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Negative-energy waves in a magnetized homogeneous plasma
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The general expression for the second-order wave energy of a Vlasov-Maxwell system derived by Mor-
rison and Pfirsch [Phys. Rev. A 40, 3898 (1989); Phys. Fluids B 2, 1105 (1990)] is evaluated here for the

case of electrostatic perturbations in a magnetized, homogeneous plasma. It is again shown that
negative-energy waves (which could become nonlinearly unstable and cause anomalous transport) exist
for any deviation from monotonicity and/or any (however small) anisotropy in the equilibrium distribu-

tion function of any of the particle species. The partly unexpected and particularly interesting feature of
the results is that, contrary to the proof of Morrison and Pfirsch, no restricting condition has to be im-

posed on the perpendicular wave number k& of the perturbation (i.e., large k& is not required) ~ Finite-

gyroradius efFects are therefore not expected to improve the situation. Anisotropy alone would, howev-

er, impose a restriction on k„ the parallel wave number, relating it to the gyroradius. As far as distribu-

tion functions with v, (df P'/Bv, ) & 0 in some region of v space are concerned, however, this result agrees

with a result found by Pfirsch and Morrison within the framework of drift-kinetic theory.

PACS number(s): S2.3S.Mw

I. INTRODUCTION

A general expression for the second variation of the
free energy of a Vlasov-Maxwell equilibrium was previ-
ously derived by Morrison and Pfirsch [1,2], who showed
that negative-energy modes exist whenever the equilibri-
um distribution f '„'(x,v) of any particle species v

satisfies the inequality

gf (0)

(v lt) .lt &0 (1)
V

for some position vector x and velocity v and for some
vector k. Such negative-energy modes are important be-
cause they may become nonlinearly unstable [3,4] and be
of relevance to anomalous transport phenomena. How-
ever, the condition for the existence of these modes may
require very highly localized perturbations, i.e., very high
mode numbers k. In fact, Morrison and Pfirsch made
this assumption in order to prove condition (1). As far as
distribution functions with v, (Bf ', '/Bv, ) & 0 (v, is the
component of the velocity in the direction of the equilib-

rium magnetic field) in some region of v space are con-
cerned, Pfirsch and Morrison [5], Eq. (144.b), obtained
negative-energy perturbations within the framework of
drift-kinetic theory with no conditions on the perpendic-
ular and parallel wave numbers k~, k„except k,%0.
Since the Vlasov theory becomes inapplicable for wave-

lengths sma11er than the Debye length, one must investi-

gate how strongly localized the perturbations have to be.
Also, if the required wavelengths are much smaller than
the gyroradii, the relevance of the results is questionable,
and finite-gyroradius e8'ects would have to be taken into
account. This paper treats this question for the case of a
general, magnetized, homogeneous plasma; the localiza-
tion needed for an inhomogeneous system is expected to
be of the same order of magnitude.

In the following, the right choice of representation of
the perturbations in velocity space is seen to lead to clear,
simple but partly unexpected results, namely the fact that
for the existence of negative-energy waves in the system
under investigation no restriction has to be imposed on k~
if a monotonicity-isotropy condition for the equilibrium
distribution function f'„' of any particle species v is
violated. However, if only anisotropy is present, then a
restriction relating the parallel wave number k, to the
gyroradius has to be imposed.

II. A CONVENIENT EXPRESSION
FOR THE FREE ENERGY

OF A GENERAL VLASOV PLASMA

Within the framework of Maxwell-Vlasov theory, Mor-
rison and Pfirsch [1,2] derived expressions for the free en-

ergy available upon arbitrary perturbations of an arbi-
trary Vlasov-Maxwell equilibrium. If this free energy is
denoted by 5 H, then the expression derived in [1], Eq.
(61), reads

5'H = g fd'x d'vf' '(x, v) [(5x„)'—(d5x„)']

e„+
2

Sx.xS"'vx58 + v

c c

vx S"'—5x„.(5x„.V) ~"'+" + fd x(5E +58 ).
8m

(2)
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Here, the species v with equilibrium distribution function f„(x,v) consists of particles of electric charge e„and mass

m„. E' ' and B' ' are the equilibrium electric and magnetic fields, respectively, and 5E /Sean. d 5B /8m are the pertur-

bations in the electric- and magnetic-field energy densities. The operator d is defined as the equilibrium Vlasov opera-
tor, i.e.,

d=— . ~+ E''+ XBe (0)

Bx m c
L

Bv

The particle displacement 5x„and the particle velocity perturbation 5x are derived from a generating function

G„(x,v) through the relations

x
m Bv

(4)

and

BG, e„BG,
5X +

m, ()x m c BU,.

BA '
5 A() BG„e„+ +d + 5A

()x Bx; Bv c

BG, e„BG„BG, e,'+ " B"'x "+d '+ '5A
m, Bx mc Bv Bv c

where A' ' is the equilibrium vector potential and 5 A is the corresponding perturbation.
From the definition of the operator d it follows that

()G„ e„ BG„ BG„
(dG )=d + B' 'X +

Bv Bv m„c Bv Bx

and Eq. (5) can be expressed as

(6)

5xV

1 (dG„)—
m Bv

ev 5A.
m~c

Combining Eqs. (4) and (6) yields

1 8 e„BG„
d5x„= (dG„)— B' 'X5x„—

Bv c Bx
(8)

and, therefore,

[(5x„) —(d5x, ) ]+ 5x,XB' 'd5x„=
e e e

2 5A (dG„)+ (5A) + B' 'X5x„(dG„)
c Bv c Bv

e
, , BG„ BG„ g BG„B' 'X5x„. +2 ~ (dG„)—

d xd U~yd xd Uf(P)( )
Zm

The second-order wave energy can then be expressed as

aG,
'

aG„
+2 (dG„)—

BX Bx Bv

e BG„ i)G„ e„ BG„B'"x ". "+ " B"'x "
dG„

m~c Bv Bx m c Bv Bv

e QG+ q(5A) +2 5A (dG„)+2 v.

e„BG„
m„Bv

aG„
Bv Bx

E(0)+ v X8(0)

c
+ Jd x(M+58 ).1

8m.
(10)

(p)= v E(p)+ vXBe„ (0)

V cm

The terms appearing in 5 H can be transformed into more convenient expressions which, with the single exception of
the term quadratic in 5 A, do not contain f ' ' itself, but only its derivatives in x-v space. For this purpose, we define a
vector a' 'as in [1],i.e.,
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and take into account the following identities:

aG. a
2

Bx Bv

BG„
v

BX

aG a+
0x Bv

BG BG
v +

Bx Bx Bx

BG BG
X vX

BX Bv

BG g BG
a(p).

Bx Bv Bv

e
, ,

BG BG e
, ,

BG aG.
B' 'X . + B( 'X (dG„)—

m c Bv Bx m c Bv Bv Bv

BG„
av

Bv BX

BG BG
2 a'.".

Bv Bv Bx

„, aG. aG.
Bx Bv Bv

e z BG, e g BGGvx" B"' + G X XE'"
m c av ax m, "av ax

(13)

a aG. e. ~ a5A. (dG„)+v. X5B =2 ~ d(G„5A) —G„(v 5A)
c Bv c Bv Bx

(14)

These relations allow the second-order wave energy to be written as

dxd v5'H= g f f', '(x, v)
aG„ aG, „, aG„ e

(p)
BG 'BG

B' 'X +2
m c av ax

e () BG„e„g BG„
G,vX B"' " + "G, X "XE'"

m„c " av ax m„"av ax

a+ aG, aG,
Bx Bv
'2

aG,
v —(dG, )

Bv

e, e a 1+ 5A +2 d(G 5A) —G, (v5A + fd x(5E+M ).
c c Bv Bx 8~

(15)

(p)
BG

av

Here, all the terms in curly brackets which depend on the generating function G, are expressed as divergences either
in v or in x space. This proves convenient for applications.

It is straightforward, but lengthy and tedious, to show that Eq. (15) is in fact the same as Eq. (10).
Through some integrations by parts and neglect of surface terms, Eq. (15) can be transformed to

af &O~ aG„aG„ e BG BGB"'X '+2
2m Bv Bx Bx m, c Bv Bx

aG„+ "GvX" B"'
m c Bv Bx

e„a aG„G„X XE'
m "Bv Bx

af (0)

+
Bx

aG, aG„ aG,
v+(dG, )

Bx Bv Bv

(0)

+f/' 5A —2
c c Bv

d(G 5A) —G„(v 5A) .+ f d x(5E +58 ),
BX 8m

(16)

an expression that has the same structure as Eq. (13) of Ref. [2], but with x and v as the independent variables.

III. SECOND-ORDER ELECTROSTATIC WAVE
ENERGY FOR A MAGNETIZED

HOMOGENEOUS PLASMA

We now consider a homogeneous equilibrium with a
constant, unperturbed magnetic 5eld and no electric field,

B(0) g (0)e E(0)
Z

and set

af (0)

=0,
Bx

and assume purely electrostatic perturbations, i.e., we

take
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5A=O .

In this case, it is convenient to use Cartesian coordi-
nates (x,y, z) in x space, and cylindrical coordinates
(uj, g, v, ) in v space, P being the angle between the pro-
jection of v onto the x-y plane and the (arbitrary) x axis.

With these assumptions, Vlasov's equation reduces to
Bf' 'IBQ=O. Furthermore,

(O)

Bv "By '

where we have set

e S'"
Vv=
m c

Thus, Eq. (16) becomes

(19)

(20)

~f dxd v

2mv

aG„
V

Bx

Bfg& BG,
Bv Bx

, Bf'„" BG„

BG„Bf',O' BG„Bf'„v' Bf'„u' B2G„
(21)

Note that derivatives of G„ in v space only appear as derivatives with respect to P.
Since the equilibrium is x independent, an appropriate ansatz for the generating function G„(x,v) is

G (x v) —
~1[g (y)elk'x+g 0 (y)e tk'x] (22)

6„is obviously real, g„being the complex conjugate of g„. We limit ourselves here to a single k. Any generating func-
tion G„could be represented as a Fourier integral over d k, with coefficients g„(v,k).

Inserting Eq. (22) in Eq. (21}and subsequent x integration over a periodicty volume V leads to

4m„Bv " " "
Bv~2 BP BP

" By

Bf(0) Bf(0)
Bg 4

Bg

Bv f Bu,' + fd'x 5E'.
8m

(23}

The complex function g„(v) can be represented as

g„(v)=%„(v)e (24)

where %,(v) and I'„(v) are real functions. Since g„(v) must be single valued, ql and I „are subject to the periodicity
conditions

and

%„(u~,/+2m. , v, )=4,(vj, g, v, )

I (vj, /+2m, v, )=I „(v~,g, u, )+2nn

(25)

(26)

with n any integer number, i.e., n =0,+1,. . . .
Inserting Eq. (24) in Eq. (23}yields

50=/ fd v —{vk) .k 0 —2'„z2 Bf(01 Bf(0)

4m V ()Ug

Q7)
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which is the general expression for the second-order ener-

gy of electrostatic waves of wave vector k in a homogene-
ous magnetized plasma.

Note that 5 H is now a functional of %'„, which appears
as %„and B)P„/BP, and of I'„which appears only as
al „/ay.

IV. EXTREMIZATON OF THE FREE ENERGY

where BI,,/()P, as determined from Eq. (31), still has to
be inserted explicitly. The electrostatic energy term has
been dropped in Eq. (32) since the perturbed charge den-
sity can be made zero for the perturbations considered
here. This is shown in the Appendix.

By inserting (Bf(„)/()v) k explicitly into Eq. (31), we
see that I can be split into a particular periodic part I'"
and a nonperiodic contribution I' ':

It is now straightforward to minimize Eq. (27) with

respect to I . This can be done either by minimizing

with respect to I „itself, with Eq. (26) taken into account
as a boundary condition, or by minimizing with respect
to ()I „/BP, but then the subsidiary condition

f "dy=2~n„ (28)
0 8

would have to be introduced. We choose the first way:
the Euler equation to minimize 5 H with respect to I, if
we write 5 H = 1 d u I(I,I &), I „&

=—BI,/i)$, is

where

i.e.,

(k„sing —k cosP),

(33)

(34)

() r)I dI
ay ar, , ar„

Since BI/BI =0, Eq. (29) implies

ar =C„(ut, u, ) .
v, g

Explicitly, this means that

, af(.",ar„af(,"

(29)

(30)

(k„cosP+k sing)
CO V

k vi
(35)

The term (v.k)[(Bf(0)/Bv) k] appearing in Eq. (32) is,
explicitly

'

gf (0)

+2' k, v, %,
BVg

gf (0)

2
=C,(vt, u, ) .

BV
(v k) k =2[v)(e„k) +v, k, u~(e, k)]

Vg

From Eqs. (27) and (31) we then obtain

5H=Q fd u —(vk) kz
gf (0)

4m Bv

(31) (0)

+2[v, k, +u, k, ut(e, k)]
BVZ

(36)

, af(„0)
V

, af„"), al„ar„+2'„)P„+C„

where

e„k=k„cosP+ k sing . (37)

(32) Inserting Eqs. (33), (35), and (36) in Eq. (32) yields

gI (2)

+C„(ut, v, ) (3&)

(39)

then the function I' ' has to satisfy the equation

ote that this expression for 5 H does not contain e„.k any more, but only k, . This means that the results will be in-

dependent of k~, the perpendicular wave number. If we define

k, u, af '„" af '„"

2' (Bf'„'/dv ) Bv Bv,
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gI (2)
V

a((
—F 2=

V V

C„(u„u, )

4~2„(af(,"/av')
(40)

The functions C (ut, u, ), which is constant in P, and I („) are determined from Eq. (40), together with the boundary
condition on I '„', namely I ' '(/+2m. ) =I' '(P)+2m.n:

and

1 af (0)

C, =8nco„. z (F —n )
(d(t)/'P„) av i

0

(41)

al (2)

ay
1 1=F„+2m.(n„F„)—

z z
(d((' /)Il', )

Inserting these results in Eq. (38) leads to

a (0) .zkz
52H = g f dzv 2o)„[1—a„(vi, v, )] )I'„—

4m~

M. '
a(()

2K U k2„[1+a„(ui,u, )]—n,
(d((')/)I(, ) 20)v

0

2

(42)

(43)

af (0) /av 2

a (vi, u, )=
af (0) /au 2

We now consider this equation more closely:

g. k, =0 (wave propagation perpendicular to 8' ')

(44)

In this case we obtain

where we have defined a local anisotropy parameter
a„(ui, u, }:

(43) are negative; if a %1, one can use n„ to make the ex-
pression in the large square brackets negative; if a„&0,
one can take n, =0, a)II,/a/=0; if a„&0, one can take
n„)k, u, /o)„) 0 or n, &k,v, /co, &0, a)I(„/a/=0. Note
that no condition is imposed on either k~ or k, .

If af'„) /av~ &0 for some vi, v„one again localizes 4„
around these velocities. The case af(„)/auj &0 is the
most interesting one since this condition always obtains
for some ui. The positive contribution of (a)II„/a(()) can
be eliminated by choosing

af (0)
52H = g f d'u 2o)2

4m =0. (46)

8%.
'

ap f (d(t)l+„)

In this case we have

k2U2
5 H= Q fd'u

4m 2
(45)

and 52H &0 if af(0)/avz~ &0 for some vi, v, and for any
particle species v, i.e., the presence of a local minimum in

f ', '(u i ) guarantees 52H & 0for a/1 k~. It suffices to local-
ize )p, (a(p, /ap is then also localized) to the region in

ui, v, where af' )/avi) 0. Outside this region %„van-
ishes and all other %„are set equal to zero. The sign of
5 H is then determined by the sign of the integrand in the
region of localization. There is no restriction on kz, con-
trary to the results obtained in [6]. Those results are ob-
tained when the class of possible perturbations is restrict-
ed by a particular choice of test functions, namely I „=0
and ap„/av —=0, so that they do not correspond to the
minimum 5 H.

(0)

X (1—a„)2
BUg

1+a—
V

2'+
k, U,

2

2' n
2

(1—a„}— 1+a„— &0,
k, U,

(48)

(47)

and thus, since 4 is localized in v~, v„ the condition for
5 H &Ois

B. k, +0 (either parallel or oblique wave propagation
with respect to B' ')

If af' )/av) &0 for some v~, u„one localizes
around these velocities. Then if a„=1, all terms in Eq.

which means either

n COVa) &1
k, v,

(49)
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(for a„)1) or APPENDIX

n„Na( &1
k, U,

(50)
Neglect of the electrostatic energy term

The contribution of the electrostatic energy term

a
N

2')n ~, &
N

(51)

(for a„&1).
The integer n„and the wave number k, can be arbi-

trarily chosen, and it is always possible to satisfy one of
the inequalities (49) or (50) for any anisotropy a„%1,
without any restriction being imposed on k~.

If a„& 1 (Bf,' 'IBv, &Bf' )/Bvt &0), then k, is re-
stricted by condition (49). If one sets k, v,
= ( 2n. /A, , )v, =2n /r„ then inequality (49) becomes

fd'x 5E'
8m.

(A 1)

and the perturbed charge density is

5p= ge„f5f„d v . (A3)

The perturbation in the distribution function is given by

has been neglected. To justify this, let us consider the
perturbed electric charge density 5p. Generally, the
charge density is

p= ge„ff d'v (A2)

This means that n times the time that a particle needs to
travel the distance A,, must be larger than the period of
the gyromotion, but smaller than a„times this period.

If 1&a,&0 (Bf'„0'/Bv', &Bf(„v)/Bv,'&0), then k, is re-
stricted by condition (50) in a way similar to that in the
preceding case.

If u„&0 (Bf', '/Bvi &0, Bf'„'/Bv, & 0), then choosing
n„=O satisfies inequality (50) without any condition being
imposed on k„except k, AO. This is similar to the results
obtained by Pfirsch and Morrison [5], Eq. (144.b), within
the framework of drift-kinetic theory for equilibrium dis-
tribution functions with v, (Bf ', '/Bv, ) & 0 in some region
of v space.

For a,= 1 and Bf'„'/Bvi &0 everywhere, we obtain

f ', ' =f ', '( v i +v, ). The equilibrium distribution is a
monotonically decreasing function of the particle energy,
and no negative-energy modes exist. This is consistent
with the general results obtained in [7].

(0)p„=m v+ A' '(x) .

It therefore follows that

Bf(0) Bf(0)

=m
Bv „Bp

Bf(0) Bf(0) B(p ) Bf(0)

Bx „Bx,+ Bx „B(p,), „
Bf(0) e Bg (0) Bf(0)

V '

+ V I V

Bx p c Bx B(p );

Bf(0)

Bx p

Bf(0) e B g (0) Bf(0)

Bx „c Bx B(p„);

Bf(0) Bf (0)

5f„= 5x + 5p
p Bpv x

with p the canonical momentum of species v, i.e.,

(A4)

(A5)

(A6)

(A7)

V. CONCLUSIONS

In the case of a magnetized, homogeneous Vlasov plas-
ma, waves of negative energy (5 H & 0) exist for any devi-

ation from monotonicity (i.e., if Bf(„)/Bvi &0 and/or
Bf', '/Bv, &0 for some vt, v, ) and/or any anisotropy

a„(vi, v, )%1. No restricting condition is imposed on the
perpendicular wave number k~. The situation therefore
cannot be expected to be alleviated by finite-gyroradius
eftects.

For distribution functions with both Bf(o)/Bvi~ and
Bf„' 'IBv, &0 everywhere, but which are anisotropic
(a„&0 and a %1 in some region of v space), the ex-
istence of negative-energy waves imposes a restriction on
the parallel wave number k, [conditions (49) or (50}].
However, if the distribution function is such that
Bf'„' IBv, )0 in some region of v space, then there is no
restriction whatsoever on ki, k„except k, AO. As shown

by Pfirsch and Morrison [5], Eq. (144.b}, this latter result
is also obtained within the framework of drift-kinetic
theory.

Bf(0) e Bg (0) Bf(0)

Bx „m c Bx Bv;
(AS)

The perturbations 5x„and 5p, are given by

aG„
5xv=

a

BG

mv Bv
(A9)

BG
5p =—

x p

BG„e BA ' BG
+

Bx „m c Bx BU,-
(A10)

Employing the relations above, one obtains 5f, as a func-

tion of x and v:
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V m

af'„" aG„
ax av

af(„0) aG„
Bv Bx

e
(0)

BG
B x

m c Bv

af (0)

Bv

(A 1 1)

Specializing this expression to the equililbrium given by
Eqs. (17), we obtain

5p= —g f d3v
2 2m

af (0)
.k %„(v)

il „(v)+ik x —il (v) —ik x
X(e " —e " ). (A14)

where we have used the fact that 6„ is single valued, and
that f '„' is P independent.

Taking into account G as given by Eqs. (22) and (24)
yields

and

aG„af(„0)f,= aG„af '„"

ax av

e„,aG, af(,')
op= —y " fd'v

m ax av

(A12)

(A13)

The perturbed charge density 5p can be made zero
since our expression for 5 H only contains
(M'„/ap), which are then chosen localized in vt or v, .
This distribution of signs in 4', and a(11,/ap is free. For
instance, one can take %„piecewise continuous in vj or
v„with changing signs so that positive and negative con-
tribution to 5p balance each other.
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