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The stability of uniaxial nematic-liquid-crystalline structures in supra-um-size spherical cavities that
impose a weak homeotropic anchoring is studied theoretically. The equilibrium equations are obtained
with the minimization of the deformation, surface, and field contributions to the free energy and are
solved numerically. The dependencies of the solutions on the ratio of elastic constants K;;/K,
K,, /K, anchoring strength, and external field strength are discussed, and the stability diagrams with
lines of structural (Fréedericksz) transitions are constructed. In the region of strong anchoring and large
external field strengths, a triple point, where radial, nonsingular axial, and axial structure with the line
defect, is predicted. Particular attention is paid to the inversion point corresponding to the critical-field
strength above which radial structure is no longer stable. Two possible methods for saddle-splay elastic

constant K,, determination are suggested.

PACS number(s): 61.30.Gd, 64.70.Md, 61.30.Jf

I. INTRODUCTION

Surface-induced phenomena in liquid-crystal samples
with microscopically restricted geometry are the matter
of recent particular interest. Nematic-liquid-crystal
droplets dispersed in a solid polymer [1-4] are typical
examples of such systems where relatively high surface-
to-volume ratios are easily reached. These polymer
dispersed liquid crystal (PDLC) materials are obtained by
a polymerization-induced phase separation with average
droplet radius ranging from less than 0.1 um to more
than 10? pum, depending on the preparation procedure.
The spatial dependence of nematic ordering within drop-
lets depends on the relative strength of elastic forces,
external fields, and surface interactions. The confined
phase can be either [5,6] isotropic, paranematic, isotropic
with a boundary nematic layer, or nematic. These phases
can exhibit a variety of nematic director fields
(configurations). The best known are bipolar and concen-
tric structures for tangential [ 7-10] anchoring and radial
and axial structures for homeotropic ({8,9,11] anchoring.
For materials with small twist elastic constants, a reduc-
tion of the splay elastic free energy leads to twisted struc-
tures [12,13]. In droplets where anchoring is neither
homeotropic nor tangential, structures with lower sym-
metry appear. More defects and features of the both ra-
dial and axial structures have been observed [9]. Some of
these structures in supra-um droplets dispersed in a
liquid or solid have been studied using optical micros-
copy [8-12]. Much less is known about cholesteric
droplets where best known is the structure with a radial
defect occurring in the case of tangential anchoring [14].
More indirect studies such as light attenuation [15] and
deuterium NMR [16-18] have been used for sub-um
nematic droplets.

The transitions between various stable structures are
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kinds of Fréedericksz transitions [19]. In contrast to the
field-induced transitions in planar systems, the transitions
are of first order. To find conditions where transitions
occur, model structures for nematic droplets must be ob-
tained. One usually starts with a minimization of a phe-
nomenological expression for the free energy. Depending
on the droplet size two approximate approaches can be
used: the Frank-Oseen approach [20] for supra-um drop-
lets where nematic free energy density is expanded in
terms of the derivatives of the components of the nematic
director n, and the Landau-de Gennes approach [19] for
sub-um droplets where the free-energy density is expand-
ed in terms of a nematic order parameter and its deriva-
tives. In both cases the minimum number of terms hav-
ing the required symmetry are considered. Recently, par-
ticular attention has been paid to surface (saddle-splay
and splay-bend) terms that are usually neglected [19,21].
In this paper we study stability of phases in supra-um
nematic droplets where a weak homeotropic anchoring is
enforced on its spherical surface. In Sec. II we start with
the most general Landau—de Gennes expansion of the
free energy and then introduce approximations that yield
a Frank-type free energy. This allows us to write the
well-known Frank elastic constants in terms of the
Landau-de Gennes expansion coefficients and to avoid
nonphysical choices for elastic constants in our model.
The elastic free energy, which includes the surface
saddle-splay term in addition to the bulk terms, is mini-
mized together with external field and interfacial contri-
bution. We limit our discussion to nontwisted cases (i.e.,
with relatively large K,,). In Sec. III solutions with radi-
al, deformed radial, and axial (with and without line de-
fect) director fields are presented. The lines of structural
transitions in the phase stability diagram are obtained.
The theoretical results and the available experimental
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data are discussed in Sec. IV. In Sec. IV we also discuss
how K,, can be extracted from an experimentally deter-
mined stability diagram.

II. FREE ENERGY

To determine the stable structure of a chosen system at
constant volume and temperature, the minimization of
the free energy is usually used. We start with a general
Landau—de Gennes—type expansion [19,22-24] of the
free-energy density in terms of the tensor order parame-
ter Q;; [22]. The density can be divided in homogeneous,
inhomogeneous, surface, and field parts,

F) =)+ f )+ f(e)+ fy(r), (D

|
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where

b
fh(r)=f0(T)+%(T_T, )Qiiji—'g‘Qiijkai
T Q0"+ Q@ Q@i+ ()

is the homogeneous [24] part of the free energy density
with a(T—T,), b, ¢,, and ¢, the expansion coefficients.
T, is the temperature of the supercooling limit. Indices
i,j,1,k, . .. stand for any of our three orthogonal coordi-
nate axes. The standard notation, where a double ap-
pearance of any index in each term stands for the summa-
tion over that index, is used,

faO=LQu Qi +L¥Q; .0 x +LPQjx i Qe ; + L Qi ;i@ + L& Qs s Qi
+LPQ:iQi 1k Qui i L0 Qi jQrt i H L Q4Qur 1 Q)i
+L0; Qi1 Qi 7L Qi Qi1 Qi ke + L6 Qi Qs 1 Qo+ (3)

is the inhomogeneous [22,23] part of the free-energy den-
sity associated with the nonuniform ordering. The ex-
pansion coefficients L/’ are temperature-independent
generalized elastic constants. Q;;, denotes the partial
derivation of Q,; with respect to the /th coordinate. To
describe the chiral nematic phase the term

(2)
Ly €QuQik » (4a)
with €;; as the Levi-Cevita antisymmetric tensor with

properties

1, ijk=123,231,312
€ =11, ijk=213,321,132
0, elsewhere

(4b)

must be added to Eq. (3).

For the interaction of the liquid crystal with the sur-
rounding medium [25,26] we assume a contact nature of
the interaction described by a & function and a linear
dependence on the order parameter [5,25]

fS——TeiQijejS(R—r) . (5)

Here e; are the components of the unit vector along the
preferred surface anchoring direction and w, measures
the strength of the interfacial interaction. Usually w,
multiplied by the nematic-order parameter S is defined as
the anchoring strength denoted by W, [26]. In a more
detailed discussion the terms with higher powers of Q
should be taken into account [27].

The external field contribution will be explicitly written
only for the magnetic case

Ho

ff:—‘z“

Hix;H; , (6)

where H is the magnetic field and x;; the magnetic sus-
ceptibility tensor related to the order parameter [28]

Xij=x0;+3AxQ;; - (7)

Ay is the difference between the principal values corre-
sponding to the directions parallel and perpendicular to
n; x is the isotropic part of the susceptibility. It should
be stressed that the effect of the electric field could be
treated in a similar way, but in comparison to the mag-
netic field case it substantially varies over the droplet.
This is a consequence of a large spatial variation of the
dielectric constant in such an inhomogeneous structure,
while in the magnetic case y is small throughout. The
internal electric field also can be significantly affected by
the electric conductivity of the liquid crystal and the sur-
rounding medium. Therefore in most cases a complete
solution of the electric case must include a simultaneous
minimization of the free energy and solving the corre-
sponding Maxwell equations.

Here we treat supra-um droplets far below the
nematic-isotropic phase transitions, where effects of local
biaxial ordering and of spatial dependence of the orienta-
tional order are negligible. The ordering will therefore be
described by the nematic director field n(r) and by a spa-
tially independent scalar nematic-order parameter [24]
S=1(3cos%d,, —1), where ( ) stands for the statistical
average over angles between the director and molecular
axis. The tensor order parameter thus reduces to

Q,-j(r)=%[Sn,-(r)nj(r)—ﬁ,-j] . (8)
Further we limit our discussion to the normal anchoring

(e=e,=r/r) and after some rearrangements write Eq. (1)
in the following form:
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+k13V-[n(V-n)]+[1—(n-e,)z]};—é(1~p)-%h2(eﬂ-n)2+f,; , 9)

where f, represents all homogeneous (temperature- and
field-dependent) terms, p=r/R is a dimensionless posi-
tion vector where V is the gradient operator in p space,
ey =H/H is a unit vector, and h =R /§ with

£ '=v Hu,AxS /K (10a)

as the correlation length measuring the distance over
which the ordering (introduced by a surface) persists in
the field [28]. Further the dimensionless parameters

©=R /d with
Ku Ky
B LI 10b
WO wOS ( )

as the extrapolation length [24] and k;;=K;;/K,; with
K;; as the Frank elastic constants of the system given by

2
Ky =2§—(2L‘,2)+L‘22’ +LP —LP —-2LY)

+38H(—LP +2L P +LP +2LP —LY)
(11a)
2 =9SALP—LE )+9i LY, (11b)
_98 o @@ @
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982 ) BBy (3)
+o QLY LY L -LP+2LE), (1o
2
K24=2‘§_(2L(12)+L(2) lL(Z) 2L(62))
3
+%<L§3’+2L‘;>—L$’) , (11d)
2
Kpy=2 LY (11e)

K, is the elastic constant for the splay, K,, for the twist,
and K ;3 for the bend deformation. All three types of de-
formations contribute to the bulk elastic free energy. K,
saddle-splay and K5 splay-bend elastic constants corre-
spond to the deformations that contribute to the surface
elastic free energy.

In a single elastic constant approximation, where only
the constant L{» associated with pure quadratic terms is
|

(sin’0+ k3c0820) | —p>+2 ggp +(cos?0+ k33sin?6)
(1—kj33)
—(1+k;;, )cot19sin2(9+?33 {sinZO p? g—z

3’0

a0
+p— %

r
nonzero, we have K, =K,,=K;;=K,,=9S2L¥ and
K 3=0. Taking into account constants associated with
other second-order terms, one finds K |; =K 337K ,, 7K,
and K;; =0, where all nonzero constants are of the same
order of magnitude. Including terms with second deriva-
tive one also finds K370 and further including third-
order terms K;;7K;;. In most nematic-liquid crystals
[29], K33 > K, > K, is realized. While there is no infor-
mation about K;; [30,31], preliminary data about K,,
have been recently published [21,32-34]. It should be
mentioned that from the Maier-Saupe molecular ap-
proach a different equation relating K,, and K;; is ob-
tained, namely [35]

u=+(K +Ky) . (119

Here it should be stressed that we follow the notation of
Saupe used in his 1982 paper [36] where the originally
used sum K,, +K,, (Frank [20], Nehring and Saupe [35])
is substituted by K,, /2. Further it is worthwhile to men-
tion the equivalency of different forms of the saddle-splay
term. V- [(n(V-n)+nXVXn]=V:[n(V-n)—(n-V)n]
=(V-n)+(VXn)—=Vn:Vo=n;;n; ;—n,; ;n;; (where ac-
cording to the standard notation the second index stands
for the corresponding derivative and the summation must
be carried over all repeated indices).

Recent papers also claim [30,31] that no continuous
solution of the equilibrium equations is possible at the
nematic-liquid-crystal boundary in the case of a finite K {5
value unless bulk terms including second derivatives of
the elastic free energy are taken into account. Because
nothing is known about the corresponding elastic con-
stants we will consider that K ; =0.

The minimization of the total free energy F= f f(r)ydr
leads to Euler-Lagrange differential equations (see appen-
dix). We limit our discussion to cases without twist de-
formations (K ,, > K;; limit) so that the nematic director
can be expressed in spherical coordinate system as

n= —sinfey+cosbe, , (12)

where e, and e, are unit vectors of the spherical coordi-
nate system and 0 the angle between e, and n. The vec-
tor field n is, in this case, completely described by a scalar
field 6(r,). Using differential equations written in the
Appendix one can easily show that 6 satisfies the
differential equation

00 , 96 _ §in20 29
a192+a0 cotd ) (cot“d—1)
30 30 3%0
cotd— |3 +a19+2pa aa]
+200529—§§gep —h2p2——8i“[2‘2_‘”]=0 (13)
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in the droplet and the differential equation

30
dp

on its surface.
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FIG. 1. Director fields in spherical nematic droplets with
homeotropic anchoring on the surface are shown for several
values of the anchoring strength parameter u and external field
strengths parameter d /&: (a) radial structure in zero field; (b)
zero field axial structure for small anchoring parameter; (c) zero
field axial structure for intermediate anchoring parameter close
to the axial-radial transition point; (d) axial structure with de-
fect line close to the triple point. Director fields are obtained
numerically for the case K|, =K 3, K,4 =K 3 =0.
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(sin?0+ k3c0s26) + —g%( 1—k ;3 )sinf cos—cosO sinf(2 — k 33 ) +cotd sin?0+ i cos@ sinf+ k 54 (sin20 — cot? sin?) =0

(14)

ITII. STABLE STRUCTURES

Solving the above equations by using the overrelaxa-
tion method [6], radial and axial solutions satisfying the
homeotropic boundary conditions are found. In the radi-
al structure the nematic director has, at least in weak
fields [Fig. 1(a)], predominantly radial direction with a
point defect in the center of the droplet. In the axial
structures [Figs. 1(b)-1(d)] the director field is predom-
inantly axial in the central region, but close to the surface
it tends to be normal to the surface particularly in strong
anchoring cases. In these structures the largest deforma-
tion is localized close to the droplet equator. While in
the weakly anchored case there are no defects in the axial
structures; at stronger anchoring strengths the equatorial
deformation [Fig. 1(d)] increases, and the axial structure
with a disclination line with the defect strength 1 [28]
may be stable. This structure has a line defect in the
equatorial plane shifted towards the droplet interior so
that the nematic director field is on the droplet surface al-
most everywhere perpendicular to it.

In the following we study the dependence of the stabili-
ty of the above structures on the anchoring strength,
droplet radius, ratio of elastic constants K;;/K;;, and
the external field strength. The stability regions are sim-
ply determined by comparing numerically evaluated free
energies F; (i=r: radial structure; i =a: axial structure
without a defect; i =d: axial structure with the line de-
fect).

Let us first study the dependence of the free energy of
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FIG. 2. Free-energy dependencies of the axial and radial
structures on the anchoring strength parameter u are shown for
different values of the external field.



the radial and axial structure in the approximation of
equal bulk elastic constants (K ;3 =K, =K,,), neglecting
the saddle-splay contribution (K,,=0). In Fig. 2 the
free energies of both structures are shown as functions
of the dimensionless parameter u at d/£=0 and d/
£=0.07. The parameter u=RW,/K; measures the
relative anchoring strength and the parameter
d/E=HV pAxK, /S /w, the relative external field
strength. At small values of u (1 <10) the director field
is mostly influenced by elastic forces and external fields.
Therefore a nonsingular axial nearly homogeneously
oriented structure is stable [see Fig. 1(b)] for all values of
the external field. With increasing anchoring strength
parameter u, the axial configuration departs further and
further from a homogeneously oriented nematic phase
[Figs. 1(b) and 1(c)] and its free energy becomes compara-
ble to the free energy of the radial structure. If the field
strength parameter is below a limiting value (in our case
d /£<0.07) and the anchoring strength parameter p is
above a limiting value (in our case ~18 for £§=0 and
~29 for £=0.07) the radial structure is stable. At finite
value of the external field the range of the stable axial
structure can be reentered by increasing the parameter u.
This is a result of relatively higher deformation free ener-
gies in strongly anchored radial structures as compared
to the corresponding axial cases. In Fig. 3 the depen-
dence of the free energy of a droplet on the external field
strength is presented for a constant anchoring strength
that is chosen strong enough to enable the stability of ra-
dial structures at low external field strengths. It is
demonstrated that with increasing the field parameter
d /&, a discontinuous transition point is reached where
the axial structure becomes stable.

With increasing anchoring strength (u >>200) the lo-
calization of the deformation at the equator [compare

Figs. 1(b)-1(d)] becomes more pronounced, above
1.2
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FIG. 3. Dependencies of the free energy of axial and radial

structures on the external field strength for two values of the
relative anchoring strength parameter u.
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FIG. 4. Dependence of the free energy of the axial structure
with defect as a function of the distance of the line defect from
the droplet center for different values of the external field.

©~240 in the presence of an external field with the rela-
tive strength d /£~0.03 the axial structure with a line
defect in the equatorial plane becomes the most stable
[Fig. 1(d)]. The contribution of the defect region was
evaluated approximately by introducing an isotropic
core. Its radius was estimated from a simple condition
that the free-energy density of a deformed nematic phase
cannot be higher than the free-energy density of the iso-
tropic phase. In our case core radius was about 4 nm.
The estimated error in evaluating F; is approximately
10%, while the free energies of the radial and nonsingular
axial structures are accurate within 1%. In Fig. 4 the

K33 =Kyt
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\\ \\ \V
-15 . | 1 1 \L \
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FIG. 5. Comparison of the free-energy dependencies on the
ratio R /& for different u values.
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FIG. 6. Orientation of the director field on the droplet sur-
face for different u values. The dotted line shows the angle 6 for
a perfectly homogeneous nematic structure.

dependence of the free energy on the relative distance of
the line defect from the droplet center 7; /R is shown for
this structure in several external field strengths at the
constant relative anchoring strength u~300. At low field
values the radial structure with the defect in the droplet
center is stable. With increasing field strength at
d/§~0.016 a local minimum in F,; appears at
r; /R ~0.75, corresponding to the ratio R /§~4.5. This
minimum corresponds to the metastable axial structure
with a defect line. At the critical external field strength
where the structure with a line defect becomes more
stable than the radial one, a first-order structural transi-
tion occurs. Keeping ;=300 and increasing the field fur-
ther, the position of the line defect r;/R changes from

15 =< Ay
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15 )10
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FIG. 7. Comparison of the free-energy dependencies on the
parameter R /£ for different ratios of elastic constants.
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0.75 to 0.9 until at d /£ ~0.045; the axial structure with a
defect line discontinuously transforms into the usual axial
structure.

In the case of strong anchoring and in the approxima-
tion of equal elastic constants, the solution of Euler-
Lagrange equations depends only on the ratio R /& [see
Eq. (13) for the case K3;=K;]. In Fig. 5 the free energy
of structures depending on R /§ is shown for different u
values for the case of equal elastic constants. Calculated
values of the free energy of the radial structure for

(a) (b) (c)

(9)

FIG. 8. Simulated monochromatic light polarization micro-
scope textures and the corresponding director fields for different
values of the field strength parameter d /§ at u=250: (a) radial,
d /€=0.02; (b) radial, d /£=0.04; (c) radial, d /£=0.06; (d) axi-
al, d /€=0.02; (e) axial, d /§=0.04; (f) axial, d /§=0.06; (g) axi-
al with defect, d /£=0.02; (h) axial with defect, d /§=0.04; (i)
axial with defect, d /§=0.06. Simulation [37] was performed
for R /A=28 and with the extraordinary index of refraction
n;=1.7 and the ordinary index of refraction n, = 1.5.



different u values lie on the same curve, which indicates
that the approximation of strong anchoring for this struc-
ture is valid in the whole regime studied. For the axial
structure with a defect line the variation of the free ener-
gy with p is within numerical error; therefore its depen-
dence on R /£ is also represented by a single curve. The
dependence of the axial free energy on p at a fixed R /€
value indicates changes in the director field even in the
region where the anchoring is very strong. Figure 6
shows the behavior of (G)SMface_, the average orientation

angle of nematic molecules at the droplet surface in zero
field (d /£=0) for different anchoring strengths. It is evi-
dent that except close to the equator the surface angle of
the director is already stabilized in the neighborhood of
the transition into the radial structure (z~18). The dot-
ted line indicates the case for parallel orientation of mole-
cules, realized at p <<1 or d /€ >>1.

The influence of the ratio of elastic constants K ;; /K,
on the stability of different structures is shown in Fig. 7,
where free energies of structures are presented as func-
tions of R /£ for different ratios of K33 /K ;. The free en-
ergy of the undeformed radial structure, where only splay
deformation is present, does not depend on the value of
the K3; constant. In higher external fields (R /&> 3)
molecules in the radial structure partially orient in the
field direction, and the free energy becomes K,; depen-
dent. The free energy of the axial structure, since it in-
cludes more bend deformation, is more influenced by the
magnitude of K;; than a deformed radial structure. The
axial structure with the line defect [Fig. 1(f)] near the
droplet surface is similar to the radial structure and has
no bend deformation, while in the droplet interior it is
similar to the usual axial structure [Fig. 1(d)]. For this
reason, the behavior of F,; is somewhere in between that
of F, and F,.

The structure studies of supra-um droplets can be
made with a polarizing optical microscope. To show how
such microscope textures would look we have used a re-
cently developed method for texture simulations in
nematic droplets [37]. One must be aware that this
method where diffraction, refraction, and reflection are
neglected and only phase shifts of ordinary and extraordi-
nary rays are taken into account can be used only in the
case of supra-um droplets with small differences in in-
dices of refraction. Figure 8 shows director fields and
simulated textures of both the radial and axial structures
(with the line defect and without it) for different external
field strengths at the constant anchoring strength param-
eter £ =250. One sees that brushes of the radial and axial
structures substantially differ, while differences between a
nonsingular axial structure and the one with the defect
line are much more subtle (number of interference
fringes).

IV. PHASE DIAGRAMS

The above results are summarized in the universal
phase-stability diagram (Fig. 9) where the lines of
structural (Fréedericksz) transitions are plotted as func-
tions of dimensionless parameters =R /d and d /g,
measuring the relative anchoring strength and the rela-
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FIG. 9. Universal phase-stability diagrams of nematic drop-
lets with homeotropic anchoring. Transition lines for two sets
of bulk elastic constants are shown.

tive external field strength, respectively. The transition
lines are of first order (coexistence curves) and are plotted
for two different ratios of elastic constants (K33 /K ;=1
and 2). Radial structures are stable at intermediate and
strong anchoring strengths but weak external fields; axial
structures are stable in weak fields only for weak anchor-
ing strength, while they are stable for any anchoring
strength in a strong external field. With an increased
K3 /K, ratio, the range of the stability of the radial
structure and of the axial structure with a line defect in-
creases, which is consistent with our discussion related to
Fig. 7. At high anchoring strengths there is an inter-
mediate region of field strengths where axial structures
with a line defect are stable. In addition to transition
lines, there are three interesting points: the zero-field
radial-axial coexistence point (ug,0), the inversion point
(u;,(d /8);), where the maximum transition field for the
radial-axial transition is reached, and the triple point
(us3,(d /€);), where all three phases coexist. The transi-
tion between the structures can be achieved either by
varying the temperature or external field; varying the ra-
dius or other material-dependent parameters is possible
by means of observing different systems. In our phase di-
agram the change of the field corresponds to a propor-
tional displacement along the d /£ axis, while a change in
temperature corresponds to a nonproportional displace-
ment in a general direction. This can be easily seen by
taking into account that u is proportional to 1/S(T) and
d /& to V'S [see Egs. (10) and (11)]. One can show that
by changing the temperature, a transition between the ax-
ial and radial phase can be achieved but not a reentrance
to the axial structure by crossing the radial stability area
on the universal phase diagram [38].

In the region of large u and d /& we have also analyzed
the stability of the radial structure with the noncentral
point defect. The results show that its free energy is
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slightly above the free energy of the normal radial struc-
ture (difference ~1%). But it might happen that a twist-
ed structure becomes stable if K,, <K ;,K33. This agrees
with some polarization microscope observations [39,40].
The detailed treatment of the twist deformations requires
a lot of computational time and will be published else-
where.

Let us now include the K,, related surface contribu-
tion to the free energy and study the influence of this
term on the stability regions of different droplet struc-
tures for the case K;; =K (i =1,2,3). The recalculation of
the director fields shows that the effect on the three struc-
tures is significant only in the case of weak anchoring
(1 <20) and that it is limited to the region in the neigh-
borhood of the droplet surface. The change of the orien-
tation of the molecules at the droplet surface when taking
into account the K,, elastic constant is illustrated in Fig.
10. Although the direct influence of the K,, contribution
on the droplet structure is negligible, this term strongly
influences the stability regions of different phases. The
K,, surface term is comparable to remaining bulk terms
in the expression for the free energy, but its contribution
can be negative and thus favor the deformed structures.
Its contribution is the largest in the radial structure, be-
comes smaller in the axial structure with line defect, and
is smallest in the nonsingular axial structure. In the axial
structure with the line defect the main surface contribu-
tion originates from the surface surrounding the isotropic
core of the line defect, while such a contribution is negli-
gible for the point defect of the radial structure. The sta-
bility region (see Fig. 11) of the radial structure increases
relative to both axial structures, and the stability region
of the axial structure with the line defect is pushed to-
wards a larger value of d /€. In the case K,, =2K; the
radial structure is stable for zero anchoring strength pa-
rameter (uo=p; =0) if the field parameter satisfies the re-
lation d /£ <(d /§);. This means that in the case where
there is no interaction with the surrounding media (zero

©ldeg)
80 i
B
60
=== K= Kn
A1 — Ky =0
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20 | kn=0
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FIG. 10. Orientation of the director field on the droplet sur-
face for different p and K, values.
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FIG. 11. Universal phase-stability diagrams of nematic drop-
lets with homeotropic anchoring. Transition lines for two
values of the saddle-splay elastic constants are shown.

anchoring strength £ =0), an axial homogeneous struc-
ture would have the same energy as the radial structure;
this does not seem to be a very real situation.

The large effect of K,4 on the stability diagram is ex-
pected to be useful in the experimental determination of
the elastic constant K,,. Let us briefly discuss a possible
way of determining the saddle-splay elastic constant and
surface anchoring. Realizing that the product of the
coordinates in our universal phase diagram ud /§=R /§
is independent of the anchoring strength W, we chose
the inversion point and plot the value of (R /§); as a
function of K,, (Fig. 12). The value of (R /§); is very
sensitive to the value of K,, and could be used for its
determination if 2> K,, /K ; > 1. Further examining the
zero external field coexistence point (ug,0) one finds that
Wo strongly depends on K,, in the whole region of K,,
values (Fig. 13). Knowing K,, would allow the deter-
mination of the anchoring strength W,=(uK {; /R ).

Our phase diagrams are consistent with recent experi-

25
(R/E);
20+
1.5#
=K
ok Kn= K33
Ky3=0
05 -
0 1 1 1
00 05 10 15 20

Ko ! K

FIG. 12. Dependence of the inversion point ratio (R /§); on
the ratio of the elastic constants K,, /K ;.
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FIG. 13. Dependence of the zero field coexistence point (an-
choring strength parameter u,) on the ratio K, /K ;.

mental studies of PDLC materials performed with an op-
tical polarized microscope in the external electric field
[11], where the phase diagram was obtained in the weak
anchoring limit, and neglecting the effect of K4, the sur-
face anchoring strength and the unknown internal elec-
tric field were estimated. As we have seen, the effect of
K,, must be taken into account. This leads to three un-
known quantities and enables the use of the above-
mentioned experimental results for detailed comparison
with theory or determination of K,, and W,. The only
conclusion besides the general agreement mentioned of
the phase diagram shape is that because of the existence
of the zero field axial phase, the inequality K,, <2K,
must be true for the observed liquid-crystal material.
This is consistent with preliminary estimates of K,, from
NMR studies of nematic structures in cylindrical cavities
[21,34].

V. CONCLUSIONS

In this paper we developed a phenomenological
description of the stable nematic structures in supra-um-
size spherical droplets with homeotropic anchoring and
constructed the field strength—anchoring strength phase
diagram. The stability regions of structures with radial,
nonsingular axial, and axial director field with a defect
line are separated by first-order (Fréedericksz) transition
lines. Particular attention is paid to three points: the
zero field axial-radial coexistence point; the inversion
point corresponding to the maximum external field where
the radial structure is still stable; and the triple point
where all three phases coexist. The importance of the
saddle-splay elastic constant K,, for the stable regions of
different structures is proven. In addition it is shown
how this elastic constant could be measured by studying

2469

phase transitions in spherical droplets. A detailed discus-
sion of the saddle-splay elastic constant determination in-
cluding more subtle direct effects of K,, on structures, re-
lated microscope textures, and NMR spectra will be pub-
lished elsewhere [38]. The experimental field-induced
transition studies should be carried out in the magnetic
field instead of the electric field where problems of inter-
nal field determination arise. Further studies are planned
on the effect of twist K,, and splay-bend K |; elastic con-
stants on structure. A detailed treatment of the defect in
the direction field using a nonsingular biaxial core instead
of an isotropic core approximation is expected to be im-
portant only for line defects. To show that in the case of
point defects in supra-um droplets one can neglect the
details of the core structure, we used the model of Pen-
zenstadler and Trebin [41] for the nonsingular biaxial
core of a radial structure and compared its free energy to
the free energy of the singular uniaxial director field. We
estimate that replacing the uniaxial field with the biaxial
one would lower the free energy only for about 0.1%,
which is far below the estimated numerical error.
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APPENDIX

To obtain the set of differential equations for the direc-
tor field corresponding to the case of a finite anchoring
strength at the nematic-polymer interface, we start with
the Landau—de Gennes free-energy density [see Eq. (9)]
for uniaxial nematic ordering. We take into account that
n is a unit vector by creating f,grape.(r), Which in addi-
tion to the free-energy density, includes surface —A (r)
and volume —A,(r) Lagrange multiplier fields:

A'S A'U
fLagmge(r)=f(r)+7n-n8(r—-R)+Tn-n . (A1)

Minimizing the volume integral of the above expression
with respect to n(r), the corresponding bulk and surface
Euler-Lagrange equilibrium equation follows:

afe aff afe

e 4 =7 =0 A2
an;  9n; on; ; j+k”n’ ’ (A42)
(e,)—=——+A,n,—Wyn-e,le,), =0, (A3)

jan,-,j

where e, stands for the surface normal unit vector. The
second index stands for the derivative along the corre-



2470

sponding coordinate and the repetition of the index in a
term implies summation. The first equation is well
known; therefore we are going to concentrate our atten-
tion on the second one. To eliminate the surface
Lagrange field A, we project Eq. (A3) on vectors n and e,
and combine the resulting equations. Finally using the
notation introduced in Sec. III, the surface [Eq. (A3)] can
be written as
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kis(e,,n,VXn)(n-e,)+[(n-e,)*—1][(V-n)—puln-e,)]
+k,{(n-e,)[e,(Vn)n]—e,(Vn)e,
+(V-n)[1—(n-e,)?]}=0. (A4

As above, K ;=0 is assumed.
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FIG. 8. Simulated monochromatic light polarization micro-
scope textures and the corresponding director fields for different
values of the field strength parameter d /£ at p=250: (a) radial,
d /£€=0.02; (b) radial, d /£=0.04; (c) radial, d /£=0.06; (d) axi-
al, d /£=0.02; (e) axial, d /§=0.04; (f) axial, d /£=0.06; (g) axi-
al with defect, d /£=0.02; (h) axial with defect, d /£=0.04; (i)
axial with defect, d /§=0.06. Simulation [37] was performed
for R /A=28 and with the extraordinary index of refraction
n;=1.7 and the ordinary index of refraction n, =1.5.



