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Light scattering in the isotropic phase of highly chiral liquid crystals
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Light-scattering measurements using circularly polarized light in a backscattering geometry are em-

ployed to measure the amplitude of fluctuations in two of the five structural modes present in the isotro-
pic phase of chiral liquid crystals. From these measurements, the second-order transition temperatures
for all five modes are then calculated. In order to investigate the effect of chirality on the fluctuations,
the experiments are performed in various mixtures of the chiral liquid crystal 4"-(2-methylbutylphenyl)-
4-(2-methylbutyl)-4-biphenylcarboxylate (CE2) and the nonchiral liquid crystal 4-n-pentylbenzenethio-
4'-n-heptyloxybenzoate(7S5). The results show that fluctuations in the five modes are independent in
low-chirality mixtures, and, as predicted by theory, the second-order transition temperatures grow far-
ther apart as the chirality increases. In highly chiral mixtures, fluctuations in the mode with the highest
second-order transition temperature deviate from the normal temperature dependence, resulting in a
lower second-order transition temperature for this mode. The probable explanation for this is that fluc-
tuations in the structural modes are coupled in high-chirality systems, but at present no theoretical cal-
culations exist.

PACS number(s): 61.30.—v, 64.70.Md, 78.20.Dj

INTRODUCTION

Significant progress in understanding both the phases
which exist in highly chiral liquid crystals and the transi-
tions between them has come from the realization that
the order in chiral systems can be represented by a linear
combination of five basic structural modes. The first
theoretical work of this type was an investigation of the
liquid-crystal-to-isotropic transition by Cheng and Meyer
[1],which was later extended by Brazovskii and Dmitriev
[2]. More recently, this approach proved to be extremely
successful in explaining the nature of the blue phases [3].
Experimental verification of the theory as it relates to
phase transitions was achieved mainly through optical-
activity measurements [1,4], while optical-refiectivity ex-
periments have been the most successful in confirming
the theory of the blue phases [5,6]. Further theoretical
work suggested that the optical activity in highly chiral
systems might behave in a complex manner due to com-
peting contributions from more than one structural mode
[7], and this has been verified in a number of optical-
activity experiments [8—12].

Although light-scattering measurements should be just
as revealing as optical-activity experiments in investigat-
ing these theoretical predictions, there has been much
less work in this area. The light-scattering properties of
chiral systems have been worked out by Hornreich and
Shtrikman [13],but to date no experiments have been re-
ported which make full use of these calculations.
Bottger, et al. [14] conducted both static and dynamic
light-scattering measurements on cholesteryl-oleyl-
carbonate (COC) using linearly polarized light and a
scattering angle of 33'. Parthasarathy and DuPre [10] re-
ported similar measurements on both pure COC and mix-
tures of COC with a nematic liquid crystal, using a
scattering angle of 90'. Finally, Zink and Van Dael [15]

performed measurements at various scattering angles be-
tween 30' and 160', using incident light which was either
right circularly polarized (RCP) or left circularly polar-
ized (LCP). While the results of these experiments gave
some information on fluctuations in the various structur-
al modes, the information was not as direct as it could be.
As is shown in the following section, the most direct in-
formation on the fluctuations of these modes comes from
backscattering (180') experiments using circularly polar-
ized incident light and detecting only circularly polarized
light. Singh and Keyes have performed such an experi-
ment on various cholesteryl esters, but the results have
not yet been published [16]. None of the reported experi-
ments utilized this feature of the theory.

After a short discussion of the theoretical considera-
tions, we present the results of static light-scattering ex-
periments which measure directly the amplitude of the
fluctuations in two of the basic structural modes. By con-
ducting the measurements in different mixtures of chiral
4"-(2-methylbutylp hen yl)-4'-(2-meth ylbutyl)-4-biphenyl-
carboxylate (CE2) and nonchiral 4-n-penthyl-
benzenethio-4'-n-heptyloxybenzoate (7S5), the results
show the effect of chirality on the fluctuations in these
two modes. As predicted by the theory, the second-order
transition temperatures for the five modes get farther
apart as the chirahty is increased. In mixtures of high
chirality, the fluctuations in the mode with the highest
second-order transition temperature are reduced slightly
near the liquid-crystal transition, probably due to cou-
pling between the structural modes.

THEORY

In the standard format of the Landau —de Gennes
theory, the anisotropic part of the dielectric tensor e; is

used as the orientational order parameter. Since it is a
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+[B+(C/6)(4—m )]q } le (q)l (1)

A, 8, and C, are coefficients in the expansion and qp is
the chirality 4n/P, where . P is the pitch. The coefficient
A has the usual temperature dependence A ( T)
= Ao( T T* ), where T is—the temperature and T* is the
temperature at which a second-order transition would
occur for a nonchiral system. By the equipartition
theorem, the mean-square fiuctuation of e (q) in the iso-
tropic phase is

( ~e (q) ~
) =(kz T)/[ A mBqoq—

+[B+(C/6)(4—m )]q ], (2)

where k~ is Boltzmann's constant. Since the denomina-
tor of Eq. (2) diverges at a different temperature depend-
ing on the value of m, each mode possesses a different
second-order transition temperature,

T+z(q) =T*+(B/Ao)(+2qoq —
q ), (3a)

symmetric tensor with zero trace, e,- has five independent
elements. For chiral systems, it is appropriate to
represent e, as a linear combination of five basis tensors,
each of which describes a different "structural mode"
with a wave vector q. The five independent elements are
the coefficients e (q) of these five basis tensors. The
m =+2 modes are planar spiral modes where two princi-
pal axes are perpendicular to the spiral axis and rotate
about it. The m =+1 modes are conical spiral modes
where two principal axes make an angle of 45' to the
spiral axis and rotate about it. The m =0 mode is a
nematiclike mode, with no rotation of the principal axes.
The handedness of the spiral is given by the sign of m,
with the positive and negative sign denoting a left-handed
and right-handed helix, respectively. In this representa-
tion, (i) a right-handed chiral nematic liquid crystal is de-
scribed by a specific combination of the m =0 and —2
modes; and (ii) a right-handed chiral smectic-C liquid
crystal is described by a combination of the m =0, —1,
and —2 modes, with the specific combination dependent
on the tilt angle. In the latter case, an additional order
parameter is necessary to describe the layering.

If the free energy is written as an expansion in E' j and
its spatial derivatives (retaining terms up to second or-
der), then each mode contributes independently to the
free energy per unit volume F(q),

F(q) =
—,'g [ A mBqoq—

case, the fluctuations of one or two modes will dominate.
In setting up an experiment to measure the fluctuations
in a single mode in the isotropic phase, one must be care-
ful to use a technique which is only sensitive to a single
mode, since otherwise more than one mode will contrib-
ute.

The most direct way to measure the fluctuations in the
isotropic phase is to perform light-scattering measure-
ments. Such experiments are extremely powerful, since
the wavelength of the light and the scattering geometry
probe a unique value of q. Additionally, the polarization
of the incident and detected light couple with the five
modes in different ways, allowing one to select the mode
under investigation. How the scattering geometry and
polarization couple with the five modes has been worked
out by Hornreich and Shtrikmann [13]. Using the Stokes
vector and Mueller matrix formulation, they derive the
scattering matrix in terms of the amplitude of the five
modes. In general, the scattering matrix depends on all
five modes, but in the case of backscattering, only the 0
and +2 modes are involved. If circularly polarized in-
cident light is used and only circularly polarized light is
detected in the backscattering geometry, then each of
these three modes can be investigated individually.
Specifically, if RCP light is incident and RCP light is
detected, only fluctuations in the m = —2 mode contrib-
ute to backscattering. Similarly, using LCP incident light
and detecting LCP backscattered light probes only fluc-
tuations in the m =2 mode. Finally, having RCP light
incident on the sample and detecting LCP which is back-
scattered is sensitive only to the m =0 mode, as is the op-
posite situation.

Previous light-scattering experiments did not take all
of these considerations into account. The use of linearly
polarized light or using circularly polarized light at
scattering angles other than 180' produces scattered light
which is sensitive to the fluctuations in more then one
mode, and in the isotropic phase no single mode dom-
inates the scattering. The results presented here utilize
the correct conditions for the investigation of single
modes. Not only do these data reveal that the fluctua-
tions in the modes with the highest and lowest second-
order transition temperatures are not that different in the
isotropic phase, they allow the second-order transition
temperatures for these two individual modes to be mea-
sured. By Eq. (3), the difference between the highest and
lowest second-order transition temperatures for a right-
handed system is given by

T+, (q)=T*+(B/Ao)[+qoq —[1+C/(2B)]q ], (3b) T* ~(q) —T~ (q) = (B/Ao)(4qoq) .— (4)

To (q) = T +(B/Ao) [
—[1+2C/(3B)]q (3c)

In Eq. (3), qo is assumed to be positive for a left-handed
helix.

For typical values of Ap, 8, qp, and q, these five
second-order transition temperatures differ by less than a
degree even for highly chiral systems. Therefore fluctua-
tions in all five modes will be appreciable in the isotropic
phase. This is quite different from what occurs in liquid-
crystal phases, where only certain modes exist. In that

This expectation is checked by measuring these two
second-order transition temperatures for mixtures of
varying chirality qp.

It is also important to note that retaining higher than
second-order terms in the free energy causes the structur-
al modes to be coupled. In this case, fluctuations in one
structural mode are no longer independent of fluctuations
in the other modes. One would expect such a coupling to
be important when the fluctuations are greatest. Thus
evidence for such coupling should be seen (i) near the
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phase transition to the liquid-crystal phase, where the
fluctuations in all of the modes are greatest; (ii) in proper-
ties dependent on the modes with the highest T'(q) tem-

peratures, since these have the greatest fluctuations at all
temperatures; and (iii) in highly chiral systems, where the
phase transition temperature is close to the highest T*(q)
temperatures and the resulting fluctuations are large [9].

It should also be pointed out that these second-order
transition temperatures are for a specific value of q. This
is appropriate for light-scattering measurements, where
the experiment is sensitive to only one value of q. For
theoretical purposes, the second-order transition temper-
atures for those values of q which minimize the free ener-

gy of each mode are more important. These are closely
related to the second-order transition temperatures given
in Eq. (3) and are as follows [4]:

T+2 = T"+(B/Ao )qo,

Tg) = T'+ {1/[4[1+(C/2B)]J}(B/Ao)qo,
T' =T' .0

(5a}

(5b}

(5c}

Since q and qo are known, these second-order transition
temperatures can be determined from the ones measured
in a light-scattering experiment.

EXPERIMENT

The samples used in this experiment are mixtures of
chiral CE2 and nonchiral 7S5, which have been described
previously [9,12,17]. The pitch in the chiral nematic
phase ranges from about 250 nm in the 40 wt. %%ueCE2
mixture to about 100 nm in pure CE2. The liquid-
crystal-to —isotropic transition is different for each rnix-
ture, ranging from 92.4'C in the 40 wt. %%uoCE2mixture
to 117.2'C in pure CE2. These mixtures have very high
chirality, higher, for example, than the cholesteryl esters.

The experimental apparatus is quite simple. Using a
lens with a long focal length, linearly polarized light from
a 5-mW HeNe laser and 10X beam expander is focused
on the sample through a quarter-wave plate oriented with
its optic axis at 45' to the direction of polarization. Light
scattered backward from the sample passes through the
same quarter-wave plate, is collected by another lens, and
is focused through another polarizer onto a
photomultiplier-tube detector placed to the side of the
HeNe laser. The scattering angle is 170'. Two orienta-
tions of the quarter-wave plate are used. In one position,
the light incident on the sample is RCP and only RCP
leaving the sample passes through the polarizer in front
of the detector. In the other position, LCP light is in-
cident and only LCP scattered light makes it to the detec-
tor. Thus these two positions give information on the
m = —2 and 2 modes, respectively. Two additional
orientations of the polarizers (RCP incident and only
LCP detected, and vice versa) give information on Auc-
tuations of the m =0 mode, but the experiment is ex-
tremely difficult. Reflections from nonchiral materials
(glass, for example) are detected in this arrangement,
completely masking the weak signal from the liquid crys-
tal. Even placing the sample at an angle does not reduce
the interfering signal to a reasonable level.

The sample is contained between two pieces of glass
separated by a 1-mm-thick spacer. This arrangement is
placed in an Instec HS-1 hot stage, where the tempera-
ture is controlled to +0.001 K. Since the light from the
laser is focused to a very narrow beam at the sample, the
temperature gradient across the part of the sample il-
luininated by the laser is extremely small, and certainly
smaller than 0.01 K. The data are taken by allowing the
sample to come to equilibrium at each temperature, and
then recording the number of counts in a given time
period for each of the two positions of the quarter-wave
plate. Data are taken with increasing temperature, start-
ing at a temperature just below the transition in the
liquid-crystal phase. The transition to the isotropic phase
is clearly evident in the data, since the data in the liquid
crystal phase show a slow, linear decrease with increasing
temperature, while the data in the isotropic phase de-
crease rapidly and nonlinearly with increasing tempera-
ture. The measured transition temperatures are also con-
sistent with optical-activity measurements made on the
same system [9,12,17]. Measurements are made in 40, 60,
SO, and 100 wt. % mixtures of CE2 in 7S5.

According to Eq. (2), the scattered light intensity
varies as [T T+2(q}] ' —in the isotropic phase. The
data are therefore best presented by graphing the recipro-
cal of intensity versus temperature, because then the data
should be linear with the intercept along the temperature
axis being T+2(q). This is done in Fig. 1 for the 40 wt. %
CE2 mixture and in Fig. 2 for pure CE2. The solid lines
are least-squares fits to the expression

I=K [T T+2(q)]—'+Io, (6)

I

0
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TE M PE RATURE (4C)

FIG. 1. Reciprocal of the backscattered intensity for 40
wt. % CE2 in 7S5. The units on the vertical axis are arbitrary.
Data on the different modes are obtained using different orienta-
tions of the quarter-wave plate (see text). The solid lines are the
least-squares fits to Eq. (6) using al1 of the data.

where I is the backscattered intensity, and K, T+2(q),
and Io are fitting parameters.

To determine how well the data follow Eq. (6), the
fitting procedure is used repeatedly on the data, dropping
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FIG. 2. Reciprocal of the backscattered intensity for pure
CE2. The units on the vertical axis are arbitrary. Data on the
different modes are obtained using different orientations of the
quarter-wave plate (see text). The solid lines are the least-

squares fits to Eq. (6) using all of the data for the m =2 mode
and the higher-temperature data for the m = —2 mode (see

text).

the lowest temperature point each time. In the case of
both sets of data for the 40 and 60 wt. % CE2 mixtures
and one set of data (m =2) for the 80 and 100 wt. % CE2
mixtures, this procedure produces no regular change to
the fitting parameters. This is not the case for the
m = —2 data set for the 80 and 100 wt. % CE2 mixtures.
Here, dropping off the lowest data point causes a con-
sistent change to the fitting parameters. The solid line in

Fig. 2 for pure CE2 uses those values of the fitting pa-
rameters obtained after enough data points have been
dropped so no further change is evident.

Theoretically, Eq. (4) states the difference between the
highest and lowest second-order transition temperatures
should be proportional to the chirality qo, provided the
other parameters remain constant. To a fairly good ap-
proximation, the chirality in these mixtures is propor-
tional to the wt. % of the chiral component. This
difference in second-order transition temperatures is
therefore graphed versus wt. % CE2 in Fig. 3. Although

0.9

FIG. 4. Calculated q-independent second-order transition
temperatures for all five modes {m =0,+1,+2) in mixtures of
varying chirality. T, is the liquid-crystal-to —isotropic transi-
tion temperature. The solid lines are least-squares quadratic fits

to the data.

the data do not show a linear dependence, the increase in
the temperature difference with increasing wt. % CE2 is
clearly evident. The deviation from linearity can easily
be explained from the fact that the other parameters ( A 0
and 8) vary as different amounts of CE2 and 7S5 are
mixed together.

Using the proper values for q and qo, the q-

independent second-order transition temperatures of Eq.
(5) are calculated for the four mixtures and graphed
versus wt. % CE2 in Fig. 4. One assumption is necessary,
and that is that the coefficients B and C are about equal.
There is good experimental evidence for this [3,18j, so the
ratio C/B is set to one in calculating the transition tem-
peratures for Fig. 4. Even if this ratio deviates consider-
ably from 1, it changes only the m =+1 temperatures
slightly. To keep all of the data on the same graph, all
temperatures are graphed relative to the liquid-crystal-
—to —isotropic transition temperature T, . In mixtures of
two optical isomers, the second-order transition tempera-
tures of Eq. (5) should vary quadratically with qo (with no
linear term). Since the measurements are not for mix-
tures of optical isomers and since all temperatures are rel-
ative to the transition temperature, it is not surprising
that this simple dependence does not work in this case.
Still, as evident from Fig. 4, quadratic fits (with a linear
term) follow the data quite closely.

O.T- DISCUSSION

+ oI 05-
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FIG. 3. Difference in the m = —2 and 2 second-order transi-

tion temperatures (q dependent) in mixtures with varying chiral-

ity.

It first must be ascertained if a scattering angle of 170'
(rather than 180') introduces fiuctuations from other than
the desired mode. Using the scattering matrix for a
scattering angle of 170', one finds (i) that scattering from
the m =0 is multiplied by a factor of 10 from the
desired mode, (ii) that the other m =+2 mode contributes
at the 10 " level, and (iii) that the m =+1 modes do not
contribute at a11. These numbers reveal that the real limi-

tation to investigating the fIuctuations in a single mode is
experimental (quality and alignment of polarizers and
quarter-wave plate), rather than the fact that a scattering
angle of 170' is used. In light of this, the polarizers and
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quarter-wave plate were carefully adjusted to ensure that
circularly polarized light was being produced in the in-
cident beam and detected by the photomultiplier tube.

The data for the lower chirality mixtures clearly sup-
port the theory. The light-scattering data follow the ex-
pected temperature dependence for the modes with the
highest and lowest second-order transition temperatures.
Only in the case of the higher-chirality mixtures does the
data deviate from this dependence, and only for the mode
with the highest second-order transition temperature.
This occurs in a 1-K temperature region just above the
transition to the liquid-crystal phase. The fact that this
deviation occurs in the structural mode with the highest
second-order transition temperature, near to the liquid-
crystal transition, and only in high-chirality mixtures, in-
dicates that coupling between the modes is a likely ex-
planation.

It must also be pointed out that the second-order tran-
sition temperatures differ by less than a degree, even for
the most highly chiral mixture. Thus for this system, the
fluctuations in the "strongest" and "weakest" modes
differ by at most a factor of 3 right above the transition,
and less than this at higher temperatures. This makes it
quite evident that all modes must be considered when
performing experiments in the isotropic phase.

Figures 3 and 4 add even more support to the theory.
While the exact theoretical dependence on chirality can-
not be checked with these data, the results certainly show
all the correct qualitative behavior. The data in Fig. 4
are the first to show the second-order transition tempera-
tures for the five different modes and how they vary with
chirality.

There is one other aspect of the data worthy of special
attention. Notice that the highest q-independent second-
order transition temperature (as determined from the
data away from the transition in the isotropic phase) is
above the actual phase transition for the 80 and 100
wt. % CE2 mixtures. These were the two mixtures that
showed definite deviations from the uncoupled theory.
Since the actual phase transition occurs at a higher tem-
perature than all of the second-order transition tempera-
tures, the second-order transition temperatures when
coupling is important must be lower than for the uncou-
pled modes. This is evident from the data, since extrapo-
lation of the data in the region where coupling is impor-
tant gives a lower second-order transition temperature
than if the rest of the data are used for the extrapolation.
Therefore any theoretical attempt to describe the origin
of the coupling must confront these experimental
findings.

Finally, the values of the second-order transition tem-
peratures shown in Fig. 4 are not quantitatively con-
sistent with the measurements of T*

2 and T*
&

which re-
sult from optical-activity experiments [9,12]. Both types
of measurements find that T*

2 increases relative to T,
and that T*, decreases relative to T, with increasing
chirality, but the magnitude of these changes differ be-

tween the two experiments. Although they are quite con-
sistent for the lowest-chirality mixture, the light-
scattering results show that T*

2 increases more and that
T*, decreases less as the chirality increases than report-
ed for the optical-activity measurements. This discrepan-
cy can be explained by the fact that the light-scattering
results come from fits to the higher chirality data away
from the region where the effects of coupling are present,
while the fits to the optical activity data include this re-
gion using a theory for the optical activity which does
not consider coupling. The optical activity theory does
not account for the shift of the second-order transition
temperatures (as the light-scattering data seems to imply),
so fits which include this region produce lower values for
the second-order transition temperatures. This would
tend to decrease the apparent increase in T'

2 and in-
crease the apparent decrease in T, as the chirality is in-
creased and coupling effects become stronger. This is in
accord with the experimental results.

This type of behavior (but in the opposite direction)
has been observed before in light-scattering experiments
in the isotropic phase of compounds with a narrow
nematic phase between the smectic and isotropic phases
[l9]. Coupling between iluctuations of the smectic and
nematic order parameters causes the light-scattering in-
tensity in a region near the nematic transition to deviate
from its normal mean-field behavior. The effect of this
coupling grows stronger as the width of the nematic
phase decreases. A fit to the data in the temperature re-
gion where coupling effects are important gives a higher
value for the second-order transition temperature than
for the region where coupling is unimportant.

CONCLUSION

The light-scattering measurements reported here lend
strong confirmation for the theory of independent
structural modes in low-chirality systems and indicate
that coupling between the structural modes is probably
important in systems of high chirality. Not only are
values of the five second-order transition temperatures re-
ported here for the first time, but the data also suggest
that coupling between the structural modes causes a shift
of at least one of these second-order transition tempera-
tures to a lower value.
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