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Energy-difFusion calculation of the electron-swarm distribution function
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An approximate treatment of the Boltzmann collision integral for electrons in a gas, valid for small
fractional average energy loss, is studied. It is essentially a Fokker-Planck expansion in energy space, in-

cluding mean energy loss (dynamical friction) and energy straggling (coefficient of diffusion). When ap-
plied to electron swarms in weakly ionized gases, treating angle variables in the two-term Legendre
series, there results a useful, physically meaningful, differential equation for the time evolution of the en-

ergy spectrum in a time-dependent electric field. Elastic scattering, and inelastic and superelastic
energy-transfer collisions are included. The tine-independent solution in a constant field is a simple ap-
proximate expression for the steady-state energy spectrum of swarm electrons. The physical meaning of
its functional form is made clear by showing its relation to ordinary diffusion-convection theory. Previ-
ous spectra by Pidduck [Proc. R. Soc. London Ser. A 88, 296 (1913);Proc. London Math. Soc. 15, 89
(1916);Q. J. Math. 7, 199 (1936)];Druyvesteyn [Physica 10, 61 (1930)];Davydov [Phys. Z. Sowjetunion 8,
59 (1935)];Morse, Allis, and Lamar [Phys. Rev. 48, 412 (1935)];Chapman and Cowling [ The Mathemat
ical Theory of Non Uniform-Gases, 2nd ed. (Cambridge University Press, Cambridge, 1952), p. 350]; and
Wannier [Am. J. Phys. 39, 281 (1971)] are special cases. The reasons for the inadequacy of the
continuous-slowing-down approximation (CSDA) become apparent. The new spectrum is exact in the
limit of small quantum transition energies. It is further shown that the CSDA violates detailed balance.
Consequences of detailed balance on the loss function and related functions are investigated, and the
Boltzmann H theorem is studied. During non-steady-state behavior, collisions may increase or decrease
the swarm entropy, but the effect of the electric field is always to increase entropy. The spectrum is used
with experimental cross sections to compute transport coefficients in 02 and N2, in both of which frac-
tional average energy loss is acceptably small over most energy ranges. Agreement with compiled swarm
data is excellent over more than four orders of magnitude in E/N for most coefficients, except at certain
energies in N2 that strain the approximation s validity. In the absence of an electric field, the inclusion
of energy straggling provides a treatment of spectral relaxation valid for arbitrary energies that is an im-
provement over common mean-stopping-power formulas.

PACS number(s): 52.25.Dg, 52.25.Fi, 51.10.+y

I. INTRODUCTION

The behavior of the electron-energy spectrum in a
weakly ionized gas in an electric field is a problem of con-
tinuing interest in plasma dynamics. In the "swarm" re-
gime electrons are generally considered to have energies
from zero to several electron volts or several tens of elec-
tron volts, or possibly higher. The spectrum is controlled
by the Boltzmann equation, and is determined by a bal-
ance between energy gain in an electric field in the pres-
ence of momentum-transfer collisions, and energy loss to
elastic recoil and inelastic collisions with host molecules.
The spectrum controls quantities of interest such as mean
swarm energy, mean momentum- and energy-transfer-
collision frequencies, rates of chemical reactions, electri-
cal conductivity, diffusion, avalanching, etc. Weakly ion-
ized gases (here defined as electron-neutral collisions
dominating electron-ion or electron-electron collisions)
occur frequently in natural and laboratory situations
(e.g., the ionosphere, or gas discharges).

For the Boltzmann distribution function f(r, v, t ) it is
customary to treat angle variables in velocity space by an
expansion in Legendre polynomials in the angle 0 be-
tween the velocity v and the electric field E, enabling one

to take advantage of the small drift energy compared
with random thermal energy, which implies that the
series converges quickly. Further progress must then
contend with the resulting coupled equations for the
coefficient functions and with the collision integral.

Early analytic work concentrated on the first two
terms in this Legendre expansion (not uncommon in re-
cent work also), sufficient to obtain the energy spectrum
(the Po term), and the first-order anisotropy in the distri-
bution function (P&) which determines drift velocity.
The collision integral was handled by assuming only elas-
tic collisions with constant cross section (e.g., the
Druyvesteyn case [1]) or with variable cross section
(Morse, Allis, and Lamar [2]). Finite-gas-temperature
effects correcting for thermal motion of scatterers could
also be taken into account (Davydov [3], Chapman and
Cowling [4], and Wannier [5]). With these simplifications
the steady-state energy spectrum could be obtained ex-
plicitly in closed form. The restriction to essentially elas-
tic collisions limited applicability to only weak electric
fields or to monatomic gases. These treatments a11 had in
common that the collisional energy loss was treated in
the continuous-slowing-down approximation (CSDA) in
which all electrons of energy m were taken to lose energy
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3o. L
F=Foexp —J

~ ™
dw

(eE /N )0
(1.2)

whel e Fp is a normalization constant, and cr is the
momentum-transfer cross section.

More recently, cross sections have become better
known in important gases. At the same time numerical
techniques have allowed actual calculation of the energy
spectrum by direct solution of the Boltzmann equation,
apparently obviating the need for further approximate
analytic studies. More terms in the Legendre expansion
can be retained and their effect studied.

In the present article we reinvestigate analytic treat-
ments of the collision integral. It is emphasized that the
actual physical process that determines the spectrum is
spread of energy gain and loss about the mean rates, and
that this spread is as important as the mean rates. This
makes clear the physical reason for the inadequacy of the
CSDA, which neglects spread in energy loss about the
mean. It is simple to retain an approximation to the loss

spread, valid when fractional average energy loss per
energy-transfer collision is small, which is often the case.
The fact that inelastic energy loss is discontinuous does

not preclude such a treatment, and much physics can be
learned from it. The procedure is essentially a one-

dimensiona1 Fokker-Planck approximation to the inelas-

tic collision integral in energy space. This reduces the
collision integral to differential form, and results in a rela-

tively simple differential (rather than integro-differential)
equation for the time evolution of the energy spectrum in

time-dependent electric fields or prescribed sources. It is
valid for time variations slow compared with the
momentum-transfer-collision frequency, but on any time
scale relative to the energy-transfer-collision frequency.

In the steady state the equation can be solved analyti-

at the same rate, the mean rate for electrons of that ener-
gy. The elastic-recoil-energy-loss rate is quite small, and
the approximation is not bad. The literature details this
classical approach [6—8] and contains historical surveys
[7,9,10]. Later work relaxed the CSDA for elastic col-
lisions. Accounts of these methods are presented in texts
[11-13].

Attempts to obtain closed-form expressions for the en-

ergy spectrum at higher E/Np were thwarted by compli-
cated electron-molecule interactions such as rotational
and vibrational collisions in diatomic gases, with atten-
dant larger energy jumps. Their cross sections were only
poorly known, if at all. One could, however, consider
these interactions as given, providing a generalized mean
loss rate NOL (eV/cm), where

L(w)= g wkok(w) .
k

Here cr k is the cross section for exciting state k, and wk is
electron energy loss upon excitation. Np is background
gas density, and we have written L for the case that all
molecules are in the ground state. Again approximating
the complete collision integral by only mean energy loss,
one can obtain the generalized CSDA expression for the
spectrum in closed form,

cally (reduced to quadratures), resulting in a closed-form
expression for the energy spectrum essentially no more
complicated in form than the CSDA, but substantially
more accurate. It involves the momentum-transfer cross
section and two sums over energy-transfer cross sections:
L and a second moment JNdescribing straggling (spread
of energy loss). Straggling allows some electrons to lose
energy more slowly than the mean rate, thereby support-
ing the high-energy tail and, among other things, raising
the avalanche rate above the CSDA. The spectrum's
functional form is readily understandable in terms of or-
dinary diffusion and convection theory, and terms in the
expression have simple physical meanings. Earlier spec-
tra by Pidduck [14]; Davydov [3]; Druyvesteyn [1];
Morse, Allis, and Lamar [2]; Chapman and Cowling [4];
and Wannier [5] are special cases, and the domain of va-

lidity of each can be seen from a unified physical perspec-
tive. We demonstrate that the new spectrum is exact in

the limit of small molecular quantum transition energies
(fractional average energy loss going to 0). Consideration
of this limit permits the direct demonstration that the
CSDA violates detailed balance.

The expression is applied to Oz, which has relatively
small fractional energy loss. We also apply it to N2 even

though the 2.5-eV resonance spike and the high first elec-
tronic state stress the validity of the Fokker-Planck-type
approximation. Swarm parameters and elastic, rotation-
al, vibrational, and electronic cross sections are relatively
well known for these two gases. Using these cross sec-
tions, the spectrum reproduces swarm parameters re-
markably we11 over nearly five orders of magnitude in

E/Np with exceptions at certain energies in N2.
The spectrum and time-dependent equation should be

useful for approximate calculations in both steady-state
and time-dependent cases, for basic theoretical studies,
for developing physical insight, for parameter studies,
and for scaling into regions not presently covered by ex-
periments.

In the swarm regime, McCormack [15] and Braglia
[16] have previously investigated effects of inelastic col-
lisions, but have not presented the closed-form expression
for the spectrum in terms of cross-section sums, or direct-

ly compared with data. Braglia and Ferrari [17] use a
similar Fokker-Planck-type expansion to study plasma
conductivity at microwave frequencies. Gurevich [18]
has studied a model of velocity diffusion for the problem
of runaway electrons, the opposite regime from a near-
isotropic swarm.

Section II discusses the Boltzmann-equation formalism
and summarizes the usual Legendre polynomial expan-
sion for angle variables. Section III discusses the col-
lision integral and the L,A, approximation to it. Section
IV presents the equation for the time evolution of the en-

ergy spectrum and its steady-state solution, and shows its
relation to ordinary diffusion-convection theory. Section
V draws inferences from detailed balance, while Sec. VI
investigates the limit of small quantum transition ener-

gies, showing the relation between L and JR, and demon-
strates that the CSDA violates detailed balance. Section
VII studies the Boltzmann H theorem, giving its explicit
form in terms of L and JM. Sections VIII and IX com-
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pute and compare swarm coefficients with data in 02 and

N2.

IL BOLTZMANN EQUATION

Ignoring inessential spatial variation or a magnetic
field, the Boltzmann equation for the electron distribu-
tion function f(v, t ) in an electric field F. is

df eE
~ V„f=C+(sources) —(sinks) .

m
(2.1)

Here e is the magnitude of the electron charge and m its
mass. Sources may be x-ray ionization, avalanching, or
ionization by the passage of fast charged particles. Sinks
include recombination or attachment. Actual sources or
sinks are problem specific, and are not considered in de-
tail here. We concentrate on the effects of E and collision
integral C in determining f. We shall also use
F(u)= ff(v)dQ„, and the energy spectrum
g(w)=(u/m )F, normalized to fF(u)u du = fg(w )dw
= n (the electron density), where w =

—,
' mu z is the electron

energy. F will be considered a function of w and is also
referred to as the energy spectrum.

A. Legendre expansions

f= yf, (u)P, (cos8)
1

=fo +f i cos8+ (small terms) (2.2)

When electron-neutral collisions dominate, C is linear in
f. C is also expanded, C =Co+ C,cos8+, and the
coefficient functions in Eq. (2.2}obey

For reduced electric fields E/No not too large, where
Np is the gas density, Vz„«(& V,z„,&, and the departure
from isotropy is small. Then f is usefully developed in
the usual Legendre-polynomial series [6,8] in the angle 8
between v and E.

v =Np v o. is the monoenergetic momentum-transfer-
collision frequency and o. is the momentum-transfer
cross section.

B. Slowly varying Selds

When t)/dt «v, Eq. (2.3b) then becomes

f, =(eE/mv )Bfo/Bu. Inserting this in Eq. (2.3a) gives
a single equation for fo. Transforming it to an equation
for g (w), we have

Bg 8 eE 2 B(wg)
Bt Bw m v 3 Bw

=C (2.4)

where C is the collision integral for g. In this equation
we have exhibited the electric-field term in two parts, one
essentially proportional to Bg /Bw, and one to
8 ( wg )/Bw, and the expression appears in flux-
conservative form. The quantity in square brackets is the
energy flux due to the electric field.

(wg)
2
3 Bco = —1+ 2w

3T,
(2.5)

C. Energy diffusion due to the electric field

The two parts of the field term in Eq. (2.4) correspond
mathematically to a mean flux ( -Bg /Bw ) and a diffusive
flux [-8 (wg )/Bw ]. Thus elastic scattering in the pres-
ence of an electric field produces both a mean gain in en-

ergy (rate -e E /mv ) and a diffusion in energy
(diffusion coefficient ——', we E /mv ). The diffusion re-

sults from successive scatterings parallel or antiparallel to
E, spreading out the swarm in the field's potential energy.

That energy diffusion produces a significant contribu-
tion to the spectrum can be seen by comparing the effect
of diffusive gain G~ in Eq. (2.4) to that of mean energy
gain G on a Maxwellian of temperature T, (eV):

Bfo
at

eZ» ~fi
3m u Bu

eF. ~fo
m Bv

(2.3a)

(2.3b)

This is of order unity, and is therefore important. It
changes sign over the average energy 3T, /2. Diffusion
allows particles of energy w )3T, /2 to gain energy faster
than the mean rate, and particles with w & 3T, /2 to gain
energy more slowly than the mean rate, thus spreading
out the spectrum and giving it body.

fo is essentially the energy spectrum, for
F= ff dQ„=ufo, while f, controls bulk electron
motion with drift velocity ve = (1/n )ff v d u

= —(4n /3n )Eff i u du, where E is a unit vector in the
direction of E. (We do not concern ourselves with gases
such as methane in which the two-term Legendre expan-
sion is known to be poor, although the treatment of the
collision integral in Sec. III would be just as valid. )

Cp is the contribution of the collision integral to the
time rate of change of the energy spectrum; it is discussed
in Sec. III. C& is the contribution to that part of the
spectrum that controls the swarm momentum.

In general, for a weakly ionized gas in which electron-
neutron collisions dominate, and when elastic collisions
dominate the momentum transfer, C, = v f„where—

III. COLLISION INTEGRAL

The general form for the collision integral for excita-
tions to discrete molecular states k of energy wk and
cross section ark(w} is

C, =&o X I (~k ug ).+.„—(o k ug ).]
k

(3.1)

assuming all host molecules in the ground state. This as-
sumption will be relaxed momentarily.

Since the cross sections are not exact step functions,
each term, and the sum itself, is a continuous function of
w. When molecular transition energies wz are small com-
pared with the width of g it is sensible to expand the sum-
rnand in a Taylor series. Exhibiting the first two terms,
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Cg =No vgL+ (vga') + .a a
'aw Bw

where

L = g wkok(w),
k

(3.2)

(3.3a)

sufficient to calculate a spectrum which reproduces bulk
transport coefficients with some acceptable accuracy.
This is consistent with earlier mathematical observations
[16,19]. These arguments may be less true for the
avalanche coefficient at low E/NO, which requires an ac-
curate high-energy tail.

AI= g ,'w—„crk(w) .
k

(3.3b)

L =II gD e ' (EI, E)o'k(w—),1
—E, /T

i, k

A/=II 'QD, e '
—,'(E„—E, )'

,c„r( w),

i, k

(3.4)

(3.S)

rather than Eqs. (3.3), where II=+;D;exp( E, /T) is-
the partition function, cr( )wis the cross section for
transition from i to k, and T is the gas temperature.

Using Eq. (3.2) in Eq. (2.4), one obtains

ag a(t

Bt Bw

where

(3.6a)

e E 2 c)(wg)

mv~ 3 Bw
NovgL No— (ugAI )—a

(3.6b)

is the energy flux. Equations (3.6) determine the evolu-
tion of the energy spectrum in the Fokker-Planck ap-
proximation.

Third and higher derivatives in the expansion Eq. (3.2)
have been neglected. The main properties of any normal-
ized distribution with a decaying tail such as F are its
average energy and the width of the function about the
average. The first-derivative term L determines the aver-

age energy, and the second-derivative term JK determines
the width, together with corresponding terms from the
field contribution. The third derivative (skewness) alters
the asymmetry about the mean, and the fourth sets the
kurtosis, both being more detailed properties of F.
Transport coefficients of interest are weighted integrals
over the spectrum, and details of the spectral shape in-

tegrate out. Thus there is physical reason to expect that
stopping with L is insufficient, but stopping with A, is

L is the energy-loss function describing mean energy loss,
and Jk, which may be called the straggling function, ac-
counts for spread about the mean. This approximates the
random walk in energy space by diffusion, a Fokker-
Planck-type approximation, and is most valid when frac-
tional energy transfer per energy-transfer collision is
small, so that large energy changes occur predominantly
by a succession of small ones. L and JR are constructed
from measured cross sections. Energy loss to heavy-
particle recoil from elastic scatterings can easily be incor-
porated in the definitions. The CSDA is that only the L
term is retained.

Thermally populated excited states, of energy E; and
degeneracy D;, are accounted for by taking L and AL to
be

A. Spread in energy loss

The ratio A/L is more slowly varying than L or AI it-
self, since irregular cross-section behavior, such as the N~
resonance spike near 2.5 eV, will occur in both L and A,
and divide out in the ratio.

Spread about the mean-energy-loss rate L can be com-
pared with L. From Eq. (3.6b) it is of order of the
diffusive-loss rate Ld divided by the mean loss rate L,

Ld 1
(vga )—

L vgL Bw wL
(3.7)

where w is the energy over which Alg = (JN/L )Lg,
changes much, being of the order of the swarm tempera-
ture or a characteristic energy over which L itself
changes. Ratio (3.7) is not negligibly small, and can be of
order unity (or larger near thermal energies where L
changes sign), showing that diffusive contributions to en-

ergy loss can be comparable to the mean loss, as was the
case for energy gain in the electric field. Since in steady
state mean loss essentially balances mean gain, diffusive
loss can be as important as diff'usive gain in determining
the spectrum. At represents a critical piece of physics
that must not be neglected.

B. Importance of energy diffusion

The steady-state spectrum is that for which /=0, and
results from a balance between total energy gain from E
and total energy loss to collisions. It is instructive to
temporarily neglect the diff'usive contributions to the Aux,
that is, the Att term in the collision integral and the term
—

—,'c)(wg)/c)w in the electric-field expression. The spec-

trurn is then a balance between the mean rates. The
mean loss rate XovL increases with energy, and the mean

gain rate e E /mv decreases with energy. The rates
are equal at some energy w, . An electron with energy
w & w, loses energy faster than it gains it, and one with

energy w & w
&

gains energy faster than it loses it. Conse-
quently all electrons end up with energy w, ; the spectrum
collapses to a 5 function at the energy where the rates
cross. The physical process which actually determines
the energy spectrum is spread in gain and loss rates about
the mean; mean rates determine only the average energy,
cf. Fig. 1. It is clear that for electrons with a spread in

energies to be in steady state there must be a balance be-
tween gain and loss rates over a spread in energies, and
this spread determines the spectrum.

This shows that in the CSDA (JR=0), the only physi-
cal process that gives body to the distribution function is

energy diffusion due to elastic scattering in the electric
field, since in the collision integral only the mean loss rate
is retained. The CSDA is poor because it neglects "half'
of the physics determining the spectrum. We shall later
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show that it also violates detailed balance. In particular,
Af allows some particles to lose energy more slowly than
the mean, thereby supporting the high-energy tail and
greatly increasing the avalanche rate or any process de-
pending on the higher-energy parts of the spectrum.

So long as average energy loss per collision is small
compared with the spectrum width, as is the case in Nz
and especially 02 over wide energy ranges, a differential
treatment including both L and Af is justified and insight-
ful, and its accuracy for calculating transport coefficients,
at least in these two gases, is borne out by direct calcula-
tion. This would almost certainly be true as well in many
diatomic and polyatomic molecules.

101

0
10o

Q

10—1

0
V

10-~

10 3 I I I I I IIII I I I I I IIII I I I I i IIII l

I I I I I I I+
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C. Energy loss per collision

10 3 10 10-& 10o 101
Electron energy (eU)

102

The electrons' mean energy loss per energy-transfer
collision is

FIG. 2. Fractional energy loss per energy-transfer collision at
300 K in N~ and Oz. Below 0.01 eV rotational transfer is com-
parable to or larger than incident energy.

Wl = (3.8)

The fractional energy loss g= w&/m in N2 and 02 at 300
K is shown in Fig. 2. g includes inelastic and superelastic
collisions with molecules in thermally populated rotation-
al states. g is seen to be safely small except below about
0.01 eV, where rotational transitions with energies

Loss Rate

N vL

4JBo-0.01 eV are common. (Here 80-2X10 eV is
the rotational constant, and J-10 is a typical populated
rotational quantum number. ) Except for this low energy,
one would expect the energy-space Fokker-Planck ap-
proximation to be quite good.

Even at energies large enough for electronic excitation,
which cause large single energy jumps, vibrational transi-
tions still occur, reducing the average fractional energy
loss. Figure 2 shows at 10 eV, say, that this is more true
for 02 than for N2. Some computed swarm parameters
will depart from experimental values in N2 when energy
jumps due to electronic transitions are important in re-
ducing the tail. Thus the characteristic energy will be
computed to be too large when it is near 1 or 2 eV.
Agreement is better in 02.

D. Thermal gas motion

Resultant Spectrum

Com
Gain

Wi electron energy, w The cross sections, and L and JR, defined above are for
the target molecule at rest. Thermal motion would
guarantee that when E=O the equilibrium distribution
function is Maxwellian. However, thermally populated
interna1 states will guarantee this as well and are included
in Eqs. (3.4) and (3.5). Furthermore, since rotational en-

ergy transfer is faster than elastic transfer, the rate at
which swarms exchange energy with neutral particles is
controlled by inelastic transfers. Thus corrections for gas
motion may be neglected when L and At in the form of
Eqs. (3.4) and (3.5) are used.

IV. ENERGY SPECTRUM

Realistic
Spectrum

CSDA

electron energy, w

FIG. 1. (a) Balance of mean gain and loss rates. Spectrum is
a 5 function at w, where the rates cross. (b) Balance of com-
plete gain and loss rates. CSDA neglects spread in energy loss.

A. Equation for time dependence of the distribution function

Equation (3.6) controls the time evolution of the spec-
trum in time varying fields in the absence of sources and
sinks; these are to be added to the right-hand side as ap-
propriate. The equation is valid for E varying slowly
compared with the swarm mean momentum-transfer-
collision frequency v, but on any time scale relative to
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the swarm mean energy-transfer frequency.
When E=O, the resulting equation g=]Itoexp f—dx

V
(4.6)

Bg B + B(vJKg)
Bt Biv Bw

(4.1)

determines the relaxation of g from an initial condition
toward thermal equilibrium. Without the E term, Eq.
(4.1) is no longer limited by Vd 'f] ((V]h ] and so ap-
plies to electrons of any energy. It includes mean energy
loss, straggling, and thermal heating.

If straggling were to be neglected (CSDA, At=0) in
Eq. (4.1), the resulting equation would show simple con-
vection in energy space, and therefore laminar flow; elec-
trons of higher energy would never overtake ones of
lower energy. Straggling destroys laminar flow and re-
stores passing in energy space.

Equation (3.6) can be written as well for F,

BF v B 1 B(wAt)

(eE /N]] ) BF+w +JK =0, (4.2)
3~m Bw

which will permit simpler understanding later.

B. Steady-state spectrum

When B/Bt =0, the steady-state solution of (4.2) is

L+— (wAI)
a

w BwF=Foexp
(eE/No)

+At
3am

dw 7 (4 3)

Let a quantity P diffuse and convect in one dimension
x with prescribed diffusion coefficient D(x) and convec-
tion velocity V(x):

Bf+ B
( ~)

B B1{j

Bt Bx Bx Bx

In steady state the flux must be constant in t and x:

VtP D=const=O, —B

Bx

(4.4)

(4.5)

where the constant is taken to be zero since we assume 1(

vanishes at an end point. Then (1/g)BQ/Bx = V/D; in
steady state the logarithmic derivative of ]I( is the ratio of
convection velocity to diffusion coefficient. Consequently
f is distributed according to

where Fo is a normalization constant. The CSDA, Eq.
(1.2), is recovered when JK is neglected.

The value of Eq. (4.3) lies both in its simplicity and (ap-
proximate) correctness, as well in its directly exhibiting
the dependence of the distribution function on the most
important molecular parameters o, L, and JK, and on
the experimental parameter E/No. Furthermoreit ha, s a
simple interpretation in terms of ordinary diffusion-
convection theory.

C. DifFusion-convection theory

If we now take x to be the electron energy w and g the
spectrum F, the controlling equation (4.2), of diffusive-
convective form, identifies

V= —Nov L+— (wAI)
1

w Bw
(4.7)

D =Nov
{eE/Nv )

+At
3om

(4.8)

V. DETAILED BALANCE

In a collision between an electron of energy w and a
molecule in state i, in which the molecule ends up in state
k, the cross section is cr,k(w), and the electron has energy
w'=w —(Ek E, ). The cross s—ection ok, for the inverse

process is related by detailed balance [20],

D; wo;„(w )=D„w'o k;(w') .

This may be used to show certain moments of the cross
sections vanish.

The pth moment of the inelastic cross sections,

L' '=ll ' QD e ' (Ek E;) o k(w), —
i, k

(&.2)

so that solution (4.6) is the steady-state spectrum {4.3) al-
ready obtained.

In Eq. (4.7), NvvL—is the prescribed convection veloc-
ity, and the (1/w )B(wAI )/Bw term is the additional con-
vection due to the energy dependence of the diffusion
coefficient. Their sum is the total convection velocity.
The first term in Eq. (4.8) is the diffusion coefficient due
to elastic scattering in E, and the JR term is that due to
energy-loss straggling. Their sum is the total diffusion
coefficient.

The electric field ED at which the two diffusion
coefficients are equal is

eED =+3o
0

which is a function of w. It is the dividing field strength
above or below which one or the other diffusion
coefficient may be neglected. In 02 it is as small as 0.1 Td
for w ~0. 1 eV, about 1 Td near 0.3 eV, 10 Td at 4.0 eV,
and greater than 100 Td for w&9 eV. (1 Td =10
V cm .) In N2 it is more widely variable because of the
resonance spike which causes both o and At to peak
near 2.5 eV.

[The mean gain velocity e E /mv and the velocity
', e E /m v d—ue to the energy dependence of the

electric-field diffusion coefficient would also appear in V,

as they should, if we had applied these ideas directly to
Eq. (3.6) for g. They drop out algebraically in the
coefficients of F and BF/Bw in the transformation to Eq.
(4.2), as well as in the numerator of the final expression
for F.]
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with p an integer, may be integrated with weight function
w exp( w—IT),
I(p) f e w lr—wL (p)dw

lE„E—, l «T, (6.2a)

and lEk E—; l
to be small compared with the energy over

which w cr;k ( w ) changes,

=II ' f dw e pe ' (Ek E—)PD;wo k(w} .
i, k

IEk E;—I
ln(w o.

,„}«1 .a (6.2b}

Invoking detailed balance, Eq. (5.1), this becomes

1(P)=11 )y f"dwe
' + ' ""D„

i, k

(5.3) Imposing detailed balance, Eq. (5.1), in Eq. (3.4) for L,
—E,. /TwL=(1/II)QD;e '

(E/, E—;)wo;k(w)
i, k

=(1/II) g Dke '
(E/, E; )w—'crk; (w') . (6.3)

Xcrk;(w (E/, —E; ))—, (5.4)

Xe " (Ek —E; }p[w (Ek —E; )]—
Expanding w'o „;(w') about w, we invoke (6.2b) to obtain

—E,. /T
wL =(w /II) y D/, e '

(E/, E; )cr/—„(w )

adding and subtracting Ek/T in the exponent. Inter-
changing i and k, we have

I(P)=II 'g f dw e ~ D;e ' (E; Ek)Pw(—r;k(w),
i, k

i, k

—(1/II) w QD/, e '
(E/, E;) crk—;(w) .(1 —E, /T 2

/, k

(6.4)
(5.5)

since o;k(w ) vanishes for argument less than threshold or
less than zero. Comparing with (5.3),

I(P)—( 1)PI(P) (5.6)

The integral (5.3) over odd energy moments vanishes. In
particular, L"'=L, and

f e wL(w)dw =0 . (5.7)
0

Since wLdw ~ vLu dv, Eq. (5.7) is equivalent to
(NvuL ) =0 in thermal equilibrium. For then F=e
and (NvvL ) =f du u FNovL =0, and detailed balance
assures that in equilibrium the swarm exchanges no net
energy with the gas. That odd moments for p & 1 should
vanish is less obvious, and appears unrelated to usual
dynamical quantities. L' ' is related to the skewness of
the cross-section su~ considered as a function of w. The
Fokker-Planck approximation turns out to preserve Eq.
(5.7), as presently discussed.

VI. EXACT LIMIT FOR SMALL (}UANTUM
TRANSITION ENERGIES

In order for the spectrum Eq. (4.3) to reduce to a
Maxwellian when E=0, we must have

L+— (wAt )
a

WOW 1

At T
(6.1)

For L and At, Eqs. (3.4) and (3.5), constructed from ex-
perimental cross sections, Eq. (6.1) turns out to be only
approximately obeyed, and Eq. (4.3) is, of course, only an
approximation to the spectrum. It is a better approxima-
tion the smaller the molecular quantum transition ener-
gies. We now show that Eqs. (6.1) and (4.3) become exact
in the limit of small transitions. More precisely, we need
o;k ( w ) to be large only when

Now using condition (6.2a) to write exp( E; /T )—
=exp( Ek IT)[—l+(Ek E; )/—T+" ], Eq. (6.4) becomes

—EI /T
wL =(w/II) Q Dke " (Ek E; )o'k;—

i, k

EI /T 2+ QDke " (Ek E) ok;—
i, k

8 —Ek /T—(1/II) w +De " (Ek E) crk, —
W i, k

+O((Ek —E;) ) . (6.5)

Dropping terms of order (Ek E; ), interchang—ing i and
k, and comparing with Eqs. (3.4) and (3.5), this is

wL = —wL+ — (2wAt),
2wAt 8

T Bw
(6.6)

from which follows Eq. (6.1). This proves the necessary
relation (6.1} that must hold between Fokker-Planck
coeScients of friction and diffusion, and verifies that in
zero field the form (4.3) correctly reduces to a Maxwelli-
an when quantum+ jumps are small.

Equation (6.1) can be solved for At,

e( )' w'L(w')dw',
W w

(6.7)

showing that the straggling function is a weighted in-
tegral over the loss function over an energy equal to the
gas temperature. Rewriting (6.7), and extending the
lower limit, shows

e ~rw L dw= lim (we "~ At)=0,
0 w~0

(6.8)

so that taking the small quantum energy hrnit preserves
the exact mean energy balance condition (5.7). Equation
(6.7) gives physical meaning to the indefinite integral of
e wL as well.

Since LAO, Eq. (6.1) for T) 0 is not satisfied by as-
suming A, =0. For a gas at nonzero temperature, excited
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Previous distribution functions as special cases

Previous analytic distribution functions have been ob-
tained by Pidduck [14]; Druyvesteyn [1]; Davydov [3];
Morse, Allis, and Lamar [2]; Chapman and Cowling [4];
and Wannier [5]. All of these are intended to apply in the
case of elastic collisions only. The later work permits o.

to be a function of energy, and accounts for thermal ener-

gy transfer. We now show these are all approximate spe-
cial cases of Eq. (4.3).

Huxley and Crompton [7] show that previous spectra
are included in that of Chapman and Cowling (Wannier's
corrected derivation [5] is also). In our notation it is

mU dU

M(eE/No) +T
3(muo )

(6.9)

where M is the molecular mass. Thus we need only show
that Eq. (6.9) is contained in (4.3).

For elastic collisions mean energy loss is [12]
wI = (2m /M )w, so that

states are populated, and collisiona1 deexcitation will
occur. Therefore there is a spread in the energy loss rate:
At, &0. Equation (6.1), which follows from detailed bal-
ance, requires this. Thus the continuous-slowing-down
approximation (LAO, AI =0) violates detailed balance.
For small transitions the spreading term A is given by
Eq. (6.7), but the result is true in general. The L chosen
for use in the CSDA must, of course, obey Eq. (5.7}. Its
indefinite integral (6.7) could then not vanish for all w.

and

1 8
( Al) 2mL 1+ w ~L

&&L
wow M 2L Bw

(6.15}

Therefore the A, correction can be dropped and Eq.
(6.13) reduces to the Chapman-Cowling distribution,
proving the assertion. When inelastic collisions contrib-
ute, the contribution (1/w )B(wAt, )/Bw is not necessarily
small, and can no longer be neglected. Even though L in

Eq. (6.10) is written for no thermal gas motion, T enters
because of thermally excited discrete states in Eq. (6.12)
which provide thermal energy transfer.

Using Eq. (6.1), one could eliminate L in Eq. (4.3) to
obtain

u)

F=Foexp
(eE/No)

+1
3o A,

(6.16)

VII. H THEOREM

reducing the dependence on molecular and experimental
quantities to the single parameter (eE /No ) /3o A(.
This form is appealing in its simplicity and is similar to
the Chapman-Cowling result with LT replaced by Af.
However, it focuses attention on the straggling function
JR and detracts from the more physically transparent
form of Eqs. (4.3) and (4.6). We shall therefore work with

the distribution function in the form of Eq. (4.3).

2mL= wo (w),

and Eq. (6.9) can be written

Ldw
Fcc=Foexp

(eE/No)
+TL

30m

However, by using Eq. (6.1) to rewrite

T B(wAt)
w Bw

(6.10)

(6.11)

(6.12) H=4~ f fain(fo)u du+0(f, /fo) . (7.2)

Boltzmann's H theorem may be applied to the electron
swarm and its consequences expressed in terms of L and

The swa, r.m is considered a system by itself, with dis-
tribution function f, and the host gas is considered an
external system interacting with the swarm. De6ning
Boltzmann's H function [21]

H=f fin(f)d u, (7.1)

f may be developed as in Eq. (2.2), H =j(f0

+f&cos6})ln(f0+f, cos0)d u. Expanding the logarithm,
one obtains

in the denominator of the integrand in Eq. (4.3), the latter
equation becomes

1 B(wAf, )

w BwWF Fo p
(eE/No) 1 B(wAI)+T L+-

3~m Bw

- dw

(6.13)

diff'ering from the Chapman-Cowling spectrum (6.11)
only by the (1/w )B(wJN, )/Bw added to L Thus we only.
need B(wAt )/Bw « wL. But for elastic collisions,

1 p 1 2m 1 2'At= —w 0 =—
, w o =— wL (6.14)2'm2Mm2m

1+1 F d
dt at

(7.4)

For constant number density the Grst term does not con-
tribute, and, using Eq. (4.2) for dF/Bt, we have

dH U B4
dt w Bw

(7.5)

Dropping higher-order terms, and considering only the
case in which electron number density is conserved, we

may use

H =fF ln Fu du = ( lnF ) .

The swarm entropy is 5 = —kH, where k is the
Boltzmann constant. Then
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where 4 is the quantity in square brackets in Eq. (4.2).
Integrating by parts, one obtains

dH 2No f4 dF
m'~ F &w

(7.6)

dH
dt E

'2 2
2Np eE

g
to 1 t)F

dw .
m 2 No 3' F Bw

(7.7)

In the expression for 4 in Eq. (4.2) the electric-field
term appears in the diffusive part and contributes to
dH /dt an amount

103

10&
I

101
I

100

10-I

10-~
O
I

10 ~

10-4

10-5

I I I I I

Illa'

I I I I I III) I I I i I Ills I I I I Ill%

dw

2No 1 1 BF BFf wAt —+— dw .
m T F Bto Bw

(7.8)

For example, if F starts at a Maxwellian of temperature
T,AT, then

The integrand is positive definite; dH/dt~E 0. The
effect of the electric force per se, or of the acquired drift
velocity, does not, of course, change the entropy, and the
net effect of the 6eld is always to increase the swarm's en-

tropy, due to energy diffusion by momentum-transfer
scatterings.

Using Eq. (6.1) the convective part of 4 may be written
(wAt/T)F, and, with the JK term from the diffusive part,
the contribution from collisions to dH/dt is

dH 2No f JNBF + , ~ 1 BF
dr, m2" T Bw F Bw

10-& 10-1 100
Energy {eV)

101

FIG. 3. L and A for 02 at 300 K. Quadrupole moment

equals 1.8.

10

using the spectrum Eq. (4.3) and the same cross sections.
N2 is discussed in Sec. IX.

Considered purely as a mathematical approximation,
the appropriate test of the L,JK approach would be to
use the same cross sections as in an accurate numerical
solution and compare resulting distribution functions or
bulk parameters. However, published calculations do not
always thoroughly reveal cross sections used, making
comparison difficult. In addition, some are digitized at
wide spacing, making it difficult to construct the needed

dH
dt

2Np 1 1 —F
, Jwu —— dw .

m e e

(7.9)

If T, & T, then dH /dt ~, & 0, and collisions decrease
swarm entropy as the electrons cool. If T, (T, collisions
increase the electrons' entropy as they heat up. Thus col-
lisions may increase or decrease swarm entropy, but the
electric field always increases it. Equations (7.7) and (7.8)
are explicit expressions for the corresponding rates, as-
suming the gas persists with a Maxwellian distribution of
states. The total rate is

r

2
10-~

10-~

10-4
2
0

10-5

10-6
0 1 2 3 4 5 6 7 8 9 10 11 12

Electron energy {eV)

dH dH dH
dt dt E dt

(7.10)

Equations (7.7), (7.9), and (7.10) express the rate of
change of entropy explicitly in terms of gas parameters
0. and A, .

VIII. APPLICATION TO 02

There is no doubt as to the conceptual correctness of
the Fokker-Planck approximation, but its accuracy for
any given gas is not a priori obvious. In this section we
apply the L,A approximation to 02, in which relevant
cross sections are relatively well known. The application
involves constructing L and A, from experimental cross
sections and calculating steady-state swarm parameters

4
E

0
R

10o I I

10—I

10 4

(b)

I I I I ( I I I I
i

I I I I ( I I I I ( I I I

Og, 300K
100 Td

10-6 I ( I I I I i I I I I I I I I I IK I I ) t I I I I I I I

10 15 20
Electron energy {eV)

25 30

FIG. 4. Swarm energy spectrum in 02 at E/No = 10 and 100
Td.
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FIG. 5. Characteristic energy (transverse diffusion coelcient
divided by mobility) in 02 at 300 K. Large open circles are cal-
culations with Eq. (4.3) using the momentum-transfer cross sec-
tion compiled by Wadzinski and Jasperse [29] corrected by
Kieffer's low-energy tail [30]. Open triangles are with the
momentum-transfer cross section presented by Phelps [27].
Small data points are representative of those tabulated by Dut-
ton [32] (Table 2.13). Dots below I Td are calculations from
Hake and Phelps [23].

10-1 100
Characteristic energy (eV)

101

FIG. 7. Swarm momentum-transfer- ( v ) and energy-
transfer- (v„) collision frequencies per molecule in 0& at 300 K.
Large open circles and triangles are the same as in Fig. 5. Small
data points are calculations and data from Hake and Phelps
[23]. In the Fokker-Planck (L,At) approximation the
momentum-transfer cross section compiled by %'adzinski and
Jasperse [29] with Kieffer's low-energy tail [30] produces better
agreement with the more accurate calculations of Ref. [23].

derivatives in Af. Also, some experimental cross sections
are known more accurately now than when some pub-
lished calculations were performed. These and other
practical limitations have made it impossible for us to
directly compare the L,JK approximation with a more
accurate calculation using identical cross sections. In-
stead, therefore, we test the Fokker-Planck approxima-
tion by using most recent recommended cross sections,
and comparing calculated swarm parameters in Oz and
N2 with experimental values. Swarm measurements
change less in time than cross sections. In one case (cr
in 02 at low energies), in which there is nearly an order of

magnitude discrepancy between two recommended sets,
we compute with both. The excellent comparison ob-
tained in this procedure substantiates the value of the
L,Af approx, imation, but leaves open an accurate quanti-
tative comparison of errors.

A. Cross sections and L and A functions

For rotational excitations we use the Gerjuoy-Stein
[22] cross sections with a quadrupole moment of 1.8 (in
units of eao, where ao is the Bohr radius). This relatively
large value was meant to achieve agreement with drift ve-
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104

10

1
70

0 csDA

1 I I I

100 130 160 190
E/No(Td)

220

FIG. 6. Swarm drift velocity in O~ in 300 K. Large open cir-
cles and triangles are the same as in Fig. 5. Smaller data points
are from measurements as tabulated by Dutton [32]. Dots
below 0.2 Td are calculations by Hake and Phelps [23].

FIG. 8. Avalanche rate in 02 at 300 K. Small circles are
data representative of those compiled by Dutton [32]. The
Fokker-Planck approximation is about a factor of 4 too high at
100 Td; agreement improves at larger E/Np.
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FIG. 11. Drift velocity in N2 at 300 K. Large open circles
are our computed points. Smaller symbols are experimental

points as compiled by Dutton [32] (Tables 1.16-1.18).

locity at low E/No [23], and presumably accounts for the
enhancing effect of the negative ion resonance. Neither
experiment nor theory has definitively resolved Oz rota-
tional cross sections [24,25], and it does not behoove us
to become embroiled in the rotational fray.

We have smoothed out the sharp peaks in the vibra-
tional cross sections, maintaining the general shape of the
energy dependence [26,27] and preserving the energy in-

tegral of Phelps's [27] recommended normalization. This
smooths out small jumps in energy loss and permits con-
structing reasonable derivatives. The electronic and ion-
ization cross sections are those compiled by Archer [28],
in use in the auroral physics community for some years.

We use two sets of momentum-transfer cross sections,
representative of the discrepancy of nearly an order of
magnitude in this quantity at low energies. One set
recommended by Phelps [27] is as small as 3.5X10
cm at the low end, and transport coefficients computed
using this set are denoted by open triangles (6) in Figs.
5 —8. The second set is that compiled by Wadzinski and
Jasperse [29] corrected by KiefFer's low-energy tail [30],
which is 3.0X10 ' cm, and renormalized as suggested
by Phelps [27]. Results based on this set are denoted by
open circles (0). DifFerences in swarm parameters be-

tween the two sets occur mostly below 0.1 Td.
L and At constructed from these cross sections are

shown in Fig. 3. Rotational transitions are responsible
for almost all energy loss below about 0.19 eV. The
hump between 0.2 and 1 eV is vibrational.

B. Distribution function

The distribution function, Eq. (4.3), for T =300 K, at
10 and 100 Td, is shown in Fig. 4. Attachment has been
ignored. The CSDA results are also shown, and depart
seriously from the L,At approximation only in the high-
energy tail. Many transport coefficients computed in the
CSDA are not wildly different from either the L,At ap-
proximation or data, except for avalanching at low
E/No, because they do not depend sensitively on the tail.
Swarm parameters in the CSDA in air are commonly in
error [31)by 5—30% over limited ranges of E/No

C. Swarm parameters

Figures 5 —8 show calculated points (o and 6) along
with recent data tabulated by Dutton [32]. In general the
agreement is remarkably good over more than four or-
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FIG. 10. Swarm energy spectrum in N2 at 100 Td. Dashed
line is calculation by Pitchford and Phelps [36].

FIG. 12. Swarm characteristic energy in N& at 300 K. Large
open circles are our computed points. Smaller symbols are ex-
perimental points as compiled by Dutton [32] (Table 2.10).
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ders of magnitude in E/N0, using recommended cross
sections.

The characteristic energy, Fig. 5, is computed to be too
large at 100 Td, because of the large single energy loss in
electronic transitions which lowers the average swarm
energy. Likewise, at the higher energies, large electronic
transitions produce a more rapid energy transfer rate,
Fig. 7, than the continuous Fokker-Planck approxima-
tion. Similarly, the avalanche rate, Fig. 8, is computed to
be too large, especially at relatively small E/N0. That
the CSDA avalanche rate is small, while the L,AL ap-
proximation is too large, raises speculation that the
L,At, . . . series would alternate.

We have used currently recommended cross sections,
and compared with compiled data. Except for the
avalanche rate at low E/No, which depends on the tail
above 12 eV, and for characteristic energies above about
4 eV where large electronic energy jumps are poorly
modeled, disagreements appear to be within the bounds
of cross-section uncertainties, as evidenced, for example,
in the low-energy behavior in Fig. 6.

IX. APPLICATION TO N2

In this section we apply the L,A, approximation to Nz,
in which cross sections are also relatively well known.
The resonance near 2.5 eV and the high first electronic
state of N2 stress the validity of the Fokker-Planck ap-
proximation more than 02, and prepare us to expect
poorer agreement.

A. Cross sections and L and At functions

We again use the Gerjuoy-Stein rotational cross sec-
tions, with quadrupole moment 1.04. Vibrational excita-
tions are based on the measurements by Schulz [33] as
normalized by Haas [34]. A low-energy (0.29—1.7 eV)
tail for the v =0 to v =1 transition was added as suggest-
ed by Englehardt, Phelps, and Risk [35]. Numerical
values for the tail were taken from Kieffer [30]. Electron-
ic and ionization cross sections are those of Archer [28],
and agree quite well with the tabulation of Wadzinski and
Jasperse [29]. Figure 9 shows the resulting L and JK.
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FIG. 13. Swarm momentum-transfer- ( v ) and energy-
transfer- (v„) collision frequencies per molecule in N2 at 300 K.
Large open circles are our calculations using Eq. (4.3). Solid
curves are averaged data and small solid diamonds are discrete
energy loss calculations by Frost and Phelps [37].

the agreement is excellent over some five orders of magni-
tude in E/No. It is slightly too small below about
3X10 ' Vcm; here rotational transitions become corn-
parable to swarm energies, stressing the Fokker-Planck
validity. It is also too small near 10 ' —10 ' Vcm,
where the swarm straddles the 2.5-eV resonance spike.

The characteristic energy, Fig. 12, is computed to be
too large below 3 X 10 V cm and above 10

—&6 V cm,
accounting for the drift velocity behavior.

The swarm momentum and energy-transfer-collision
frequencies are shown in Fig. 13, together with data and
calculations by Frost and Phelps [37]. Again, agreement
is excellent except for the energy-transfer-collision fre-
quency with characteristic energy near 1 eV when the
resonance spike begins to reduce average energies more
rapidly than can be accounted for in the Fokker-Planck

B. Distribution function

Figure 10 shows the distribution function, Eq. (4.3), at
100 Td, together with the CSDA and the more precise
calculation of Pitchford and Phelps [36]. This is a partic-
ularly stressful field strength, since at this field the spec-
trum straddles the resonance spike and the Fokker-
Planck approximation is not at its best. In particular, the
L,JR approximation puts too many electrons at inter-
rnediate and high energies. The approximation tends to
be better at different E/N0. Furthermore, when mo-
ments are taken a higher level of accuracy is achieved,
and swarm parameters are in quite good agreement with
both data and more accurate calculations.

C. S~arm parameters
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The open circles in Fig. 11 show calculated drift veloci-
ty along with data compiled by Dutton [32]. In general

FIG. 14. Calculated avalanche rates in N2. Open circles are
from Eq. (4.3). Open diamonds are the CSDA. Small data
points are representative of those compiled by Dutton [32].
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approximation.
The avalanche rate, Fig. 14, is computed to be too

large at small E/No, similar to 02. Bracketing by the
CSDA and the L,A, approximations is again evident.

As was the case for Oz, energy loss is sufficiently small
over wide energy intervals for the Fokker-Planck approx-
imation to reproduce transport coefficients to generally
excellent accuracy.

X. CONCLUSIONS

The Fokker-planck, or L,AL, approximation reduces
the integro-differential Boltzmann equation to differential
form. It is accurate when quantum transition energies
are small and average energy loss is small compared with
the spectrum width. This condition appears to be true
over wide energy intervals in 02 and N2, corresponding
to more than four orders of magnitude in E/No, and
would undoubtedly be true in many other diatomic or po-
lyatomic gases as well.

At most values of E/No the steady-state spectrum is

computed with sufficient accuracy that swarm parame-
ters are in excellent agreement with data. These results
lend credence and utility to the time-dependent equation
(4.2). Exceptions occur when the Fokker-Planck small-
energy-loss condition is stressed, such as in N2 when the
distribution function straddles the 2.5-eV resonance, or
when the large first electronic excitation plays a
significant role.

The L,Af approximation enables the energy spectrum
to be understood from a simple physical perspective. If
in some gases L and JK could be fit by integrable func-
tions, then the quadratures could be performed, and I'
could be expressed fully in closed form.
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