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Polydispersity analysis of scattering data from self-assembled systems
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A self-consistent method is proposed to treat the small-angle scattering data from polydispersed self-
assembled systems. This method presumes a particle-size distribution to fit the scattering data, then cal-
culates the averaged scattering contrast according to the presumed particle-size distribution. The
scattering contrast should be independent of concentration, unless the presumed particle-size distribu-
tion function is not appropriate. Therefore performing this analysis as a function of concentration pro-
vides a way to self-consistently check the presumed distribution function. This method, although in-

direct, allows one to select a proper particle-size distribution and evaluate the system polydispersity.
Seven commonly used distribution functions are discussed. In addition, the explicit forms of the intra-
particle structure factor for these seven size-distribution functions were derived.

PACS number(s): 61.2S.Hq

I. INTRODUCTION

The colloidal particles in a self-assembled system, such
as micellar or microemulsion systems, often show
significant polydispersity. This is a result of thermo-
dynamic equilibrium, where the system free energy is
minimized [1—5]. Since the particle polydispersity is
governed by the system free energy (consisting of many
free-energy terms), one may study the free energies via
studying the particle-size distribution [5]. There have
been many studies on polydispersity of various colloidal
systems using different techniques. These include dynam-
ic and static light scattering [6—12], differential mobility
analyzer [13], and small-angle scattering [14—18].
Among them, light scattering has been a popular method.
To obtain particle-size distribution from hght-scattering
data, one either inverts the correlation function directly
[6,9], or presumes a particle-size distribution function
and performs the cumulant analysis [9—12]. However,
for systems that are not optically transparent, the light-
scattering technique cannot be applied. For these cases,
small-angle neutron scattering (SANS) or small-angle x-

ray scattering (SAXS) techniques are often used [14,15].
Since the scattering kernel of SANS and SAXS is
different from that of light scattering, the direct inversion
method may not be obtained analytically. Numerical in-
version, although achievable [19], imposes constraints
which are not always appropriate. A widely used method
is to presume a functional form for the particle-size dis-
tribution and calculate the scattering intensity according-
ly [14,15], in order to fit the experimental data. Through
this fitting the polydispersity information can be extract-
ed. This method is plausible when the scattering intensi-

ty can be both measured and computed in an absolute
scale (differential cross section per unit volume of sam-

ple). However, for cases such as crude oil systems or
derivatives of fermentation broth, it is very difficult to
compute the scattering intensity in the absolute scale, be-
cause the particle-solvent contrast often cannot be pre-
cisely computed. As a result, an adjustable amplitude pa-

rameter is often used to accommodate the scattering am-
plitude during the data fitting process. Due to this addi-
tional adjustable parameter, one may encounter multiple
convergence in data fitting, and arrive at an ambiguous
result.

In this paper, an analysis procedure was proposed to
minimize the occurrence of multiple convergence. This
procedure is for dilute systems where interparticle in-
teractions are negligible. The procedure for more con-
centrated systems will be discussed in the future. This
procedure consists of four steps: (1) presumption of a
functional form for particle-size distribution, (2) calcula-
tion of scattering intensity distribution function, and
fitting of the experimental data to extract structural and
polydispersity parameters, (3) calculation of the averaged
particle-solvent scattering contrast according to the
presumed particle distribution function, using the ex-
tracted parameters, and (4) repeating steps (2) and (3) for
different particle concentrations. If the calculated aver-
aged particle-solvent contrast is independent of concen-
tration, then the presumed particle-size distribution is
proper, otherwise, it is not correct. This is because the
contrast rejects only the difference of the "scattering
power" between particles and the solvent, its value
should be independent of concentration, once the func-
tional form of the size distribution remains the same.
Thus, if the deduced contrast exhibits dependence on
concentration, this dependence most likely originates
from the effect of the presumed functional form for
particle-size distribution. Therefore the deduced average
particle-solvent contrast as a function of particle concen-
tration becomes an indicator (to be referred to as
justification parameter, JP) for judging the presumed dis-
tribution function. Mathematically, this procedure
amounts to providing a necessary condition as a con-
straint, by which one can judge the presumed function.
Since JP is a deduced quantity, its functional form de-

pends on the presumed particle-size distribution. In this
paper we derive JP for both spherical and cylindrical par-
ticles (with polydispersity in the length only) and for
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several commonly used particle-size distributions.
The intraparticle structure factors for both spherical

and cylindrical systems, with polydispersity taken into
account, were also derived. These explicit expressions of
the intraparticle structure factors are important, because
they substantially reduce the computation steps, and thus
time. This is essential in the process of data fitting.
Secondly, an explicit form will allow one to study the
dependence of the scattering intensity on a certain vari-
able, such as particle size, polydispersity, or the geometri-
cal asymmetry of the particles.

This paper is organized as follows. In Sec. II a brief
description of the scattering intensity is given. In Sec. III
the analytical forms of both JP and the corresponding
averaged intraparticle structure factors for seven com-
monly used distribution functions were given. This is fol-
lowed by the demonstration of a simulated case using this
method in Sec. IV to test the sensitivity and applicability
of this method. An experimental example is given in Sec.
V. We then discuss this method and the results obtained
in Sec. VI together with the conclusions.

II. SCATTERING INTENSITY

The scattering intensity distribution I (Q),
[Q =(4n/A)sin. 0, ,8 is the scattering angle] represents the
differential cross section per unit volume of the sample at
a scattering angle 19. For a monodisperse system, it can
be written as

ff(x)dx =fde(NO)

I(Q) becomes

I(Q)= fP(Q, x)Nof(x)dx . (7)

No is the total number density of the particles. The intra-
particle structure factor in Eq. (7) for a particle of size x,
P(Q, x), can be written as

P(Q, x)=(bp)' G(Q, x)[V (x)]' (8)

where V~(x) is the volume of the particle and G(Q, R) is
the scattering kernel. For a spherical particle, G(Q, R)
reads

G(Q, R)= [3j,(QR)/QR ]

where R is the radius. For a cylindrical system, G(Q, x)
is, assuming the polydispersity is in particle length L only
[19]

where x is the size parameter with polydispersity (e.g., ra-
dius for the spherical particles and length for the cylin-
drical particles). N (x) is the number density of the par-
ticle of size x. By defining a normalized size-distribution
function f (x) as

f(x)dx =dN (x)/No

with

I(Q) =N~P(Q)s(Q)

where N is the number density of the particles. P(Q) is
the intraparticle structure factor defined as

P(Q)=/F(Q)/ =
f f dr[p~(r) —p, ]exp(iQ. r)/ (2)

6 (Q L) ~d sin(pQL/2)
0 pQL /2

2J)(QR(+I —p2)

QR(+I —p2

2

(10)

where F(Q) is the particle form factor, p~(r) is the
scattering length density (electron density in SAXS) at r
from the center of mass of the particle, and p, is the
scattering length density of the solvent. S(Q) is the inter-
particle structure factor, representing the interparticle in-
teractions. For dilute systems the interparticle correla-
tions are negligible and S(Q) can be taken as unity. Since
we discuss only the dilute cases in this study, S(Q) will be
taken as unity. With S(Q)=1, the intensity distribution
becomes

I(Q)=N P(Q) . (3)

I(Q) = fP(Q, x)dN (x) (4)

From Eq. (3) one can see that if the system contains
spherical particles (where form factor is equal to
[3j,(QR)/QR]2, R is the radius and j, is the first-order
Bessel function), I(Q) will be totally governed by the par-
ticle radius [16—18]. In analyzing the scattering data
from such a system, one can fit the data with Eq. (3) and
use particle radius as the adjustable parameter. This
fitting is usually very simple.

However, it is much more complicated in analyzing the
I(Q) data from a polydisperse system where I(Q)
comprises contributions from particles of all sizes, i.e.,

G ,x V x dx
&P(Q) &=

f V f (x)dx
(12)

is the normalized average intraparticle structure factor
(i.e., (P(0) ) = 1). ( V~ ) is the second moment of the par-
ticle volume.

For experimental purposes we write No in terms of the
weight percent concentration,

C„=k V x No x dx

=kNo( V ) (13)

where k is a proportional constant for converting No to
the weight percent concentration. Combining Eqs.
(11)—(13) one gets

I(Q)= [(&p)'/k]C (& V,'&/& V, ) )&P(Q) &

=&(P(Q)) .

(14a)

(14b)

where R& is the cross-sectional radius of the cylinder, and
p= cos8 is the directional cosine. Combining Eqs. (4),
(5), (7), and (8), one obtains

I(Q) =(~i )'N, ( V,') &P(Q) &

where
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As shown in Eq. (14b), an adjustable parameter A is used
to represent the prefactors [see Eq. (14a)], when one
cannot compute all of the terms shown in Eq. (14a) pre-
cisely. Equation (14b) is the equation often used to fit the
experimental data from which A and the structural pa-
rameters [R in Eq. (9) or L and RI in Eq. (10)] are extract-
ed. From Eqs. (14a) and (14b), the average particle-
solvent contrast can easily be deduced from the extracted
A and the structural parameters as

&b&

Ao=(bp) /k

=( A /C )(( V ) /( V') ) . (16)

As mentioned in Sec. I, 3o should be independent of con-
centration, if the presumed size distribution is appropri-
ate and no particle swelling or shrinkage occurs as con-
centration varies. This means that when the presumed
particle-size distribution function is proper, one should
be able to eliminate all the size distribution dependence
from the extracted A by multiplying it by
(( V~)/( V~))/C [see Eq. (16)]. Therefore, if the Ao
values so obtained for different concentrations are the
same, one can claim that the presumed size distribution
has a proper functional form. Otherwise, a new form is
needed.

Since ( V ) and ( V ) depend on the presumed
particle-size distribution, A 0 has different functional
form for different particle-size distribution. %e shall give
the derivations of Ao s for various distribution functions
in the following section.

1/2h

R R+b,

FIG. 1. (a) Normalized exponential distribution defined in
(0, ~ ) with the first moment taken to be 25 A [see Eq. (19)]; (a)
Normalized triangular distribution defined in domain [(R —b ),
(R+b )] [see Eq. (24)]; (b) normalized rectangular distribution
defined in domain [(R —b, },(R+ b )] [see Eq. (31)].

( V ) and ( V ) in this case are, respectively,

III. DERIVATIONS
OF JUSTIFICATION PARAMETERS AND & P( Q })

and

( V, ) =(4 /3)(3t/P') (20)

A. Monodisperse case

The first moment of the particle size in this case is
equal to the square root of the second moment, i.e.,
(V~)=(4m. /3)R = ((V~))' . Hence the justification
parameter A„can easily be derived using Eq. (16),

A, =(A/C. )(& V, &/( V,'&)

=3A/(4vrR C ) . (17)

The analytical forms of Ao and (P(Q)) for systems
containing spherical particles are derived in this section.
Seven commonly used distribution functions were chosen
for derivation of Ao and (P(Q)). The cylindrical cases
are given in Appendix A.

& V,'&=(4 /3)'(61/P') .

By Eqs. (16) and (12) one obtains, respectively,

Ao= AP /160~C

and

6
1

2

(P(Q)) = —— — sin(26)
g0Q' 2

2 2

+ + cos(38)
p2 3/2

where rl=p +4Q and A'= tan '(2Q/p).

(21)

(22)

(23)

B. Exponential distribution

The exponential distribution function is defined as [see
Fig. 1(a}]

f(R }=Pexp( —PR ) . (19)

The intraparticle structure factor (P(Q)) obtained has
the following form:

(P(Q)) =[3j)(QR)/QR ]' .

C. Triangular distribution

1/b, (R —R )/6, R E[R —b—,,R ]

f (R)= ' 1/b, (R —R )/b, , R E [R,R—+b, ]
0 elsewhere .

(24)

The first and second moments of V for this distribution
function are, respectively,

The triangular distribution function can be expressed
as [see Fig. 1(b)]
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and

( V ) =(8nR /3)(R +6 )+ (n.R /3h )y4 .

—(4n/.156 )y (25)

( V ) =(16&/63)[(R/b, )y +(I/b, )(U + V )]
—(2ir /3b )y (26)

E. Log-normal distribution

Log-normal distribution is convenient for describing
the size distribution of polymeric systems, especially for
interpretation of dynamic light-scattering data [10,12].
This is because it exhibits a number of properties that
make it amenable to mathematical manipulations. This
distribution function skews to the large particle size [see
Fig. 2(a)]. It has the following form:

where f(R)=(I/R &2m. l nz) exp[ —[ln(R /R )] /21nz] (36)

and

U=—R+6, V—=R —5,
(27)

where z =R /R =0 +1 (cr is the standard deviation) is
a measure of the standard deviation. The ith moment of
this distribution function is

y ——U2+ V —2R' (M;) =(1/R;) exp[i /2) lnz] . (37)

By Eqs. (25) and (26) Ao can be calculated by Eq. (15).
By substituting this distribution function into Eq. (12)
one obtains (P(Q) ) to be

Thus ( v }and ( V ) for this case are, respectively,

( V~ ) =(4n/3)(M3 } (38a)

(P(Q) ) =(16~'/Q'( V2) )

X [(I/b, )[M(U) M( V)]——(2R /b )M(R )

—(I/6 )[N(U) N( V)—]+(2/b, )N(R )],
(28)

and

( V~) =(4m/3) (M6) .

The justification parameter is

Ao=(3A/4~C )R exp( —27/21nz) .

(38b)

(39)

where

M(x)—:(QzR /6)+[(QR /4) —(5/8Q)] sin(2QR)

The intraparticle structure factor for this case cannot be
expressed explicitly and requires numerical integration.

and

+(3R/4) cos(2QR)+R/2,

N(x) = [(QR '/4) ——(9R /8Q) ] sin(2QR )

+[(35R /8) —(21/16Q )] cos(2QR)

+R '/4+ O'R '/8

(29)

(30)

F. Normal (Gaussian) distribution

Gaussian distribution is a natural result of a random
process and is widely used. Gaussian distribution is sym-
metric with respect to the average size R [see Fig. 2(b)].
However, in a physical system the particle sizes are non-
negative. Thus the distribution has to be truncated at
R =0. For such a case the Gaussian distribution func-
tion can be written as

D. Rectangular distribution

The functional form of the distribution is [see Fig. 1(c)]

(31)

and

( V, & =(~/6h)( U' —V'),

( V~ ) =(8ir /636 )( U —V ),
(32)

(33)

I /2b„R G [R —b„R +b, ]
0 elsewhere .

fR='
The ( V~ ), ( V ), and (P(Q) ) obtained for this distribu-
tion function are, respectively,

.08—
CI 0

0 0
N

0

.04—
M

A

30
x (A)

6 O o
0

0

~o

. I

40 50

(P(Q) ) =(63/Q')[M( U) N( V)]/( U' —V')—. (34)

The JP in this case is

Ao=(21A /16m. C„)[(U —V )/(U —V )], (35)

where U, V, M, and N have the same definitions as the
triangular case.

FIG. 2. (a) Normalized log-normal distribution (5) defined in
(0, ~ ) [see Eq. (36)]; (b) normalized Gaussian distribution (0)
defined in (0, ao ) [see Eqs. (40) and (41)]; (c) Schultz distribution
(o) defined by X, the averaged particle size, and z, the width pa-
rameter characterizing the polydispersity through Eq. (47).
The first moments for all three distribution functions were taken

0
to be 20 A. For Schultz distribution, z was taken to be 10.



2432 ERIC Y. SHEU 45

f (R)=a exp[ —(R —R ) /2o ]

where

a=(1/ov 2m)2[1 —p( —R/o&2)]

(40) and

(41)

( V ) =(16m a/9)o. I (7)D z(
—R /6)

X exp( —3R /4cr ) . (43)

is the prefactor to accommodate the normalization of
f(R) over (0,~) range. Based on this modified Gaussian
distribution ( V ) and ( V ) are, respectively,

Ao in this case is

Ao=(A/160m. o C )[D ~( —R/cr)/D 7( —Rlo)] .

(44)
(V )=(4m.a/3)o I (4)D 4( —R/6)exp( —3R /4cr )

(42)
Finally, letting p =(R i—2oQ) /2o,
5= exp(p ), and g = 1 —p(p), one gets

y=R /o. ,

(P(Q)) =[3/4o Q I'(7)D 7(
—y)]exp(y /4)

X [2D, ( —y) exp( y —/4) crv—'2nexp( .—y l2) Re(5g) —4crQv'n exp( —y l2) Im(pg/5)

+4Q cr D 3( —y)+4Q o exp[ —(3y +4Q o )/4]Re[D, (P)exp( iQ—R)]] . (45)

P(x) is again the probability integral, I (x) is the gamma
function, and D, (x) is the parabolic cylinder function (see
Appendix B).

G. Schultz distribution

The polydispersity p, defined as

p =—(&R ) —(R )')' '/&R ),
can be expressed in terms of z as

(47)

p =1/&z +1 . (48)

( V ), ( V2), Ao, and (P(Q) ) for this distribution are,
respectively [14,15],

( V ) =(4n/3)[I (z+4)/I (z+1)][R/(z+1)]

( V ) =(4m/3) [I (z+7)/I"(z+1)][R /(z+1)]

Ao=(A /C )[I (z+4)/I (z+7)][(z+1)/R ]

(49)

(50)

f (R)=[R'/1 (z+1)][(z+1)/R ]'+'

X exp[ —(z+1)R /R ] .

(51)

(46} and

In determination of polymer molecular weight distri-
bution in aqueous solutions, the Schultz distribution
function is often applied [14,15,20,21]. It is a two-
parameter, (R,z), distribution function. R is the aver-
aged particle radius and z is a width parameter character-
izing the particle polydispersity. The Schultz distribution
[see Fig. 2(c)] reads

(P(Q)) =8rraI'+"[a '+"—(4+a2) "+" cos(g', }+(z+1)(z+2)[a ' '+(4+a )
'+" cos(g', )]

—2(z + 1)(4+a )
"+ ' sin($2) ] (52)

where

a =z+ 1/QR

and

g; =(z+i) tan '(2/a) .

(53)

(54)

Having derived the analytical forms of Ao's for different

distributions, we will present a theoretical example in the
following section to demonstrate the sensitivity of this
method using the dependence of Ao on particle po-

lydispersity as a criterion.

IV. THEORETICAL CASES

As mentioned in Sec. I, judging the particle-size distri-
bution through fitting often encounters realistic diSculty.
This is because one often can fit the data with many
different particle-size distributions. In some cases, one
can even fit with a completely different particle structure
and size distribution. To evaluate the quality of the fit, a

value is often used as a criterion. However, the con-
vergent g values obtained in polydispersity analysis of
scattering data can be so close that using this value to
differentiate the quality of the fit becomes dangerous. In
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&(q)

0.5

(a)

0.0 0.25

t(q)
0.5

(b)

0.0
4

0.25

&(Q)

0.5

0.0
a s a i I

0.25
q (k')

FIG. 3. Fittings of a series of Gaussian distribution simulated
scattering intensity distributions (solid lines) with mono-
dispersed cylindrical model (dashed lines): (a) o/R=0. 2, (b)
o./R=0. 5, and (c) o./R=0. 7. The fitting qualities are reason-
able, indicating that using fitting quality for judging the struc-
ture and polydispersity is insufficient and is likely to lead to am-
biguous results.

some cases, a visual comparison of the calculated curve
and the experimental data becomes the better way to
judge the fitting quality.

In this section, we shall demonstrate a case where a
simulated scattering intensity distribution (using Gauss-
ian distribution for particle-size distribution) can be fitted
with a monodisperse cylindrical model. To do that, we
simulated a series of scattering intensity spectra of
different standard deviation o., taking average radius to
be 25 A. The contrast hp, k, and concentration C„[see
Eq. (14a)] were all taken to be unity. We then fitted these
simulated curves by assuming particles to be cylindrical
in shape and monodisperse in size. Figures 3(a)—3(c)
show the results of these fittings. By comparing the
simulated and the fitted curves, it is reasonable to say
that the fittings are "acceptable, " although the fittings at
large Q are not as good. However, it is tolerable because
in scattering experiment the statistics at large Q are nor-
mally not as good. With the fitting shown in Figs.
3(a)—3(c) one may conclude that the system contains cy-
lindrical particles of narrow size distribution. However,
if we apply the corresponding JP values as a function of
the standard deviation [or equivalently, different C, see
Eq. (44)], then it is obvious that the cylindrical model
cannot be correct (see Fig. 4). This is because the true
Ao (calculated from the given parameters) as a function
of 0., in the case of a Gaussian distributed sphere, should
be monotonically decaying (to be addressed in the discus-
sion section), but it is monotonically increasing for the
monodisperse cylindrical model. This distinctive

100

50—

A
20—

0

10

10 15

FIG. 4. Ao of Gaussian distribution model (solid line) and
that calculated from the monodisperse cylindrical model
(dashed line) fittings as a function of particle polydispersity (in
terms of standard deviation). It is obvious that the mono-

disperse cylindrical model is not correct because AD of the
monodisperse cylindrical model behaves very differently.

difference indicates that this method can actually
differentiate different distribution functions with a
reasonable degree of sensitivity, even though their fitting
qualities are similar.

V. EXPERIMENTAL APPLICATION

For an experimental test we applied this method to a
series of SANS data for polydispersed microemulsion sys-
tems. This model system is a bis(2-ethyl) hexylsulfosuc-
cinate (AOT)-water-decane three-component water-in-oil
microemulsion system with AOT (g) to water (cm ) main-
tained at 3:3 ratio. It has been proven, through electron
microscopy studies [22] and absolute intensity SANS
studies [14,15], that this system forms spherical mi-
croemulsion droplets, and the particle-size distribution
follows a Schultz distribution function. In applying the
JP method, we fitted the SANS data with various
presumed particle distribution functions. From these
fittings we found that both the spherical Schultz model
and the monodisperse cylindrical model can fit the data
(spherical Gaussian cannot fit well because the particle-
size distribution turns out to be highly skewed to the
right). The fittings are depicted in Figs. 5(a) and 5(b) for
two concentrations. As mentioned in the preceding sec-
tion, the y values for these two models are too close
(1.11 and 1.13, respectively) to be used for evaluating
their fitting qualities. By visual comparison, it is fair to
say that both fittings are reasonable. In order to deter-
mine which of these two models describes the system po-
lydispersity better, we plotted Ao as a function of con-
centration (see Fig. 6). It is clear that the spherical
Schultz model is a more appropriate model, because Ao
is nearly independent of the concentration. In addition,
we found that Ao values are relatively insensitive to tem-
perature. This is predictable, because Ao represents the
average particle-solvent (water to decane) contrast, which
should not vary substantially as a function of tempera-
ture, unless the particles swell or shrink. Actually, one
can estimate the swelling of the particle through tempera-
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(a)
ture dependence of 3o once the particle-size distribution
function is determined.

2000 VI. DISCUSSION AND CONCLUSIONS

1000

0.0 0.1

q (A-')

n I r1 ~ n

0.2

(b)

1000

0.02 0.05
Q (k')

0.1 0.2

FIG. 5. Fittings of 3:3 (see text) AOT-water-decane mi-

croemulsion systems at different water droplet (including the
AOT layer) volume fractions: (a) volume fraction equals 0.073
and (b) 0.11. The data (0) can be fitted with both the po-
lydisperse (Schultz distribution) spherical model (solid line) and
the monodisperse cylindrical model (dashed line). (a) and (b)
were plotted as a function of Q and ln(Q), respectively, in order
to detail the fitting at the different Q ranges.

15

0 &&gOg

5
0 1 2 3 4

AOT Concentration (wt. %)

FIG. 6. r4 p values as a function of AOT surfactant concen-

tration. The Ap values of the Schultz spherical model ( ) fluc-

tuate around the mean value by less than 2% while the values of
the monodisperse cylinder model (4) show a deviation of
-25%. This demonstrates the applicability of the justification
method proposed here.

The theoretical case we showed in Sec. IV is along the
o axis unlike the one we suggested (i.e., C axis). This is
because the JP method is applicable only when the behav-
ior of the polydispersity variables (such as R and o. in the
case of Gaussian distribution) along the selected axis is ei-
ther known or predictable. In the simulated case in Sec.
IV, both R and o. depend on C, but their dependences
on the C axis were not known. Thus it is difficult to
simulate along the C axis. Essentially, the o axis and
the C axis are equivalent mathematically, because the
statistical variables (i.e., ( V ) and ( V )) in I(Q) depend
on both axes except that the dependence of I(Q) on cr is
direct while that on C is indirect. Thus using the o axis
to test the method is essentially the same as using the
concentration axis. The only difference is that Ao is not
independent of o. . Therefore the test can only be
achieved when the correct dependence of Ao on o (or the
right particle distribution function) is known; this was the
case in our theoretical demonstration in Sec. IV.

From the theoretical and the experimental demonstra-
tions one sees clearly that using fitting quality as a cri-
terion to extract the structure and polydispersity infor-
mation from scattering data is insufficient and is likely to
lead to incorrect results.

In this papaer we also derived the averaged particle
form factor (P(Q) ) for these distribution functions.
These analytical expressions of (P(Q)) allow us to
reduce the computation steps in the course of data fitting.
In the derivation of these expressions, two special func-
tions were involved, namely, the probability integral
function and the parabolic cylinder function. They can
be approximated by certain algebraic equations with
reasonable accuracy [23]. In Appendix B the approxi-
mate algebraic equations for the parabolic cylinder func-
tion are given.

The effect of interparticle interactions on polydispersi-
ty has been discussed both theoretically and experimen-
tally by many authors [24—27]. In general, the effect of
interaction on the polydispersity, to the first-order ap-
proximation, is not appreciable, especially in the case of
cylindrical particle systems as argued by Onsager [24],
Ben-Shaul and Gilbart [25], and Blankschtein, Thurston,
and Benedek [26]. Thus in treating the scattering data of
an interacting system one can approximate (S(Q) ) with
a monodisperse model, using average radius R as the par-
ticle radius (in the spherical system}. If this approxima-
tion is plausible, then the functional forms of Ao's given

in this study will be applicable.
Since Ao (equivalent to the averaged particle-solvent

contrast) is inversely proportional to the particle density
(while in solvent), one can make use of the Ao value to
study the swelling (or shrinkage) of the particles. For ex-

ample, one can examine A o as a function of temperature
to investigate how the solvent quality varies upon heat-
ing.

Recently, the maximum entropy method (MEM) was



POLYDISPERSITY ANALYSIS OF SCATTERING DATA FROM. . . 2435

developed by Skilling and Bryan [28]. It was based on
Jayne's argument [29], which states that the only unpre-
judiced assignment which can be made for a discrete
probability distribution [p, ] is the one which has the
rnaximurn entropy S subject to the available information.
Entropy here is defined in an information-theoretic sense
to be S=—X„[p„ln(p, )]. This method has been widely
applied to analysis of scattering data [30]. It gives a
unique solution to the linear inverse problem. The
particle-size distribution thus obtained is usually the most
uniform one that is compatible with the data. However,
its accuracy depends on the resolution in the measure-
ment and the particle size as well [31,32]. Thus, to
enhance the applicability of this method, knowledge
about the resolution as a function of the particle size is
necessary. We do not intend to compare JP method with
MEM. We simply suggested that the JP method is one of
the methods for polydisperse analysis, and the sensitivity
in differentiating different models is reasonably good.
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APPENDIX A

be written as

4E, (p )
(P(Q))= f dpi''

(pQ )'&2(pg )

where

(A5)

and

K~(gp)= f dL 4L [ sin(pQL /2)/(pQL /2)]2f (L)

(A6)

E2(gp) =f dL L f (L) .
0

(A7)

1. Monodisperse case

In a monodisperse system f (L)=5(L L) where —5(x)
is the Kronecker delta function. In this case A0 can be
easily derived to be

Since the integrand in Eq. (A5) cannot be integrated with
respect to p analytically, the integration has to be per-
formed numerically. However, K& and K2 can be ob-
tained analytically for the distribution functions used in
Sec. III except for the case of log-normal distribution
function. The advantage to expressing ( P(g}) in terms
of K, and E2 is that the derivations of K

&
and K2 can be

checked by taking Qp~O where K, should reduce to
E2. In the following we shall give the derivations of
( &z ), ( &z ), K~, K2, = (nRi) ( Vz ), and (P(Q)) for
various distribution functions.

In this appendix, we will give the expressions of ( V~ ),
( V~ ), Ao, and (P(g)) for cylindrical systems. The po-
lydispersity is assumed to be in length of the cylinders
while RI, the cross-sectional radius, is taken as a constant
for all particles. As defined previously [Eqs. (10) and
(12)], the normalized averaged intraparticle structure fac-
tor reads

and

Ho= 2/(~RILC )

(p( ) f &d ~2 sin(pgL/2)
o pQL /2

'2

(A8)

(A9)

f V G(Q, L)f(L)dL
(P(g)) =

f Vpf(L)dL

where [see Eq. (10)]
T

G(g L) ~d sin(pQL/2)
o pQL /2

2J, [QRI(1—p )' ]

QR ( 1 p2)1/2

=f [ sin(pQL/2)/(pQL/2)) % dp
0

with

A—:2J, [QRi(1 —p )'i ]/QRI(1 —p )'i

(A 1)

(A2)

(A3)

(A4)

2. Exponential distribution

( V~ ) =~RI /p,

( Vp ) =2(n'RI /P)

Ao = AP/2mR CI

&i =(pg)'/[2(p'Q'+P')],

(P(g)) =fdp%'[p'/[p'+(pg)')] .

3. Triangular distribution

( V ) =mRI L,
( V~ ) =(7rRI )'[L +6 /6) ],

(A10)

(Al 1)

(A12)

(A13)

(A14)

(A15)

(A16)
Since the second term, R, of the integrand is independent
of L and V =m%&L, we can factor out this term from the
integration with respect to L. By doing so, (P(Q)) can

A o
= AL /[rrR I C (L + b, /6 }],

E, =
—,
' —2/(pgb, ) cos(pgL ) sin (pgh/2),

(A17)

(A18)
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6L 2+ Q2

x f'dpi'

(pQb, ) —4cos(pQL ) sin (pQb, /2)
(pQ&)

(A19)

4. Rectangular distribution

(L ) =L+a exp( L /—2o 2), (A29)

( V ) =(mRI ) [L +o +2acr L exp( L —/2o )],
(A30)

where a is the accommodation factor so that the Gauss-
ian distribution is defined in the domain (0, ao). With
this modification the L again becomes the most probable
value of f (L) and the first moment can be expressed in
terms of L as

(V )=mRiL,

( V~ ) =(mRI ) [.L +(b, /3)),
AD= AL/[m'RI C (L +b,3/3)],

(A20)

(A21) where

(A22) T=(m/8)' e

E, =
—,'(1 aT)—, (A31)

K& =
—,
' [1—cos(pQL) sin(pQb, )/(pQb, )],

6A(P( ))=
3L +6
x f 'dpi''

(A23) x [2cos(pQL) —[e'I"& p( —y+)+e 'I'& p( —y )]]

(A32)

with y+ =(1/&2) (L /o+ip'Qcr) and P(x) being the
probability integral (see Appendix B). The justification
parameter becomes

X (pQE) —cos(pQL ) sin(pQb, )

(pQb )'

(A24)

5. Log-normal distribution

A [L+ao exp( L /2o —))
rrRI C [L +cr +2acr L exp( L /2o )—]

(P(Q)) = f dpR'

(A33)

Since the polydispersity is in the L direction only,
( V~ ) and ( V~ ) are equivalent to the first and the second
moments of the distribution with prefactors being vrRI
and (m.R& ), respectively.

2 —(ao &2m ) [ cos(pQL )+ Re( 9) ]

(pQ) [L +cr +2acr L exp( L /2cr )]—
(A34)

( V ) =mRI /L exp[ —,
' lnz], (A25) where

( V ) =(mRI L) exp[(21nz)],

Ao =( A /CmmRI L ) exp[( —3 lnz)/2] .

(A26)

(A27)

Q=P[(L/o &2)+i(pQo /&2)] exp(ipQL ) . (A35)

7. Schultz distribution

They analytical form for K, cannot be obtained, thus
(P(Q)) should be computed numerically by performing
double integration.

6. Gaussian distribution

( V~ ) =mRI L,
( V ) =(mRI L) [(z+2)/(z+1)],
A 0 =(z+1)A /(z+2)mRI LC~,
E, =

—,'(1 —T)

(A36)

(A37)

(A38)

(A39)

( V~ ) =(mRI )[L+ao exp( L /2cr )]—(A28) where

(z+1)
(pQL) +(z+1)

(z + 1)/2

cos [ (z + 1)arctan [pQL /(z + 1 ) ]], (A40)

2Z & z 1 —[Z /Z2+(pQL) ]
~ cos[Z tan '(pQL/Z)]

Z+ I o (pQL )' (A41)

where Z =z+1.
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APPENDIX 8

The analytical forms of both A o's and (P(Q) ) derived
in this study involved three special functions namely, the
gamma function I (x), the parabolic cylinder function
D (x), and the probability integral P(x). The advantage
of using these special functions is that they can be ap-
proximated by algebraic functions with considerable ac-
curacy, which makes the computation simpler and faster.
In the following, we shall give the approximation forms
for these three special functions and the recurrence rela-
tions between them.

The I function is a commonly used function which
computed rather easily. A computer program in FOR-

TRAN is available [33]. The parabolic cylinder function
discussed here, D„(x), comes from the solution of the
differential equation [23]

where

Y, =(I/+m )[I ( —,
' —a/2)/2' +' ](~,

Yz=(1/&n. )[l ( —', —a/2) /2'r ' ]gz,

and

g =e " I+(a+ —') +(a+ —')(a t —') +
1 21 2 2 4f

and

—x /4 X , x'
(2=e ' x+(a+ —') +(a+ —')(a+ —') +

2 3'f 2 2 5I

(B3)

(B5)

(B6)

(d y/dx ) —(-,'x +a)y =0 . (Bl)

D, &rz= Y& cos[( 4'+a/2)m ]—Y2 sin[( —'+a/2)n]

(B2)

This equation has an even (g, ) and an odd (g2) solution.
D, can be expressed in terms of g, and g2, through Y&

and Y2, as
P(x)= —I dte

7r
(B7)

Since (()(x) is defined in a finite domain for a given x, one
can easily perform this integration.

are convergent series for all x. With these algebraic
equations D„(x) can be computed in a straightforward
manner.

The probability integral is defined as [34]
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