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Spatially periodic patterns in a dc gas-discharge system
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The evolution of spatially periodic patterns lateral to the current flow in a dc gas-discharge system
consisting of a semiconductor and a metal electrode is reported. To explain these experiments a previ-
ously introduced two-layer model is used, which can be described by a system of reaction-diffusion equa-
tions. The discretized form of this system of equations can be interpreted as an equivalent electric cir-
cuit. Applying the center manifold theory to the system of equations, the experiments can be explained
in terms of a bifurcation in that the system is undergoing a Turing diffusion instability. For the model,
as well as in the experiments, the bifurcation from a homogeneous state into a spatially periodic struc-
ture is obtained by varying the externally applied voltage, the load resistance, or the width of the
discharge slit. In connection with the application of the model to the gas-discharge system, the j(U)
characteristic is measured for the whole discharge space and the positive column.

PACS number(s): 52.80.—s, 05.60.+w

I. INTRODUCTION

In nature the formation of time-spatial patterns in
open thermodynamic systems driven far from equilibrium
and dissipating energy is a well-known phenomenon and
has attracted much interest in the past decade. Some
well-known examples in chemistry, physics, and biology
are the Belousov-Zhabotinskii reaction [1], laser [2],
Rayleigh-Bénard convection [3], as well as the morphoge-
netic models of Gierer and Meinhardt [4]. Theoretical
investigations concerning more general aspects of these
phenomena were carried out, e.g., in Refs. [5-8].

By using an electric field as driving force we find a wide
class of physical systems or materials which show in-
teresting phenomena such as self-generated oscillations,
stable pattern formation, or chaotic behavior due to the
electric current flow. In recent time interesting work has
been done on pattern formation in semiconductor materi-
als. Examples are the studies of electric-field domains [9]
and the dual case of filamentation of the electric current
density in semiconductor devices [9-17]. The
phenomenon of pattern formation has also been observed
in gas-discharge devices. There are several investigations
concerned with structures along the axis of the current
flow [18,19]; we especially want to mention the well-
known phenomenon of standing or moving striations
[20,21]. Besides this, there are also examples for pattern
formation transversal to the current flow, e.g., the two-
dimensional complex rf discharge of Boyers and Tiller
[22,23], the resistive electrode-discharge gap structure of
Astrov and Portsel [24], and the formation of anode spots
in a dc discharge system of Miiller [25]. The pattern for-
mation transversal to the current flow in a certain dc
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driven gas-discharge system was discussed in a previous
work [26]. In this quasi-one-dimensional arrangement
one of the electrodes consists of copper and the other of
N-type doped silicon. The discharge slit is covered by
glass plates. This type of device is the prototype of sys-
tems which can be described by the two-layer model pro-
posed in Ref. [27] and was established for a certain situa-
tion in more detail in Ref. [28]. The equations describing
the model lead to a two-component reaction-diffusion
system. One of the components is a current density, the
other component is given by an electric potential. In a
certain range of operation the two components behave
like activator and inhibitor in the morphogenetic models
of biomathematics [4] and realize the essential features
for stable spatial pattern formation. The model applies to
a class of devices which is characterized by the property
that the j(E) characteristic is not constant in the direc-
tion of the current flow, but can be separated into a layer
with a negative differential conductivity and a layer with
Ohmic behavior (positive differential conductivity) ac-
cording to the two layers of the model. Examples for ap-
plications of this model are semiconductor materials
[27,29], especially p-i-n diodes [11,12] and the above-
mentioned gas-discharge system.

In this paper we describe the experimental setup of the
gas-discharge system and the application of the model to
this system. For this purpose we determine the local
j(U) characteristic for different spatial regions of the
whole discharge space to identify the nonlinear layer. We
investigate experimentally the bifurcation from a stable
homogeneous high current state into a spatially periodic
distribution of the light density in the gas-discharge slit.
These patterns are predicted by the model with bifurca-
tion analysis.
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The outline of the paper is as follows. In Sec. IT we call
to mind the two-layer model and present results from bi-
furcation analysis concerning the formation of spatially
periodic structures. In Sec. III the experimental setup of
the gas-discharge system and the experimental results are
described. in Sec. IV the measured j(U) characteristics
for the whole discharge space and for the positive column
are presented, and the layers of the model are identified.
Furthermore, the experimental results are compared to
the predictions of the model. In Sec. V some final con-
clusions are drawn.

II. TWO-LAYER MODEL
AND SOME ANALYTICAL RESULTS

A. Model

The physical model of Ref. [27], which is shown in Fig.
1, consists of two layers, one of which has linear Ohmic
electric properties, while the other has a nonlinear
characteristic which contains a region of negative
differential resistivity. The thickness a of the nonlinear
layer is assumed to be very small compared to the thick-
ness b of the linear layer. Applying an external voltage to
the contacts by the load resistance Rg, the mean current
flow direction will be the z direction. The behavior of the
physical system can be described in terms of the distribu-
tions of a current density component and the electric po-
tential at the interface (). Starting from the Poisson
equation, the continuity equations, and the transport
equations for positive and negative charge carriers with
fixed diffusion and mobility coefficients, deviations of the
charge carriers from a reference state, which is homo-
geneous in the x direction, are considered. With the as-
sumption that the deviations behave quasineutrally, one
equation is obtained for the density deviation n,; of both
the positive and negative charge carriers. At the refer-
ence state the charge-carrier density and the velocity of
the charge carriers are given by (ny,vy). (Quantities la-
beled by “0” refer to the reference state.) Deviations
from the reference state can be described by
(ng+n,vo+v,) with the corresponding current density
Jiot=(ng+n;)vy+v,). The partial differential equation
for n, can be transformed into an equation for the
current density j =j(x,y,z,t)=j,+n,vy, which, howev-
er, allows for the determination of j., (cf. Ref. [28]).
Averaging the partial differential equation for j(x,y,z,t)

[ i

FIG. 1. The physical two-layer model consisting of a resis-
tivity layer denoted by L and a nonlinar layer denoted by N; the
hatched areas are metal electrodes.
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with respect to z, we obtain an equation for the averaged
current density j =j(x,y,t) dependent upon the potential
U(x,y,t) in the interface layer . This equation is simi-
lar to the usual transport equation with an “effective re-
action term” F. Owing to the averaging procedure this
term can be identified with the experimentally deter-
mined current-voltage characteristic of the nonlinear
medium in the case of homogeneously distributed current
density as outlined in detail in Ref. [28]. Choosing a suit-
able ansatz for the potential distribution in the linear lay-
er [27], one can derive a two-component reaction-
diffusion equation for the deviations j and U of the
current density and the electrical potential in the inter-
face. This is carried out in Ref. [28] for the two cases
€y/a <<€, /b and €y /a >>€; /b, where €y and €; are
the dielectric constants of the nonlinear and linear layers,
respectively. From numerical simulations we know that
the latter case favors homogeneous oscillations, which
were never observed in the gas-discharge system under
discussion. In this work we therefore refer to the first
case, which matches the properties of the gas-discharge
system better. Furthermore, due to / >>d, we can restrict
our considerations to the quasi-one-dimensional case. If
the potential U remains in a small vicinity of U,, and if
Jo/ Uy is small, the model can be described by the equa-
tions [28]

Y AV +UVV VW) +F(V, A)— W
.
r L
—— ’ ’ 1
+x— [ Ve, (1a)
53V _s3AW) _\pyiy—w, (1b)
a7 ar

with Neumann boundary conditions.

The dimensionless variables ¥V and W correspond to
the deviations from the current density j, and from the
potential difference U= Uy,— U,, respectively (cf. Fig.
1). The normalized quantities and parameters are given
by

V=(_] _jo)/j*,Wz(UL_ULo)/UZ,
E=x/dy?, T=(bp/C)t

Ur/j*=bp,
(1c)

and

dy=Dyl/(pb), dy=25b% o=dy/dy=26Dy¢/(5pb?),

p=26uyj*¢ /(5b%), 8=e,e p*b/C ,

F(V,A)=—h(j*V,4)/U} ,

x=[Uy—H (o, )/ U} +k—ko+(r —rov, , (1d)

k=Ug/U¥, r=Rgl/pb, v,=pbj,/U} ,

L=1/dw)? A=a/dy)"?*,

V=03/3&, A=03%/3&%.

One of the quantities U and j* can be chosen arbitrari-
ly. The meaning of the parameters is as follows. ¢ is a
distributed inductance, D, and p, are the ambipolar
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diffusion constant and the mobility, respectively, p is the
specific resistivity of the linear layer, and /, a, and b are
geometrical quantities according to Fig. 1. As an exten-
sion of the system of equations of Ref. [28] we take into
account variations of the parameters r and A4 correspond-
ing to the load resistance Rg and the width a of the non-
linear layer, respectively. This leads to additional terms
in the parameter y compared with Ref. [28].

The functions h and H arise from a splitting of the
j(U) characteristic where j is the current density men-
tioned above. This j(U) characteristic can be derived
from measurements of the total j,,(U) characteristic as
described in Ref. [28]. In this way the typical features of
the nonlinear medium can be taken into account using
experimentally accessible quantities without knowing the
underlying microscopic processes. The variable j of Egs.
(1c) is given by

5, U,

JU)=jo+nvo=jo,+ n(U),

where s, is a proportionality factor and n, is the devia-
tion of the charge-carrier density for the positive as well
as for the negative charge carriers from its correspond-
ing value n in the reference state. Variations of U are
followed by variations of n; and j. Solving to U we ob-
tain a system of curves U=H (j, A). Choosing a refer-
ence state Uy=H (j,, Ay) we can split the characteristic
H (j, A) according to

H(j, A)=H (g, A)+h(j—jo A) .

In the reference point we have h(0,A4,)=0, ie,
F(0,4,)=0, and y=0. By a linear expansion of the
terms Uy—H (j,, A) in the deviations 4 — 4, we obtain
for y

Xx=—(A— AW, 4+X—Xo+(r—rolv,,

with v =[0H (j,, Aq)/dA]/Uf. This expression for y
is used in the following.

B. The equivalent circuit

In the case =0 the discretized form of system (1) with
a discretization according to Euler can be interpreted as
equivalent electric circuit, which is shown in Fig. 2. This
is an extension of the electric network, which was investi-
gated in Refs. [30-35].

The equivalent circuit is a periodic chain of elements,
each of which represents the spatially uncoupled behav-

FIG. 2. Equivalent circuit representing the spatially discre-
tized form of Egs. (1) except for the drift term.
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ior of the system of equations above. The nonlinear layer
is presented by a nonlinear resistance and an inductance,
which describes the time behavior of the nonlinear ma-
terial modeling the generation and recombination pro-
cesses of charge carriers. The nonlinear resistance is real-
ized by a special electric circuit, which is described in de-
tail in Ref. [33]. Internal points of these circuits are con-
nected by a linear resistivity network of resistances R;,
which simulates the diffusion of the current density. The
linear layer is formed by the resistance R;;. By means of
the resistances R the potential of each cell is influenced
by the potential of the adjacent cells. This portrays the
potential diffusion of Eq. (1b). As the main capacity is lo-
cated in the linear layer, each resistance current is cou-
pled with a dielectric displacement current. So we ap-
proximate the properties of the linear material by capaci-
tors parallel to R; as well as to R,. By applying
Kirchoff’s rules we can obtain a system of equations in
terms of the voltages Uf across the resistance R, and the
current I¥ through the inductance of the kth nonlinear
element. These equations represent the spatially discre-
tized form of Egs. (1).

C. Bifurcation analysis

The system of equations (1) shows a rich repertoire of
static and dynamic behavior, especially the formation of
stable spatially inhomogeneous patterns. Numerical re-
sults for the case r =r; and 4 = A, are given in detail in
Ref. [28]. In the following we show that the behavior of
the system in the vicinity of a Turing [36] bifurcation
point can be described by an equation of the Ginzburg-
Landau-type.

For given parameters system (1) has a spatially homo-
geneous stationary state Vg, Wy given by the equations

F(Vg, A)—Ws+x—1rVs=0,
(2)
VS—WS=0 .

Introducing the translated variables v =V —Vgs and
w=W — Wy, this stationary state is transformed to
v =0,w =0 and the system (1) now becomes

v _ —w—T Tt
= oAv +u(Vo )(Vw)+ f(v)—w 7 fo vdg ,(3 )
a
S—aﬂ—?}w—):Aw-i-v-—w ,
a7 orT
where f(v)=f(v;A,r,k)=F(v+Vg)—F(Vg) with

Vs=Vs(A,rk), so f(0)=0. In addition we have the
Neumann boundary conditions (Vv)(0)=(Vv)(L)
=(Vw)(0) =(Vw)(L)=0.

In order to have a system of evolution equations we ap-
ply the inverse G of the operator Id —A, i.e., Green’s
function of the boundary value problem w —Aw =0,
(Vw)(0)=(Vw)(L)=0 to the second equation of (3a) and
get

%:gm (VoI Vw) +f ) —w — T [vde,
3 (3b)
8 =Gy —w .

or
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Linear stability analysis now tells us that the stationary
solution U’'=(v,w)=(0,0) is stable, if the eigenvalues of
the linear part of Eq. (3b) have a negative real part and a
bifurcation occurs, if by changing the parameters of the
problem one of the eigenvalues crosses the imaginary
axis. To calculate these eigenvalues we develop v and w
with respect to the orthonormal eigenfunctions ¢, () of
the Laplace operator with Neumann boundary condi-
tions. In the one-dimensional case considered here the ei-
genvalues are —k?, where k, =nw/L, n =0,1,..., and
the corresponding eigenfunctions ¢, are

@, (E)=(2/L)cos(k,&) for k,#0, @,=1/L .

In this orthonormal basis Egs. (3b) can be written as an
infinite system of ordinary differential equations

aU'Il ’ ’ ’ ’
3, =C,U,+N,(U"), (4)
where
a, b,
G lew do )

U'= 3 Uyrlg,(8),

n=0
LA
N=| ,
with a, = —ok2+f'—8;,r, b,=—1, c,=[8(1+k})] 7},
d,=—1/8,
— |8 i w LIS X
f 3 (0), N, i§2 TP 0v +u(Vo)(Vw) ;

(| ) denotes the usual scalar product.
We denote the eigenvalues of C, by w(k,) given by
the equation

wlk, )} —o(k,)Tr(C,)+Det(C,)=0 .

If Re[w,(k, )] is negative for all k,, the system is linearly
stable. This is fulfilled if Det(C,)>0 and Tr(C,) <0 for
all n.

There are two ways, in which the system may become
linearly unstable depending on the behavior of the eigen-
values w(k, ). In the first case, called hard-mode instabil-
ity, two complex eigenvalues cross the imaginary axis. In
the second case, called soft-mode instability, one real ei-
genvalue crosses the imaginary axis, while the real parts
of the other eigenvalues remain less than zero. These two
cases are given by Tr(C,)=0 and Det(C, )=0, respec-
tively. Solving these conditions with respect to f' we get
two neutral curves fy(k) and fg(k) for the hard-mode
and soft-mode instabilities, respectively (see Fig. 3),
which are defined at the discrete points k,=nw/L,
n=0,1,...,:

, ok?+1/8 for k>0
k p—vg
T RI= 1 s+r for k=0, (Sa)
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f 3

fo(0)= 1+r
£ (0)=F+r fho

L
0 1 2 3 4
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FIG. 3. Typical neutral curves for the hard-mode and soft-
mode instability of system (2) in the case o <1. Parameters:
o=0.1,r=1.6,6=1.5.

' ok?+1/(1+k?) for k >0
FsU= 114+ for k=0. (5b)

We now assume that one mode k.70 becomes unstable
in that the eigenvalue o, (k,,f"') becomes zero in depen-
dence of the slope f’ and crosses the critical point with
positive velocity for growing f’. The critical eigenvalue
o (k. f') is denoted by A=A(f")=A(f.+Af'); Af'
serves as bifurcation parameter with A(f')=A(f.)=0 for
Af'=0. The critical value k_ is approximately the local
minimum of the function f¢(k), which is given by

k.=(c"12—1)1"2, (6a)
The corresponding value of f, at this minimum is
fi=fik,)=20"2—0. (6b)

A supposition for the occurrence of a soft-mode insta-
bility is that the minimum of f is less than the minimum
of fy. This assumption represents the scenario of the
diffusion driven Turing instability. To describe the be-
havior near the instability point we follow the center
manifold approach according to Ref. [37].

To get the appropriate system for the center manifold
approach we consider Af’ as an additional variable. The
following system of equations:

oU, =C,U,+N,
or “Y“nUn n >
AAS) _
or 0,
with
— an bn — ’ [ J— ’ p— ’ (Af’)v
Co= o g |[SCU=FD, N=Nit+ | |,

is obtained. This is an infinite-dimensional ordinary sys-
tem of equations, which can be rewritten as
U _cv+nm ™
or
by denoting U =(vg, Wy, - - « , Vs Wy,---;Af)T. This sys-
tem has two eigenvalues zero with the corresponding
eigenvectors
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e;=m(0,0,...,0,0,1,—a,/b,,0,0,...,0,0;0)7,
(8)
e,=(0,0,...,0,0;1)T,
where m =(1+a?2/b2)~'/2.
According to the center manifold approach the vari-
able U is split into a linearly stable part Ug and a linearly

unstable mode Uy =pe, +(Af')e, with p as the ampli-
tude of the unstable mode e,

U=PU+P,U=U,+Ug
by means of the projection operators
p=pP,+P,
=e,;1/(mP,)0,0,...,0,d,,—b,,0,

+¢,(0,0, . ..,0,0;1)

...,0,0;0)

and
PSZI—P,

where P,=TrC,. Carrying out the splitting by applying
the projectors P and Pg to system (7) we obtain

UU
3 =0+P\N(Uy+Us),
9)
U

because of P,N (Uy + Ug)=0.

By the center manifold theory, as carried out in the
Appendix, we get the following evolution equation for the
amplitude of the linearly unstable mode e:

p..=y(Afp+Bp +0(p*+IAf PP +(Af VP, (10)

with ¥ and B given by (A4). According to the center
manifold approach the stability of the bifurcating solu-
tion is given by 3. For B <0 the spatially periodic solu-
tion is stable, for 8> 0 it is unstable in the vicinity of the
critical point. These cases are called supercritical and
subcritical bifurcation, respectively.

Carrying out the same procedure for the system of
equations (1) under neglect of the term dw ,,,, which case
is treated numerically in Ref. [28], we obtain an equation

J

Fyy(Ve, AINF 4V, A )=V 4]
1+r,

Af'=

for the variation of A4,

F yy(V., A)[(3F /3k)(V,, A,)+1
Af,___ N44 c [ o c ]AK
c

for the variation of «, and

_F (Vo AF (V. A )+v,—F(V,, 4,)/(1+r,)]
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of the same form as Eq. (10). As can be seen from Egs.
(A4) and (A6) in the Appendix the parameters ¥ and B
are only slightly varied. B has the same zero as before so
that the qualitative behavior near the bifurcation point is
the same as before. Theoretical investigations by means
of perturbation theory were carried out by Elmer [37,38]
and lead to similar results for the evolution equation of
the amplitude.

Af" in Eq. (10) depends on system parameters, which
can serve as bifurcation parameters. For this purpose we
choose as reference point of the system the critical point
so that v =w =y =0 represents the bifurcation point
with F'(V_,A)=f], Ay=A, Ko=kK,, and
V.=Vs(A,r.,k.)=0. According to the experiments de-
scribed later we consider the dependence of
Af'=f"(V,; A,r,k)— f{=F'"(Vs(A,r,k), A)—F(V,, A,)
on the load resistor r, the applied voltage «, and the
width A4 of the nonlinear layer. Therefore we expand Af"’
in terms of differences r —r,, k—k,, and A — A, near the
critical point (r.,k,, A.).

Expanding F(V, A) at (V,, A,) up to the second order
in ¥ and 4, and taking the partial derivative of this ex-
pansion with respect to ¥, we obtain the following equa-
tion for Af":

r0=rc,

Affzf’_fc'z%(VS,A)—%(VC,AC)

_&F

2
= OF (v, 4,04 —4,).

1
234

(V., 4. )(Vs—V,)+

(11)

The relation between (Vg—V,) and Ar,Ax,AA is ob-
tained from the isocline system (2);

F(V,A)+x(A4,r,c) FWV,A4)
Vs=Ve= 1+Xr T, 12

Varying one of the parameters 7,kx, A we have to choose
the two other parameters as the critical values. Expand-
ing F(V, A) with V =V (r,k, A) at the critical value of the
bifurcation parameter and taking into account only terms
of the first order, we obtain, together with (11),

+1F (V. 4,) |04

A ’
/ 1+r,

Ar
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P

~

FIG. 4. Schematical presentation of the amplitude p of the
critical mode as function of the bifurcation parameter Af’ for
(a) the supercritical and (b) the subcritical bifurcation; s denotes
stable, u unstable branches of the amplitude curve.

Af*
a

for the variation of r.

From (10) we obtain the complete amplitude equation
for the unstable mode with the wave number 2k, depen-
dent upon the three bifurcation parameters. Depending
on the sign of B in Eq. (10) we obtain a supercritical or a
subcritical bifurcation (see Fig. 4). B is a function of o, so
the parameters of an experiment can be chosen in a way
that a supercritical or a subcritical bifurcation is ob-
tained.

III. EXPERIMENTAL RESULTS

Figure 5 shows the experimental setup of the gas-
discharge system consisting of two rectangular elec-
trodes, one of which is of copper, while the other one is
of n-type doped silicon monocrystal with a specific resis-
tance of 0.5-0.9 kQ cm. The semiconductor electrode
has typical dimensions of 0.3X10X40 mm? and has a
thin aluminum layer as an Ohmic contact. The width of
the gas-discharge gap can be varied in the range of 0.5-6
mm. The front end of the electrodes has dimensions of
about 0.3X40 mm? and can be regarded as quasi-one-
dimensional. The whole electrode system is covered by
glass plates. A water cooling system serves to hold the
arrangement on a fixed temperature during experiments.
The experimental arrangement is in a vacuum recipient
which contains He with a pressure of about 50—-250 hPa.

The electrodes are connected with a high-voltage dc
power supply by a shunt resistor Rg, which serves to lim-
it the current through the gas-discharge system and to
enable an approximately current-controlled operation of
the discharge. Besides the quantities current and voltage
we measure the light density distribution parallel to the
discharge gap. For this purpose we observe the discharge
slit with a vidicon camera. A special electronic arrange-
ment serves to specify a video line from the positive
column of the discharge slit. The video line signal, the
amplitude of which is an appropriate measure for the
light density distribution, is given on a digital storage os-
cilloscope.

The entire measurement arrangement can be seen in
Fig. 6. The x-y recorder serves for the measurement of
the I(U) ) characteristic. The video camera records the
stationary spatial light density distribution and is con-
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(b) discharge gap
semiconductor glass plates
electrode

movable metal
electrode

1. AL AL LIS,

metal
contact
cooling system

power supply

FIG. 5. (a) Schematical arrangement of the gas-discharge sys-
tem according to the model in Fig. 1. Ug denotes the voltage
supply, R the load resistance, M’ the aluminum contact of the
n-type or p-type doped silicon electrode L, N the gas gap, and M
the copper electrode. (b) Cross section through the gas-
discharge system showing the arrangement of the electrodes and
the glass plates; the distance between the electrodes is 2—8 mm,
the glass plates have a distance of 0.3 mm.

nected with a digital oscilloscope.

In the experiments the behavior of the stationary light
intensity distribution transversal to the current flow in
the discharge gap is observed under the influence of a
variation of the applied voltage Uy, the load resistance
Ry, or the width of the discharge gap. For an appropri-
ate parameter range we observe two basic scenarios when
varying these parameters. The first one is characterized
by a spatially periodic pattern growing up continuously;
in the other case, a discontinuous jump into an inhomo-
geneous distribution takes place. In the following we de-
scribe experiments concerning these two scenarios. The
starting point for the experiments is a stable stationary
conductive state, which is homogeneous in the direction
parallel to the electrodes.

ower supply gas
0-3600V discharge

video
camera

videoline
trigger

rower supply

0-5V monitor

oscilloscope

|

1 [A/D converter]

| storage ]

computer

FIG. 6. Schematical setup for measuring the spatial distribu-
tion of the radiation density and the I (Uy ) characteristic.
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FIG. 7. Photographs of the discharge slit for decreasing ap-
plied voltage. The gas slit can be divided into the positive
column (P) and the cathode layer (C). The bifurcation takes
place in the positive column. Parameters: Rg=25 k{1, p =90
hPa, p=0.9 kQcm, @ =4.5 mm, 6 =12 mm, d =0.3 mm, 1=45
mm. (a) Ug=1500 V, (b) Ug=1020 V, (c) Us=910 V, (d)
Us=800V.

Experiment No. 1

In Fig. 7(a) we see a discharge, which is homogeneous
in the x direction and shows a spatial structure in the z
direction consisting of different dark and bright regions,
as there are the Aston and Faraday dark space, the nega-
tive glow, the positive column, etc. In the following in-
vestigations we roughly divide the discharge space into
two parts, the positive column and the cathode region in-
cluding all the dark and bright regions in front of the
cathode. In the system described the cathode region has

SKA

X

897V
N7 v
%2V
961V
979 vV
1002 V
1025 v

1050 V

FIG. 8. Spatial distribution of the radiation density S for ex-
periment No. 1 under variation of the applied voltage Ug. Pa-
rameters: Rg=35.2 k, p =120 hPa, p=0.53 kQcm, a =3
mm, b =12.5 mm, d =0.29 mm, / =34 mm.
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68.L4kQ

63.88kQ

62.17kQ

60.33kQ

56.31kQ

51.82kQ

415kQ

FIG. 9. Spatial distribution of the radiation density S for ex-
periment No. 2 under variation of the load resistance Rg. Pa-
rameters: Ug=1616 V, p =120 hPa, p=0.53 kQcm, /=38
mm, d =0.29 mm, b =12.5 mm, ¢ =3.2 mm.

a width of about 0.5 mm.

In the first experiment the external supply voltage Ug
is varied. In Figs. 7(a)-7(d) photographs of the discharge
slit for different voltages are presented.

Figure 8 shows the spatial distribution of the radiation
density for varying Ug. For large voltage (Ug=1058 V)
we see a nearly homogeneous distribution with unavoid-
able small spatial inhomogeneities. When decreasing Ug
a spatially periodic pattern with an intrinsic wave num-
ber increases continuously. Increasing the applied volt-
age, the structure would disappear in the same continu-
ous way without hysteresis. The intrinsic wave number
k. normed on the diffusion constant dy can be deter-
mined from the experimental results in Fig. 8 as

.=mnd}/*/L, where n is the number of half waves. For
a voltage of 1025 V we could » =28 on a length of 28.2
mm. This leads to k. =17.1.

Experiment No. 2

In this experiment the load resistance Rg is varied.
Figure 9 shows the evolution of the light density distribu-
tion when increasing the load resistance. The parameters
are chosen in a way that the transition is continuous and

Sqa
M 3.97mm
M 391mm
3.7mm

FIG. 10. Spatial distribution of the radiation density S for ex-
periment No. 3 under variation of the width of the discharge
slit. Parameters: Rg=35.2 kQ, Us=1478 V, p =120 hPa,
p=0.53kQcm, /=38 mm, d =0.29 mm, b =12.5 mm.
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FIG. 11. Photographs of a subcritical bifurcation into a non-
periodic pattern. Parameters: Rg=74.7 kQ, p =244 hPa,
p=0.9 kQcm, /=28 mm, d =0.22 mm, b=7.5 mm, a =1.5
mm, (a) Us=1897V, (b) Us=1694 V.

reversible without any hysteresis. We found n =38 for
L =31.3 mm so that the half wave number is k, =20.9.

Experiment No. 3

This experiment is concerned with the variation of the
distance of the electrodes. When increasing the distance
the typical distribution of an intrinsic wavelength occurs
as to be seen in Fig. 10; the corresponding half wave
number is k,=17.5 with n =30, L =29.6 mm. For a
further increase of the distance the system develops into a
filamentary mode. This behavior is described in Ref.
[26].

Experiment No. 4

Carrying out a similar experiment as in experiment
No. 1, but choosing a small electrode distance and a high
gas pressure, we observe a discontinuity jump into a spa-
tially inhomogeneous nonperiodic pattern (Fig. 11).

IV. APPLICATION OF THE MODEL
TO THE EXPERIMENTAL RESULTS —
ADDITIONAL EXPERIMENTS

In order to apply the model to the experiments de-
scribed above we have to define the linear and nonlinear
regions within the z axis. Furthermore, we have to deter-
mine the parameters and the characteristic of the non-
linear layer. With physical reasons the qualitative behav-
ior of the total current density must be the same as that
of the partial current density of the model. Furthermore,
for small deviations from the reference point we also get
small quantitative differences. In the following we there-
fore replace the partial current density of the model by
the total current density, i.e., j =j,.

From the experiments we see that the formation of
periodic structure takes place in the positive column,
while the cathode region is still homogeneously glowing.
This is a motivation to check whether the positive
column can serve as nonlinear layer in that it shows the
required properties for a Turing instability rather than
the whole discharge space including the cathode region.

The local characteristic H(j,z,2,) of a layer, which is
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the potential difference between z; and z, as function of
J» is given by the integral over the electric field E (j,z),

H(j,z,,2,)= [ E(j,2)dz .
1

In the following we describe experiments to determine
this local characteristic for the positive column. To
avoid structure formation in the x direction we use a
small discharge element consisting of two copper elec-
trodes, which have a front area of 0.3X1.0 mm?. The
discharge gap is covered by glass in all directions. By
variation of the position z of one electrode (Fig. 12) we
get different characteristics H(j,0,z). If the electrode
distance is very small (about 0.5 mm), there is no positive
column and we get the j(Ug) characteristic of the
cathode region with Uy =H (j,0,z¢) and zx the exten-
sion of the cathode region.

In a first approximation we suppose that in the cathode
region the electric field remains unchanged under varia-
tion of the distance of the electrodes. To determine the
j(Up) characteristic of the positive column we form the
difference between the j (U} ) characteristic of the whole
discharge and the j( Uy ) characteristic of the cathode re-
gion with

UP=H(j’ZK’zK +Zp) ’
U, =H(j,0,z¢ +2p),
UK=H(j,O,ZK) )

and zg and zp the extension of the cathode region and the
positive column, respectively (see Fig. 12).

From the theoretical investigations in Sec. II we know
that the Turing instability occurs for a critical ratio of
the slopes of the load line and the nonlinear function at
the operating point. Especially the bifurcation takes

———

- |
al

\

metal
electrode

cathode
region

metal
electrode

positive
column

FIG. 12. Schematical spatial distribution of the cathode re-
gion and the positive column for various electrode distances; the
positive metal electrode is placed at z =0, zx and z, denote the
extension of the cathode region and the positive column, respec-
tively.
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FIG. 13. j(U,) characteristic of the positive column, j(Ug)
characteristic of the cathode region, and j (U} ) characteristic of
the whole discharge. The load line refers to the j(Up) charac-
teristic and is shifted in parallel with varying voltage Us. Pa-
rameters are the same as in Fig. 8.

place in a region where the nonlinear characteristic of the
model has a negative differential slope. Experimentally
bifurcations from the homogeneous into a periodic state
have been realized with the voltage Uy, the resistance R,
and the electrode distance as bifurcation parameters in
the gas-discharge system consisting of a metal and a
semiconductor electrode. To identify the nonlinear layer
we have a look at the slopes of the three characteristics in
the respective operation point, which is defined by the
current density at which the instability occurs. Figures
13 and 14 show the three characteristics of the experi-
ments Nos. 1 and 2, which refer to the bifurcations by
varying the applied voltage Uy or the load resistance Ry
(cf. Figs. 8 and 9). The dashed lines indicate the current
at which the bifurcation sets in. The load lines (solid)
refer to the j(Up) characteristic. The slopes of these
load lines are determined by the load resistance Rg, the
resistance of the semiconductor electrode pb /(ld), and
the resistance of the cathode region. The latter can be es-
timated by the j(Ug) characteristic which is nearly
linear in the vicinity of the bifurcation point.

The same type of bifurcation is observed when increas-
ing the electrode distance, i.e., increasing the width of the
positive column (cf. Fig. 10). Figure 15 shows the j (U} )
characteristics of the homogeneous discharge for various
distances, Fig. 16 the respective characteristics of the
positive column. We see that for fixed load line obtained
as described above the operating point in the j(Up)

& * 3 g
E 81 H H g
£ i(Up) § Uk) § juyg
< 61 i H §
£ P
= 3 :

= 4 § Rg=22k  § g
£ 21 3 g
3 $Rg=51.82 kQf H
£ 0 < .
=0 100 200 300 400
=

<

voltage U (V)

FIG. 14. j(Up) characteristic of the positive column, j(Ug)
characteristic of the cathode region, and j (U, ) characteristic of
the whole discharge. The load line refers to the j(Up) charac-
teristic and is tilted with varying resistance Rg. Parameters are
the same as in Fig. 9.

voltage Uy (V)

FIG. 15. j(Uy) characteristics of the whole discharge space
for various distances of the electrodes. For the distance of 0.5
mm the positive column disappears and the characteristic of the

cathode region is obtained. Parameters are the same as in Fig.
10.

characteristic is shifted into the critical region by increas-
ing the distance of the electrodes.

In all cases we observe that the slope of the j(Uyg)
characteristic in the bifurcation point is positive, that of
the j(Up) characteristic negative, whereas the slope of
the global j(U) ) characteristic can be either positive or
negative. According to these considerations we conclude
that the bifurcation into a spatially periodic state takes
place in the positive column. Therefore it is plausible to
locate the nonlinear layer in the positive column.

While the examples Nos. 1-3 can be explained by a su-
percritical bifurcation of the model, the experiment No. 4
is related to the subcritical bifurcation, which corre-
sponds to the case >0 in Sec. II. The case that a
periodic structure appears discontinuously was not ob-
served up to now; instead we obtain a transition to a non-
periodic structure. One reason may be that our samples
have too many intrinsic inhomogeneities. By the above
examples we can state that the predictions of the two-
layer model and the experimental results are qualitatively
in good agreement concerning the formation of spatially
periodic patterns. We may conclude that the characteris-
tic of the positive column can be approximated in the vi-
cinity of the critical point by a cubic polynomial, the pa-
rameters of which match the type of the corresponding
bifurcation.

As the first quantitative advance we investigate wheth-
er the insertion of the experimentally observed wave

T
Jows o < ]

EE 8 % i gg EE ‘: ‘g electrode distance

Ee{gi § 1 3 % : somm

- g8 3 % 3 % ¢ 30mm

> g8 ] s 2 ¢ 20mm

244 88 3 H % % .

g4ty 4% R b

5 S .

32 igit % l-. :". 1'5

‘E ° L] . ]

By o » 2 ng - o,

= 0 T v

5 0 100 200 300
voltage Up (V)

FIG. 16. j(Up) characteristics of the positive column ob-
tained from the j( Uy ) characteristics of Fig. 15 by subtracting
the j(Ug) characteristic of the cathode region. The operation
point on the j(Up) characteristic is shifted into the critical re-
gion when increasing the electrode distance.
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TABLE 1. Ampipolar diffusion constant D, obtained from the experiments Nos. 1-3 by measuring
the length a of the discharge gap and the wave number k. of the periodic structure, and by determining
the current density j, and the distributed inductivity ¢ at the bifurcation point.

No. a (mm) j» (mA/mm?) £(Vsm?/A) k. D, (cm?/s)
1 3.0 1.5 16 17.1 15
32 2.0 15 20.9 7
3 3.7 2.4 14 17.5 15

number into the model leads to a reasonable value for D,
Eliminating o from Egs. (1d) and (6a) and solving to D
we obtain

5b°p

Do 26¢(k2+1)7

The specific resistance of the semiconductor electrode is
p=0.53 kQcm and the thickness of the electrode is
b=1.25 cm. The time 7, which passes until the current
density reaches its stationary value after an increase of
the voltage U between the two metal electrodes, was es-
timated by means of a pulsed discharge in the arrange-
ment for the measurement of the local characteristic. ¢
is given by the product of the time 7 and the sloge of the
U (j) characteristic £ ~7dU /3j ~8X10™° Vs m*/A.

For the experiments in Sec. IIT we get Table I. The
diffusion constants D~ and D" of the electrons and the
positive He ions, respectively, are estimated with regard
to the pressure corresponding to the experiment and the
temperature 293 K according to Ref. [39]. We obtain
D" in the range of 1.1-4.5 cm?/s and D ~ in the range
of 226-452 cm?/s. The experimentally determined ambi-
polar diffusion constant D, is in a reasonable range be-
tween the diffusion constants of the electrons and the pos-
itive He ions. This is a good confirmation for the as-
sumption of ambipolar drift effects used in the derivation
of Egs. (1).

V. CONCLUSIONS

For a dc gas-discharge system consisting of a copper
and a semiconductor electrode covered by glass plates we
have shown some experiments concerning the evolution
of patterns lateral to the current flow. When varying ap-
propriate parameters the formation of spatially periodic
structures emerging from a homogeneously glowing state
takes place. These periodic structures are predicted by a
two-layer model, the physical behavior of which can be
described by a two-component reaction-diffusion system.
We have shown from bifurcation analysis that a station-
ary homogeneous solution of the equation system is un-
stable with respect to a perturbation of a special critical
wavelength at a critical slope of the nonlinearity f(v)
corresponding to the j (U) characteristic of the nonlinear
layer in the gas-discharge system. This critical point can
be attained in several ways by variation of system param-
eters, which correspond to the experimentally varied
quantities.

To explain the experimentally observed patterns by
means of the model we had to identify the linear and the
nonlinear layers of the model in the gas-discharge system.

For this purpose the I(Uy) characteristic of the whole
discharge space and the I (Up) characteristic of the posi-
tive column were measured. From these experiments the
nonlinear layer should be the positive column of the
discharge. The experimental results are qualitatively in
good agreement with the predictions of the model.

For a first quantitative approach the experimentally
observed intrinsic wave number, which is coupled with
the diffusion constant of the model, was used to estimate
the ambipolar diffusion constant of the gas in the experi-
mental arrangement. The result obtained is a reasonable
value. This is a further confirmation for the application
of the model to the gas-discharge system.
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APPENDIX

According to the double eigenvalue zero the system (9)
has a two-dimensional center manifold, which is approxi-
mated by the ansatz

Ug(Uy, Af')=Ug(p,Af')=D(p,Af')+ .

According to Ref. [37] the error term ¢ of this approxi-
mation is of the same order as the functional M, which is
defined by

M(®)=(3®/3p)P,N(U, +®)—P;CO—PN(U, +®) ,
(A1)

with N =(N,,0,...,N,,,0,...;0) and the property
M (Ug)=0. Considering terms up to the third order we
get for N,

N,, =@, [(Af v +(1/21)f P(0)w?

+(1/30)f 303+ (Vo )(Vw)). (A2)

For an ansatz ®(p,Af')= Ap*+B(Af')p we can show
that M(®) is of third order in p and Af’ for appropriate-
ly chosen A4 and B, i.e., we can solve M (Ug)=0 up to
third order in p and Af"’.

From Eq. (A1) together with Eq. (A2) we obtain the
following equation to determine the vectors 4 and B:
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PsC[ Ap*+B(Af')p]=—PgN(U.+Ug)
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=—p%g,,0,0,0,...,0,0,2,.,0,0,0, ...,0,0;0)7
—(Af")p(0,0,...,0,0,p.,p%,0,0,...,0,0;0)"+0(|p*|+|Af'[p2+(Af )P,
with go=m2L " V2(LfP+ukla,), g2 =m*Q2L) 2L f ¥ —pkla.), p,=ma./P., and p}=ma.d, /(b P,), where

f¥=fr2(0; 4,,r.,«,). The solution is

A=(A,0, 4,0,0,0, . ..,0,0, 4,5., A,5.,0,0, . ..,0,0;0)7 ,

B=(0,0,...,0,0,B,.,B,.,0,0,...,0,0;0)7,

with

A,0=—80do/|Col, A,0=g0co/|Cyl ,

A2 =822 /1Cocly Ay =82.¢2.71Cycl (A3)
B,=-p./P.,, B, =—pk/P,,

where |C,|=detC,. Inserting this approximation for U. S
we obtain from the first equation of (9)

p.e;=P N=e ,[y(Af")p +Bp°]
+O0(p*Af P3| +(Af)pY) ,

with
(AfH= dCA ' a‘dC(A )2
and
Bz dc . gOdO chdZC f(z)
Ll/ch ICo‘ 21/2lC26| c
+ m2 f(3)+ 21/2g21:kc2:u'(acd2c_‘c2c)
4L1727¢ |Cy.l

With k, and f, from (6) we can write 8 and y in terms of
the system parameters and obtain

8 r+r,,+r,+r,, (Ada)

— > a

4L(1+0)(1—80'"%)

with

— £03) 22 150'2+4
L=/ 9517217212’
—2r(fc(2))2
r (01/2—1)2[(01/2—1)2+r] ’

T 381
m 9 9(0.1/2__1) 4
r = 4ur
" (=o' e =10 +r]
and
Af’ 0,1/282( Afu)Z
(Af")= - (A4b)
M= T (1= ety

In this way we get the evolution equation for the ampli-
tude of the linearly unstable mode e,

p..=v(Af)p +Bp*+O(p*+|Af P +(Af p?), (AS)

with y and B given by (A4a) and (A4b), respectively.

Carrying out the same procedure for the system of
equations (1) and neglecting the term 3w ,,, we obtain an
equation of the same form as Eq. (A5). The parameters y
and f are slightly varied into

Af _ GP8UASY
(Af)= —

A e ™ (1=0b)
_I'+T,+T,+T,,

T 4L (140)1—80)

’

(A6)
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FIG. 11. Photographs of a subcritical bifurcation into a non-
periodic pattern. Parameters: Rs=74.7 kQ, p =244 hPa,
p=0.9 k{dcm, | =28 mm, d =0.22 mm, b=7.5 mm, a=1.5
mm, (@) Us=1897V, (b) Us=1694 V.
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FIG. 12. Schematical spatial distribution of the cathode re-
gion and the positive column for various electrode distances; the
positive metal electrode is placed at z =0, zx and zp denote the
extension of the cathode region and the positive column, respec-
tively.
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FIG. 5. (a) Schematical arrangement of the gas-discharge sys-
tem according to the model in Fig. 1. Ug denotes the voltage
supply, Rg the load resistance, M’ the aluminum contact of the
n-type or p-type doped silicon electrode L, N the gas gap, and M
the copper electrode. (b) Cross section through the gas-
discharge system showing the arrangement of the electrodes and
the glass plates; the distance between the electrodes is 2—8 mm,
the glass plates have a distance of 0.3 mm.



FIG. 7. Photographs of the discharge slit for decreasing ap-
plied voltage. The gas slit can be divided into the positive
column (P) and the cathode layer (C). The bifurcation takes
place in the positive column. Parameters: Rg=25 kQ, p =90
hPa, p=0.9kQcm, 2 =4.5 mm, b =12 mm, d =0.3 mm, 1=45
mm. (a) Usg=1500 V, (b) Us=1020 V, (c) Us=910 V, (d)
Us=800V.



