ST+Sl

are given by

1 8
' 1/2

a&
Bll T

ez(Q Jzsinalz)cos(K&. qr )+p X (Kl Xez)(+Jl coscoz)sin(K2 qr )
c

1 8

Pl I

8c
' 1/2

a
ay (P.el )cos(K2 q 7 )(/ J„sincol ) aJ

1 8
' 1/2

5
az (P& el)cos(K& q&)(1/ Jl, sintol )

mI vv

' 1/2
8 — 5

al QJ2 cosco„) ez+ m Q (e, X ez) cos(K2 q, ),
Bq) I

(15)

In writing (15), we have used the vector potential
1/2

8c
A~ = al e&[(QJ2 cosco&)cos(K2 q)

operators 8, since we assume the initial state to be angle
independent.

We can now formally integrate Eq. (10) and write the
solution as

+(QJ &costs &)sin(K2 q)] . (16) p( t) =e 'p(0) +e f d r e " '(5L)p(r),
0

(17)

In the above, we have used the notation
ur/(I+ur)'~ =P; this gives (I+ur)' =(1—P )

=y as the Lorentz factor. a& is the magnitude of the
vector potential and e& is the unite polarization vector.
a& is dimensionless and denotes the interaction strength.
In the above operators, we have taken only the k part.
The —)I, part is obtained by replacing cos(K& q) by
sin(K& q) and sin(K& q) by —cos(K& q). Also we have
retained only one term in the Poisson bracket in the

I

where p(0) is the initial state of the system (at t =0).
Equation (17) consists of two parts, the first one being the
transport of the initial state to time t without any interac-
tion or the free How term. 'The second term however
gives all the correlations in the system and thereby gives
all the dynamics, since (5L ) contains operators which an-
nihilate and create correlations in the system.

If we iterate the above equation (17), we get the Dyson
series

Qo
I —I

p(t)= $ e "f dt& f dt2 . . f dt„e ' (5L)e ' (5L) . e " ' " (5L)e "p(0) .
0 0 0

(18)

Equation (18) contains all the information in the system.
n =0 gives the first term in (17), n =2 gives the interac-
tion of the particle with the field, n =4 gives the interac-
tion of the test particle with the field and a field particle,
and so on, all in terms of the initial state p(0). This con-
stitutes the series having terms with coefficients (e c/m)
where c is the concentration as defined before. The above

I

series (18) can be written in the resolvant form as

1p(t)= P e"f dz e "'R (z)[(5L)R (z)]"p(0),2' 0

where we have defined a Laplace transform as
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gz) =Ie "gt)dt (20)

and the corresponding inverse. The diagrams such as
(Ol5Ll0), (Ol5Lln)(nl5L[0) with the initial and
final states the same form the ring approximation or the
self-consistent series, which when summed up gives the
solution in self-consistent-field approximation. In the
above R (z) is the Laplace transform of the propagator—L(E, —t,. + ))
e ' '+' and these operators appear in a convolution
form, hence the advantage. This, incidentally, gives the
subdynamics which go over to the kinetic regime in the
asymptotic limit in time. One can obtain the OPDF by

I

integrating (18) or (19) over all the particle variables ex-
cept that of the test particle after selecting the diagrams.
Each term can be seen to create and annihilate correla-
tions with one, two, three, etc., particles and hence Eq.
(18) gives the exact correlation evolution in the system.

IV. OPERATORS

The operators given in (12) and (15) have peculiar
properties. It may be seen that the two members in X.T
and Xi do not give a C number on commutation. Hence
e ' and e ' have to be subjected to a Baker-
Hausdorff expansion [13]. We then get

e =exp

where

aQ0 8
(P,sincor+P~ 1 cost—01 + aQ0

(P) 1 —cosrdr Ppsln—cur )
N BY)

(21)

1/2

co=0/y, P, =P cos8, Pz=P sin8
0

and

&0 . — — a 0
e ' =exp — (P&sinQr+Pz1 —cosQr) + (P, 1 —cosQr —PzsinQr)0 Q BY/

—vga/ae)
3 0+B( (22)

(P, =P cos8, Pz=P sin8). In writing (21) and (22), the
variables g, rt, and g are coordinates in the (e&, ez, e3) sys-

tem; they are made dimensionless by measuring space in
units of Landau length (fi/mQO)' and momentum
(firn Qo)' . These will act as shift operators and propa-
gate the system from t„ to t„, and so on. Also, these
operators will operate on terms immediately to the right
of this, and not on all terms on the right of the operator.

As regards the operators in ol., A r will always be on
the extreme left and Xr on the extreme right. The S ver-

I

l

tex is a correlation creation vertex and A annihilates the
correlation. The properties of these operators are dis-
cussed in Pratap [12].

V. OPDF

One can evaluate the relevant terms in the series hav-

ing the coefficient e c/m, and on summing the series, the
OPDF can be written as [12] [see Eq. (3.7)]

ti
p(t)=e f dt& I dtze ATe

0 0 1 bz— (23)

where b, (z) is the response function due to the interaction with the medium. The explicit evaluation of h(z) is relegated
to the Appendix. Substituting the expressions for b, (z) from (A19) and evaluating the inverse Laplace transform, we

have

X —1+1

2

0 —v~
cos

-2 —2
'1/2

v~+ Q —0
(t, t~)—

1+—1—
2

0 —v~ v~+0 +o.
cos

where

o =4y+(vq —Q )

After operating with the propagators, and adding the —
A, part, we have

(25)
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2Q 2

p(t)= fdK&f dt, f dt2 e~(ez"p)cos(lg+p)e 'pz(0)
2m o

'
o 'au

Q —v~
2 -2

X 1+ cos
v +0 —o.

' 1/2

(26)

g2 —2 —2+g2+
+ 1 — cos

2

1/2

with

p —p c os[co( t ] tp ) ]+p X &3 s111[co( t f t2 ) ] +E3( p E3 )[ 1 cos( co—t, —tz ) ]

aQo
[a3 pXK&[1 cos(—cot, t2)] ——(Kz.p)sin(et, —t2)+(e3 Kz)(e3.p)[sin(tot, t2—) cot—, t2]—J . (27)

In writing Eq. (26), we have used the relation (8m ju)g& ~ JdK& Al.so K&.=K&+e~l and

(ez ei)
eg =ex —

&3 (K )
I

which ensures ez"Kz =0. This completes the evaluation of OPDF and it may be seen that it is a function of g as well as
p. Hence in using (26) to evaluate averages, we have to integrate over qr and p. We also have to define an initial state
of the relativistic test-particle beam.

VI. INITIAL STATE

The test-particle beam consists of relativistic electrons which are mutually noninteracting and pass through vacuum
in the presence of the axial-wiggler field. At t =0, the beam enters into the plasma column. Hence the initial state is
characterized by the wave functions due to a noninteracting relativistic Hamiltonian. We shall take this as the Dirac
Hamiltonian [8] and construct the density matrix with these wave functions 1( weighted with a Fermi function. Thus

p~(0) x(g @=~ ) g„)

-(e,+pi'&5 z+ )

n 2"n!
(28)

~here H„are Hermite functions and these are normal-
ized. The eigenvalues are given by

sufFered by the test particle as it travels through the
column.

fiAo
E„=mc2 1+ [(2X+p3)' +k I2]

mc

1/2

VII. ENERGY LOSS

with X=n + 1 for spin-up particles and n for spin down,
n being the Landau level number. It should be pointed
out that n occurs due to the presence of the axial com-
ponent, while k is due to the wiggler magnetic field.
The initial state consists of the dependence of g through
the Hermite functions; since we are working in the Lan-
dau gauge, only g dependence needs to be specified.
Hence for g we have a 5 function and the initial point at
which the beam is lauched is taken as zero, hence 5(g).
With this initial state, we sh:~11 evaluate the energy loss

We shall evaluate the average energy loss by averaging
the test-particle Hamiltonian mith the OPDF as given by
(26), together with the initial state given by (28). We then
differentiate this with respect to time and obtain dE/dt
and subsequently dE/dl as dl=cdt. This gives the
power loss per unit length as obtained by Frank and
Tamm. It may, however, be mentioned that in the two
terms in (26) we have a condition v&+0 & o otherwise
the argument of the cosine terxn would become imaginary
and we mould get absorption. We hence retain the term
satisfying this condition and have
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ce ay
dl

P«0 —(( /4)coth(t)trtQo/2)
coth -+ 1

2

2

It ~

X —1+
2 0

x f d K.,f dp f dt2p() 1—

(t t—2)5(g—P()Q()t2) .cos

Cos( (XK32poQot t2 )
E~

1/2
v&+0 +o.

(30)

In writing (30), we have substituted for p from (27) and e&,, as in (41), integrated over g, rj, and p, and summed over the
Landau levels, using the generating function for the Laguerre polynomials [14]. The minus sign above is for spin-up
particles and the plus sign is for spin down. It may be seen that in the spin-up case the function has a peak and goes to
zero as a function of pA'Qo/2, while for the spin-down case the saturation is at a higher level. Hence for smaller value of
p))1Qo/2 the two curves are distinct and there is a measurable difference, while for larger values the difference is con-
stant as can be seen from the figure. As I /4 is increased, the spin-up peak shifts to the right. This gives the relative
population of spin-up to spin-down particles in the launching beam and could be used to measure the spin ratios.

We shall now integrate with respect to t2. As the range of t2 is between 0 and t, g has the range from 0 to poQot We.

then combine the two cosine terms, integrate t2 and obtain

2 2
dE ce ct 2. P~Qo —(t /4)coth(pA'Qo/2)

coth + 1 e
dl 2~2go 2

vg —0
x f dK.2 fdg(1 —

(M ) 1+ V~+0 +0
cos aK&PoQo(tt+

2 P()Q()

+cos aK2 PoQottt

' 1/2
V~+0 +0

PoQo
(31)

where (tt is the cosine of the polar angle that K) makes. We integrate now with respect to g and take the asymptotic
limit in time. We then have the usual resonance condition, viz.

2 2 P«o —(( l4) oth(PAQ /2)
coth + 1 e

8+2 2

1/2

—2 2

X fK)„dK),dpdp p()(1 —j(t') 1+
T

v~+0 +o.
X '5 aQoK)„Po((4+

2

' 1/2
V~+0 +CT

(32)

In Eq. (32), Kz is dimensionless ( =vz/aQo) and (tt =cos0.
Equation (32) gives the usual Cerenkov condition, viz.

a2, P«o ~2 P«o
I = coth + 1 exp ——coth

4m 2 4 2
(34)

+0 +o.

2Povt. v~ —0
2V~d vg 1+ =d(vt„+Q +o )=dc0

(32')
One can easily see from the definition of cr (25) that

(35)
Integrating with respect to P and (tt and writing cK& =vz,
we have say, where

QdE e I
C 0

where

v~+0 +01—
2Pov2.

(33)

co =(vt, +Q +cr) .

We then have

dE e2I
co dk) 1c'

-2
CO

2P()vt

(36)

(37)
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If we now define

2' =co N (@)

we then have the Frank and Tamm relation

(38)

(39)

(A6) and the presence of y in this effective polarization
shows the effect of the Cerenkov radiation through the
characteristic plasma frequency.

IX. LINEARIZED SYSTEM

where N the refractive index is given by

(40)

in which y is given by (A19). The refractive index (40)
consists of three terms, the first being that of vacuum.
The second is due to the photon field, and the third is the
shifted frequency because of the magnetic field appearing
in Q. It may, however, be noted that the photon frequen-
cy is the effective one as defined in (36); this is density
dependent through v& as well as y since the plasma fre-
quency appears in both these factors.

In this section we propose to derive the earlier results
[10] as obtained in the case of an electron beam passing
through a wiggler field in vacuum and in the presence of
radiation as a special case of the present formalism. It
should be realized that the results can be obtained by tak-
ing carefully the limit as the two magnetic fields (axial
and wiggler) combine in a peculiar fashion. We now set
QO=O and Q=Q in (13). This reduces the coordinate
system to

(44)

Again q~ and P, are identically zero and expression (3)
becomes

VIII. POLARIZATION
m&A e&

mcur =mcyP=Pr+ e, — Ar,
k c

(45)

The passage of radiation through matter introduces a
change in polarization. This consists of change due to
the magnetic fields (Qo and Q },and is given by

where now ur=yp. One can readily obtain the time
derivatives as

e
ez =ez —e3 l .

A, 63
(41) (46)

Pz = —mQc(P e2)k+e[(P V') A+PX VX A] .

Thus the change in polarization due to the magnetic
fields is given by

5ez= —e3 l
Kz e3

0 &o
(i coskz+ j sinkz} —k0 Q

F, (42)

~here

Qosin8, cos(kz —P, )+Q cos8,

Ki Q sin8kcos(kz P„) Qocos8—k—
(43)

we can make use of the relation that e& K&=0 or
cos8, cos8k+sin8, sin8kcos(P, —Pk)=0 and simplify the
above expression. However from Eq. (42}, it is evident
that the polarization vector rotates as we advance in the z
direction with a periodicity of the wiggler field. One can
also define an effective polarization vector &hei from

8Xr =cp.
Bq

(48)

Since pi and p2 are functions of z we expand the above
operator in a Baker-Hausdorff scheme and get

In the absence of a radiation field ( Ai ), one can easily see
that Pz Py 0 which gives P„and P„as constants in
time which can be taken as zero without loss of generali-
ty. This however is not quite true in the presence of the
interaction vector potential A& which is necessary to
take into account the interaction of the beam with radia-
tion. Nevertheless in this approximation from Eq. (45)
we can write

P=—e, +kPO,
K

(47)

where E =Qlck . This makes Pi =0 as e, and k are or-
thogonal to e2 thereby giving P3=mcyPO. This makes
the corresponding operators defined in (12) to be

K
e ~ =exp

yk po
[sink z —sin(k z —ck Par)] +[cos(k z ck Pox) cosk z—] e-a —cPO~B/Bz

ax ay
(49)

with pas defined in (47). One can solve for po from the definition of y=(1 —p )
' as

1/2

(50)

We shall now take the n =2 term in the iterated series (18), since this corresponds to the term which characterizes the
interaction of the test particle with the radiation field. Using this as a distribution function we evaluate the energy loss
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and obtain the power emitted as

f v)„dv3 f dt, f dpi' p sin t)
dQ dt 0

ck~Ppt —t 2
Xcos 2K&sin0 sin

2

ck P,t t-,
cos k z+ +p —ck33 pot t2—

2

xcosv~t t, 5—(p, )5(p2) 5(p3 pQ), (51)

where 8 is the angle between K3 and p, 8, and p are the polar angles of the propagation vector K)„and the initial state
has been taken as a 5 function with a velocity component in the axial direction. Effecting the p integration and expand-
ing the cosine term in terms of Bessel functions, the term independent of the azimuthal angle P is retained and Eq. (51)
takes the form

cos(cK3) Bpt t2 )cos[v3(t t2 )]

We can write an expansion for Jp(z sina) as

d E ck P,t t, —
Vgd Vg dt2 1 ppsin BJQ 2K &sin8 sin

dQdt m2c o
(52)

Jp(z sina) =Jp —+2 g J„—cos(2na) .
n=1

Using this, Eq. (52) can be written as

f v&dvz f dt2& ppsin 8 Jp(K&sin8)+2 g J„(K&sin8)cos(nck~ppt tz)
dO dt ~'~ o

(53)

X cos(cK3) ppt t2 ) cso( gvt t3 ) (54)

Combining the cosine terms in (t —t3), integrating over
t2, and taking the asymptotic limit in time, we obtain the
resonance condition as

5( v3 v3Ppcos8 nck Pp)

For the case n = 1 and in the direction 0=0, we have

ck„PQ 2ck y
1 P, 1+—K'

(55)

In writing (56) we have used (50) and exPand Pp
' in

ck /(Pp —1) binomially. This is the resonance relation
obtained by Murphy and Pellegrini [10].

for higher values the difference also saturates. It may
however be noted that the curve Battens as I is increased,
so much so that the difference (b) —(a) in Figs. 1 and 2
also Battens, thereby showing that the quantum effects
become pronounced only for smaller values of I /4 and
the argument PRQQ/2. These plots were however done
for finite temperature when the Fermi function is re-
placed by a Boltzmann distribution.

In the case of the nonrelativistic plasma component

2.0

X. CONCLUSION ].5

1.0

0.5

0,0
0

Wym,
2

FIG. 1. The distribution I of spin-up (a) and spin-down (b)

particles after interaction with the medium and fields as a func-

tion of A'QQP/2 in arbitrary units. (c) is a plot of (b) —(a). These

plots are 1=1.

It is well known that for a relativistic electron in a t"

magnetic field, the Dirac equation has different Landau
level index in its eigenvalues for the spin-up [ (n2+1)]
and spin-down (2n) cases. However when we do the
summation over Landau levels [14] [see Eqs. (B6) and
(B7}]we get different factors as in (30} which is written
separately in (34), the negative sign being for the spin up
and the positive for spin down. These functions are plot-
ted in Figs. 1 and 2 as a function of pAQQ/2 and for two
different values of l /4 ( =0.25 and 1 so that l = 1 and 2).
The spin-up particle distribution has a single maximum
and attains a low saturation value for higher values of the
parameter, while in the other case the curve is similar to
a sigmoidal function. The two distributions show
different features at lower values of the argument, while
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FIG. 2. The same set of curves as in Fig (1) for l =2.
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FIG. 3. The distribution I NR for the nonrelativistic medium
plasma particles, for (a) l = 1 and (b) I =2.

which constitutes the medium, this function [see (A13)]
appears with a single peak as plotted in Fig. 3. Here
again the peak is pronounced for smaller values of 1 /4
and is shifted to the right and Battened for higher values
of I /4 and pRQO/2. Again for smaller values of 1 /4 the
significant domain of PfiQ&/2 is small; this gets extended
for higher values of the parameter. Thus the response
function has a multiplicative factor which changes
significantly as the parameter takes higher values. The
summation over the Landau levels is very crucial and is a
significant step in a statistical theory of electrons in a
magnetic field, since that introduces collective effects due
to the statistics of a large number of energy levels.

The response function given in (A16) is the most
significant result of this paper, as can be seen from Eq.
(23). h(z) is the modification of the frequency v& appear-
ing in u (z) and the fact that this is a function of z implies
that the non-Markovian dynamics considered here has
given rise to a time-dependent response function. To ob-
tain the kinetic regime, one takes the asymptotic limit in
time (which is the same as z —+0) in (A16) or (A17) result-

ing in (A18). This is necessary to wash out the memory
effects introduced by the propagator which appears in a
convolution form. This is discussed at length by Balescu
[1]. Even in this limit, the synergism is quite obvious in
the way the various frequencies co ~, Qo, 0, and v& appear
in (A19). While the Landau level summation restricts the
domain of pfiQo/2 to a narrow region, the above function
would completely vanish if either IPp Qo/Q or
1PO(1+Qo/Q) is a zero of Jo. This implies that the fre-

quencies Qo and 0 satisfying the above condition are in-
commensurate. In this case, one can see that the radia-
tion frequency would reduce to v~ or Q from (25) and
(36). We thus have, for this particular choice of magnetic
fields, the fact that the medium behaves like a vacuum
and that the light passes through the medium unimpaired
or is "ducted" through the medium. If however they are
the I'" and n'" zeros of Jo, then IPo=x„—x, and the
ratio of the Wiggler to Axial cyclotron frequency
Q/Qo= [a(a—2)]' u being x„/x, which is irrational.
It may be pointed out that l and Po are the dimensionless
wave number and the axial momentum component, and
that the former is the outcome of the conservation law.

The optics of this medium is obtained through the re-
fractive index as defined in (40). This function consists of
three terms, the first being that of vacuum. The second
comes from the effective radiation with frequency co as
given in (36). The third term is this frequency shifted by
20 due to the combined magnetic fields in the system.
The last two terms are weighted by a factor 2y/Q; this
introduces the medium eff'ect, as g (A19) is a function of
the plasma frequency. The particular choice of the syn-
chrotron frequencies which make g =—0 as mentioned ear-
lier reduces the refractive index to unity and the phenom-
ena of ducting takes place. In this case co as defined (36)
becomes vz or 0 and thereby modifies the cosine terms
appearing in (24). In this case the emerging radiation
would either be the radiation existing in the medium or
the pure synchrotron radiation with effective frequency
Q. For all other frequencies except this class the refrac-
tive index is a function of density through plasma fre-
quency as well as fiQO/k+T as seen in (A19). The polar-
ization of the incident beam also changes as given in (41).
One can easily see that this change in polarization has
three components in the original Cartesian system and
in the cylindrical coordinate system: ( 5e ) = ( QF /
Q)cos(kz —8), (5e )s=(QF/Q)sin(kz —8) and
(5e), = —(Qo/Q)F, F being defined in (43). The change
is due to the two magnetic fields Qo and 0 as well as
changes introduced by the Wiggler field geometry which
manifests itself in the definition of F. One can also define
an eff'ective polarization vector &ye& in (A6). Evidently
this polarization would be a function of density and other
parameters of the problem through y.

Equation (32') gives the measure of the Cerenkov cone
and is given by cos8=+(co/v+0&2), 8 being the generat-
ing angle of the cone and po the Lorentz factor. This
again is an explicit function of density as well as the syn-
chrotron frequencies. This may be compared with the
similar expression obtained for an unmagnetized plasma
[12] [see Eq. (4.18)], in which interaction has been be-



2602 R. PRATAP AND A. SEN 45

tween the relativistic electron and the plasma. In this
case however the plasma particles behaved like harmonic
oscillators with frequency v which in the present case is
replaced by the effective synchrotron frequency Q due to
magnetic fields. Nevertheless in the present case, for the
particular choice of Qo/Q which makes y=O, co takes the
value v&&2 since we are considering only the positive o.

due to the reality condition. This gives cosO=Po ' and
may be interpreted as "Cerenkov-like" radiation due to
the interaction between the synchrotron radiation and
the ambient radiation in the system. The role of the usu-
al medium is now played by the photon gas of frequency
v&. It may be realized that the reality condition, viz.
v&+ Q & o gives the condition Q )0 and hence this con-
—2 2 ~ ~ 2

dition exists only when the effective magnetic field is
nonzero. Again remembering that Po is the component of
P in the e3 direction which in Cartesian coordinates
would read (QOIQ)P3 —(QIQ)Pecos(kz —8) where Pz, 8,
and P3 are the cylindrical polar coordinates, we get the
Cerenkov cone twisting and wobbling around its axis as it
goes in the positive z direction.

We have finally obtained the previously derived results
as a special case of the present formalism. It may howev-
er be noted that taking limits in the present results in a
straightforward manner would not reproduce the earlier
results, since the natural coordinates in the present sys-
tem with the axial-wiggler combination is distinctly
different from that in the pure wiggler case. If we set
Qo=0, the new system reduces to the old one with a rela-
beling. On the other hand if we set Q =0, and k =0, the
present coordinate system reduces to the usual Cartesian
one. In the new system, the operators attain a particular-
ly simple form in which we can perform a Baker-

Hausdorff expansion very elegantly. Further, the limita-
tions in the linear results have been brought to light and
these results are strictly not applicable if one takes in-
teraction in a consistent manner. This is seen in (46)
wherein P=0 cannot be taken for all times. Interactions
generate nonzero force components and these play a
significant role in the dynamics of correlations.
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APPENDIX

Evaluation of response function

The first term in the series is the interaction of the test
particle with the electromagnetic field. The matrix ele-
ment is

p'"(t)=e f 'dt, f dt2e
' ' AT

0 0

Xe ' 'STe 'pT(0) . (Al)

In evaluating the energy, we have to integrate with
respect to uT and qT and the first propagator would give
unity. Substituting the operators in the above, and
remembering that P P X ( K& X ez) =0, we have

pj )( t)
8~e 2 t

1 () —iz(t& —t&)f dt, f dt, [ez(e„P)cos(K~ qz )cos(K„qT+P)]e 'pT(0)fdz e ' ' u (z),
o o Bu

(A2)

where

u (z)=iz I(z vz)— (A3)

and P and P are defined in Eq. (27). This has been obtained after the following operations: (a) shift operated on the
photon variables and integrated over J&, and co& and (b) acted the shift operator on P and qT.

The second term in the series is the one at which the test particle emits a virtual photon at t4, absorbed by the field
particles at t3, which in turn emits the same at t2 and finally the test particle absorbs at t, and proceeds to t. We con-
sider this as a completion of interaction of the test particle with the field particle. Analytically one can write this as

tl
p' '(t}=e'f dt, f dt's f dt3 f dt4[e ' ATe ' ' X,e ' ' AIe ' ' S'Te 'pT(0}] . (A4)

The progress of interaction is to be followed from right to left. The X vertex creates the correlation by emitting the vir-
tual photon and A vertex absorbs the photon annihilating the correlation.

We write the operators in full in (A4) and integrate over the photon variables. We then get

(2) 8me 2 t l () —Xt2 —iz(tl —
t2 )

p (t)= f dt& f dt2 .[e~(e~ P)cos(K~.qT)cos(K& qT+P)]e pT(0)fdze u(z)b, (z),
mV o o Bu

(A5)

where b, (z) is the response function in resolvant space and the Laplace transform of R given by
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r

Sue
R = g dt3 dt4sin(v&. t3 t4)

m~

X dPI qI ex PI ex"Kk sin Kx' Kx qI+

+Pi Q(e3Xe„) eicos(K„. K—i q, +(!)]e p, (0) (A6)

where

no
[
—(Ki P()sin(Qt2 t3—0
+e3.P( X Ki [1—cos(Qt2 t3 )—]

+K,P, [sin(Qt, —t, ) —Qt, —t, ]j .

In obtaining (A6) we have integrated partially with
respect to qI and P&. We have also added the —A, part.
We now have to integrate the above with respect to PI
and qr and for this we have to prescribe an initial state.

We shall construct the intitial state of the plasma as be-
fore by taking the density matrix with the eigenfunctions
of the unperturbed part of the Hamiltonian %i from (7).
The Hamiltonian is expressed in (E'l, E'2, 63) coordinate
system.

The eigenfunction of the Schrodinger equation is

~(( () ~
—(pi+/) /2 n P2

(2nn lv ir)1/2

el( =ei —e3 i
Kg e3

and this gives

(A10)

ez"K&= —e&&l,

e3Xe& =e3Xe&,

(e3Xei ).e~=0 .

(A 1 1)

where in the momentum space, it is angle dependent
since there are magnetic fields. There are nonzero com-
ponents in the cylindrical polar coordinates P and P3.
With this initial state we shall evaluate the response func-
tion (A6).

We substitute (A9) in (A6) and effect the operations
with the operator. The 5 functions are angle independent
and hence the operator acts only on p2 and g. We per-
form the g, ri, and g integrations and get a conservation
law as K&.=K&+eIl and the corresponding polarization
vector ensuring K&"e&.=0 as

0 0
Xexp i — (+pivot+Qk QoQ

and the corresponding eigenvalues are

E„=(n+—,
' )lriQO .

(A7)

(AS)

We now e8'ect the summation over the Landau levels and
obtain (A6) as

2cop)
iI Nasin[v&. (t3 — ]

The initial state is therefore written as

(p, + g l' H.'(Pi, -+ 4)
p, (O)= ye 2"n! ir

x p
Klk(&i. pl )

ICg

X 5(P P)5(P —P)[I+expP(—&„—Vo) ] X sin(p )5(P —Po )5(P3 P3 ), —(A12)

pfiQO
exp ——coth

4 2

pirtQ0
sinh

2

(A9) where (NR stands for nonrelativistic)
l

(A13)

Qo
(P, K2i P2K, i„+1P2) QOK3$P3(t2 t3)0

Q0

0 [(Kl&P, +K2i P2)sinQ(t2 —t3)+(P,K2i —P2K, &)cosQ(t2 —t3)]

0+l 1+ (P, sinQt3 —PzcosQt3)0
&o . . tz3= —2 PK&sin8ksin cos(())k —P +Qt23) K3iP3Qot23cosOk+lPA sin(0 +n),0 2 P P (A14)
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wherein

Qo
tp3 tp t3, 3 costs =

Q

Qo Qo1+ cosQt3 A sina = 1+ sinQt3
Q Q

'2 '2
Qo Qo+ 1+
Q Q

Qo—2
Q

Qo1+ cosQt3 .
Q

(A15)

In writing (A14) we have used cylindrical polar coordinates for P and spherical polar coordinates for Kq. We now sub-
stitute (A14) in (A12) and consider the isotropic part in the integrand, i.e., terms independent of the propagation vector
angles. We now perform the integration over P, 8&, and P3 and we write R in Laplace space as

&(z)= y(z)
(z —v~)(z —Q )

where

(A16)

Qo
y(z) = 2m''i

Q
1+ Po(PO —2)

Qo

Q

o
exp ——coth

4 2

pA'Qo
sinh

X QC„J„[(Qo/Q)POI ]J„[1+(Qo/Q)P01]QVg

(n +1)(3z +(n +1 Q) —V~)(z —V~)(z —Q )

[z (n+—1Q) ][z —(n+10 —v&) ][z —(n+1Q+vz) ]

(n —1}[3z +(n —1Q) —v~](z —v&)(zz —Q )

[z —(n —1Q) ][z —(n —1Q+vz) ][z (n ——1Q —vz) ]

with 8„=1for n =0 and 2 for n+0; n =1,2, 3, . . . .
The dominant term in (A17) is when n =0 and we then have

(A17)

Qo
y(z) = 4mcopi

Q
1+ Po(PO —2)

Qo

Q

pAQO
exp ——coth

4 2

PfiQ,
sinh

Qv~(3z +Q —v~)(z —v~) Qo
Jo 1PD Jo[1P01+(Qo/Q)] .

[z —(0+v&) ][z —(Q —v&) ] Q
(A18)

In evaluating these integrals, we had obtained J,(lP0 A), A being given by (A15}. We expand this using the addition
theorem in Bessel function.

We shall now go over to the kinetic regime by taking the asymptotic limit in time, i.e., z —+0 in (A18) and write (A16)
as

b, (z) = X(0)
(z —v~}(z —Q )

(A19)

where now

Qo
y(0) = —4+co,

Q

Qo (Qv~)
1+

~ z Po(PO —2)
Q Q —y~ Q

12 pgQO
exp ——coth

4 2

pfiQO
sinh

Jo 1PO Jo[1P01+(Qo/Q) ] .Qo

Q

(A20)
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The appearance of Bessel functions in (A19) give g(0) as
a multivalued function of l. In particular g(0) can be

zero if IPo(QolQ) or [1Po1+(QojQ)] or both are zeros
of Jp and this makes the response function zero or the
medium acts as a vacuum for the radiation. Again if they
are mth and nth zeros of Jp, we then have

or the ratio of the cyclotron frequencies would be

0 —[~(~ 2)]1/2
Qp

(A22)

a being x„/x . Again this would give a measure of 1Pp,
V1z.

Qp1+ 0 xn

xm
(A21)

1Pp =x~ xm (A23)

l and Po are still arbitrary. If we choose ~l
~

= ~k„~, then
Po=(x„—x )/~k ~. We then get a quantization condi-
tion for Pp as x„—x are fixed quantities for the different
sets of n and m.
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