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~etting transition for the contact line and Antonov's rule for the line tension
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The standard wetting transition consists of the transformation of a microscopically thin two-
dimensional interface into a macroscopically thick structure composed of two interfaces separated by a
bulk phase. We consider the one-dimensional analog of this phenomenon, when a contact line among
three or more phases decomposes into two contact lines separated by an interface. We uncover a wetting
transition for the contact line, which occurs at surface two-phase coexistence, as a function of a line or
edge field. This is exemplified by means of a lattice mean-field calculation for an Ising model bounded by
two surfaces that meet in an edge.

PACS number(s): 68.10.—m, 68.45.Gd, 82.65.Dp

I. INTRODUCTION

The contact line, also referred to as the three-phase
line, is the macroscopic one-dimensional locus at which
three phases, say, a, p, and y, and three interfaces, ap,
Py, and ay, meet [1]. This type of equilibrium inhomo-
geneity, more complex than those that give rise to two-
dimensional interfaces, has attracted attention recently
[2—6], and some properties of its excess free energy per
unit length, or line tension ~, have been analyzed. An in-
teresting question is the fate of ~ at the wetting transition
since there the contact line disappears. Phenomenologi-
cal studies have probed into this problem, and prelimi-
nary evidence was gathered for the vanishing of ~ at a
first-order wetting transition [2]. However, recent work
along these lines suggests that ~ may behave very
differently and may occasionally show a divergence upon
approach to such wetting transition [3,4]. Most, if not
all, works that have dealt with this question to date are
concerned with mean-field theories (continuum or lattice
based). The presumably important effects of fluctuations
on the line tension have not yet been addressed systemati-
cally.

Another compelling question concerns the behavior of
the line tension associated with surface critical phenorne-
na. The critical exponents that describe the vanishing ofi at surface criticality (specifically, at the ordinary, ex-
traordinary, special, and pure surface transitions [7,8])
have been identified using mean-field theory and scaling
arguments [6].

The macroscopic condition for the existence of a
three-phase line is easily visualized in terms of the Neu-
mann triangle construction [1]. There, the three tensions
o;J, with i,j=a, p, and y, associated to the three possible
interfaces are related to the sides of the Neumann trian-
gle and the dihedral angles occupied by the three phases
to the angles of the triangle. In the well-known case that
one of the phases is an undeformable solid with a planar
surface, the Neumann triangle description reduces to

Young's law, tr r=trtjr+tr tjcos8, with 8 the pertinent
contact angle. The Neumann triangle collapses into a
line when the largest of the three tensions, say, o r, is
equal to the sum of the other two. Then, the equilibrium
configuration of the three phases is that in which the P
phase completely wets the interface between the a and
the y phases. The wetting condition among the three
surface tensions is known as Antonov's rule [1],
0 +y cTzp +cTpy p and when it is satisfied, the three-phase
contact line disappears. Since 1977, it is known that a
wetting phase transition marks the onset of the complete
wetting regime, precisely at the instance where Young's
law becomes Antonov's rule [9,10].

A more complex situation arises when four phases a,
P, y, and 5 are in thermodynamic equilibrium, as is the
case of the two droplets (of two immiscible liquids) in Fig.
1, resting on a substrate and in contact with air. There

(a)

a

(c)

FIG. l. Two immiscible liquid drops (phases a aud P) resting
on a substrate (phase 5) and in contact with air (phase y). In (a)
all surface tensions produce nonzero dihedral angles, and four
lines and two points of tension are formed. In (b) a wetting
transition has occurred at the ap interface and air intrudes be-
tween the two droplets, drying the two liquids, and three line
tensions persist. In (c) a wetting transition has taken place at
the apy5 contact line, and the two drops no longer appear to be
in contact.
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are now six different possible interfaces and four possible
lines of three-phase contact. When the y phase (say, air
in Fig. 1) wets, or, perhaps more appropriately "dries, "
the aP interface (in Fig. 1 that interface where the two
liquid droplets touch each other), only three possible lines
of multiple-phase contact may subsist, namely, two
three-phase contact lines, those at the ay5 and Py5 inter-
sections, and the new four-phase contact line aPy5. It is
interesting to contemplate the structure of the aPy5 line
[11]. There are two physically distinct cases. One corre-
sponds to genuine four-phase contact along a microscopi-
cally thin line [Fig. 1(b)]. The other shows two separate
three-phase contact lines into which the four-phase con-
tact line has dissociated [Fig. 1(c)). Note the analogy
with the wetting or "unbinding" transition at interfaces.

Which of the two states, microscopically "thin" or ma-
croscopically "thick, " of the aPy5 line is realized de-
pends on the relative values of the three line tensions

&pypp 7 &yp and 'gyp In analogy with ordinary wetting
phenomena at surfaces, when, say, ~ &z& & ~ &5+~&z&, the
equilibrium configuration of the system is that of a "thin"
aPy5 line. Furthermore, a point inhomogeneity (with its
corresponding excess free energy or point tension} ap-
pears at the intersection of the aPy5, Py5, and ay5 lines
[Fig. 1(b)]. On the other hand, when r &rs=r rs+rprs,
i.e., when "Antonov's rule" for the line tension holds, the
equilibrium configuration of the system is that of the
"thick" aPy5 line, and the two droplets appear to be no
longer in contact. Therefore, the balance among excess
free energies due to different configurations of line inho-
mogeneities, although small, may determine the macro-
scopic geometry of three-dimensional systems. Of
course, in general, different configurations will corre-
spond to different excess surface free energies as well.
However, in some simplified geometries, the idealized ar-
gument that we have proposed is exactly applicable.
Indeed, a simple model with which we wi11 exemplify the
above-described behavior is a spin- —, Ising model with an

edge inhomogeneity formed by two perpendicular sur-

faces, that is undergoing a first-order wetting transition.
The rest of the article is organized as follows. In Sec.

II we define the model and we analyze the bulk, surface,
and line contributions to the free energy at zero tempera-
ture T=0. We derive the relationships among thermo-
dynamic fields at the wetting transition for both surface
and line terms. In Sec. III we present results for this
model at T &0, within the mean-field approximation, and
obtain the corresponding phase diagrams. In Sec. IV we
summarize our results and give an outlook on future de-
velopments.

II. THE MODKI.

iver, iver

where J is the bulk nearest-neighbor coupling; J& and Jz
the surface nearest-neighbor couplings on surfaces I, and
I z, respectively; J, the nearest-neighbor coupling at the
edge I, where the two surfaces I

&
and I 2 meet, and H

&

the surface field acting at the "active" wall I,. We take
the surface field H2 for I 2 to be always zero. That is, I 2

is a "neutral" wall and makes a 90' contact angle with
the Ising model interface, in a semi-infinite geometry
where I, is absent. Finally, H, is an edge geld acting on

I, . The spin lattice is shown in Fig. 2(a).
The total free energy of the system

F=fV+o i A i+o2A~+rL (2)

contains bulk (fV), surface (cr&A &+cr2Az), and line (rL)
contributions. Here f is the bulk free-energy density on a
volume V, o; the surface tension acting on surface I;
with area A; (i = 1,2), and r is the total line tension asso-
ciated with the line inhomogeneities (at the edge, or else-
where} of length L.

Consider the active surface I
&

with surface field

H& & 0. The magnet is at bulk two-phase coexistence and

H
1

He&He

H'
I

t
H~ &He

I

I

I

I

I

I

I

I

I

sitely magnetized domains when the temperature T is
below the Curie temperature T, . The model is then
characterized by the Hamiltonian (with spins s,. =+1}

H([s])= —J g s;s —J, g s, sj.
ij I I ij I E I&

—Jz g s,.s.—J, g s;s.
Iij I Er I jI Er

H&
—g s; Hz —g s; H, —g s;,

A spin- —, Ising model on a cubic lattice with an edge

formed by two nonparallel surfaces gives rise to line inho-
mogeneities of the type described in the Introduction for
systems where there is simultaneous equilibrium of four
phases. Two of these phases can be taken to be inert and
their interfaces with the rest of the system are represent-
ed by two perpendicular (planar) surfaces or walls I

&
and

I 2. The other two phases correspond, e.g., to two oppo-

FIG. 2. (a) The spin lattice for a quadrant with two surfaces

with different surface (dotted and dashed lines) and edge bonds

(wiggly lines). This geometry is used to study the wetting transi-

tion at a contact line. In (b) the disfavored state (—) is close to
the active wall. In (c) the preferentially adsorbed state (+) is

close to the wall and a domain wall separates this state from the

(—) state at the far right end of the figure.
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we denote the phases by (+) and (—). In this case I
&

preferentially adsorbs the (+) phase. The surface free en-

ergy 0,=o &+, generated when the (+) phase is chosen in
bulk, is smaller than the surface free energy o., =o., of
the disfavored state with the (—) phase in bulk. In the
latter case there are two possible configurations for the
magnetization profile: The partial wetting configuration
with a nearly uniform phase extending down to I, and
the complete wetting configuration where the (+) phase
intrudes between I'& and the bulk (—) phase [see Figs.
2(b) and 2(c)]. Clearly, the latter configuration includes a
(+ —) interface, infinitely far from I „with surface ten-
sion pro=a+ . Suppose now that we impose the dis-
favored state and vary one or more of the thermodynamic
fields, so that a wetting phase transition takes place at I &,

from a state with o& (cr&++a.+ to a state with
0

&
=u&++0+ . Since the local external field acting on

spins on the surface I 2 is zero, the surface tensions of the
(+) and the (—) phases against this wall are the same,
i.e., e2=o 2+ =+2, so that the neutral wall is indifferent
to this transition.

For the Hamiltonian (1), the wetting transition at I
&

[the transition from Fig. 2(b) to Fig. 2(c)] is obtained
when the wetting condition

are, respectively, in contact with I &. The line tension vp

arises where the (+—} interface meets the wall I 2. Now,
a "wetting" transition for the contact line occurs when
the line tensions first satisfy Antonov's rule assuming one
initially has ~' (v.++~o, i.e.,

W' =~++~O.

Clearly, this transition can be brought about by chang-
ing, e.g., H, .

Zero-temperature analysis

The total energy of the spin system can be easily deter-
mined at zero temperature, since then the magnetization
at site i is m;=+1. The energy E of the system, when
all spins are aligned in the (—) state, is

E = —3JV+[J/2 —2(Ji J)+H—i]Ai

+ [J/2 —2(J2 —J)]A2

+ [—2J+3(Ji+J2)/2 —J, +H, Hi ]L—,
and the energy E+ of the system with all of its spins in
the (+) state is

E+ E- 2H1A1 2HL+2H1L
0'

)
=CT ) + +0 + (3) while that for the (+ —) interface is

is first reached, because in the thermodynamic limit, sur-
face contributions to the total free energy overwhelm line
terms. The novel phenomenon we want to discuss is
most clearly appreciated using an analogy with the ordi-
nary wetting transition just described. Clearly, when the
wetting transition is considered, it is assumed that the
system is at two-phase coexistence in bulk. Similarly, the
contact-line transition we propose is one that assumes the
two-phase coexistence of the surface states of partial and
complete wetting. That is, we will move along the first-
order wetting phase boundary. In general, other interest-
ing contact-line phenomena may occur when the wetting
phase boundary is traversed, but we are not concerned
with those here. (Analogously, interfacial phenomena
other than the wetting transition are possible when cross-
ing the bulk phase boundary. )

At the first-order wetting transition, we consider the
line tensions ~', v.+, and vo. The first two of these denote
the excess free energies due to the inhomogeneities gen-
erated at the I', edge when the ( —) and the (+) phases

E =2JA)+2(J2 J}L . —

At the wetting transition (for the surface) H, =J, since
then the surface contributions to E and E++E are
the same. In the present geometry, the wetting transition
for the contact line takes place when the line terms first
satisfy Antonov's rule, Eq. (4), for the line tensions,
which corresponds to H, =H, + (J2 —J). Since the wet-
ting condition (H, =J} also holds, this reduces to
H, =J2.

III. MEAN-FIELD APPROXIMATION
FOR FINITE TEMPERATURE

For T &0 we adopt the lattice mean-field theory which
is known to give a first-order wetting phase boundary
[12]. The model is translationally invariant with respect
to the direction along the I, edge, and its total mean-
field free energy per unit length (along that direction) can
be written as

N NF= g g (1+m,. )ln(1+m, )+ g g (1 m, )ln(1 —m, )— .

,
i =0 j=O i=O j =0

N NJ X g m;, , (m;,,+i+m;+),J+m;, )—(J)—J) Q mo, (mo, +, +mo, )
i =0 j=O j =0

N N N—(Jq —J) g m,. o(m;+] o+m;0) —(J,+J—J& —Jz)moo H& g mo —H, m—oo,
i =0 j=l
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where i and j are the column and row indexes, respective-
ly, for a site in the lattice, i =0 defines the I, plane; j=0
the I z plane, and i =j =0 the I, edge. The equilibrium
magnetization profile m; satisfies the Euler-Lagrange
equation

(1+m, )
kT ln

' —2J(2m; . +m, +& +m,.
(1—m )l,J

0.8—

0.6—

04-

1,8—

1.6—

1.4—

1.2—

+m; J ~)+m; J ))=0,
with boundary conditions

(9) 0.2—

0-

0,8 -i

0.6—

Jm ] J=H]+(J J])(mpi+]+mp& ]+2mpj)

(loa)

-0.2 I I

4
kTc/J

(0)

kT/J6
0.2—

and

Jm;, =(J—J2)(m;+, p+m, , o+2rn; p}, (lob)
I I J
4 6

kTc /J
('b)

8 kT/J

J(m, o+mp, )=2(J,—J)mpp

+(J,—J)mo, &+(J2 —J)m&, o .

(10c)
Furthermore, the equilibrium solution is that which mini-
mizes F. The equations are solved numerically by simple
iteration methods in a 100X100 lattice with additional
boundary conditions m;+, J =m; J, m; J+,=m; J at the
free edges of the lattice. The wetting transition is deter-
mined first via the solution of Eq. (9) in the limit of large

j (far away from the neutral wall 1 z). In this limit, the
boundary conditions (10b) and (10c) are irrelevant and
the relevant fields are kT/J, J, /J, and H, /J. For fixed

J, /J we locate the regions where there are two solutions
in (kT, H, } space (in units of J). One corresponds to a
partial wetting state where the magnetization is negative
(the disfavored state for H, &0). The other corresponds
to a wetting state where the magnetization is positive (the
favored state) near I'„and is negative for large i, far
away from I &.

The discreteness of the model introduces a series of
layering phase transitions describing the layer-by-layer
growth of the wetting film [12]. These transitions shift to
low temperature as the value of the surface interaction J&
increases. Since we are interested here in the description
of the first-order wetting transition, we restricted our nu-
merical calculations to values of J& &1.5 J, for which
these layering transitions are absent within a temperature
interval [T, /2, T,]. In Figs. 3(a) and 3(b) we show the
wetting phase diagram for both surface and line transi-
tions. In these figures points under and above the dashed
curves correspond, respectively, to partial and complete
wetting states. The solid curves on these figures give the
values of the edge field H, =H,' at which the wetting
transition for the contact line takes place. The value of
H,' for each temperature is determined under the wetting
condition H, =H &. In Fig. 4 we show a plot of the total
free energy for both partial and complete wetting states
of the contact line [Figs. 2(b} and 2(c)] at constant tem-
perature, as we vary the edge field H, .

For values of the wall coupling Jz with 0&J, & aJ,
with a ) 1, the contact-line transition field H,' decreases

FIG. 3. Phase diagrams for the ordinary wetting transition
H& =H& and contact-line wetting transition H, =H,' (both in
units of the bulk coupling J) when J& =1.5 J. In (a) J2=J and
in (b) J2=2J.

F/J
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FIG. 4. Total free energy F for the 100X100 lattice for
different values of the edge field H, . The two curves show the
values of F for the two possible states whose magnetization
profiles in the (i,j) plane are shown in the insets and which cor-
respond to the configurations in Figs. 2(b) and 2(c).

with temperature and vanishes at the bulk critical tem-
perature T, . As shown in Fig. 3(a) for Jz=J, H,' may
pass through zero at some T & T, . As we increase the
value of Jz a pure edge transition can take place at
T & T, . This is possible when there is a pure surface tran-
sition at I 2. As is well known [7,8], this happens for sur-
face couplings Jz larger than a critical surface coupling
aJ that in this cubic lattice and in mean-field theory takes
the value a =

—,'. When J2/J & —,', spins on I z can order at
temperatures above the bulk Curie temperature, in which
case the system behaves as a two-dimensional system. A
typical phase diagram for this case is depicted in Fig.
3(b).
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IV. SUMMARY AND DISCUSSION

We have studied a model where an Ising magnet is
bounded by two planar surfaces which meet at an edge.
This geometry was considered in a number of earlier
works on wetting and layering phenomena [13]. The
phase transition for the contact line has not, to our
knowledge, been addressed previously, although Gibbs
has already discussed the basic thermodynamics involved
[11]. As relevant fields we have considered, in addition to
the surface couplings J, and Jz and a wall field H&, an
edge coupling J, and an edge field H, . Both the zero-
temperature and the mean-field solution of the model in-
dicate that one may find a wetting transition for the con-
tact line, occurring under the overall surface-field condi-
tions for the usual wetting transition, as the edge parame-
ters are varied. The condition that the line tensions must
satisfy at and beyond the wetting transition for the con-
tact line corresponds to the rule of Antonov (familiar in
the context of interfacial tensions} applied to the three
line tensions involved.

When the neutral wall permits surface ordering above
the bulk critical temperature, the contact-line wetting
transition is very similar to the known (critical) wetting
transition of a truly two-dimensional system [14]. Our
mean-field solutions in general indicate a first-order wet-
ting transition for the contact line. The fluctuations that
we ignored are expected to be important in these low-
dimensional structures. As is seen in the example of the
two-dimensional wetting transition, to which our prob-
lem reduces in the limit J—+0 (with Jz remaining con-

stant), the fluctuations will, in general, not destroy the
contact-line wetting transition but rather affect its order
(first order ~ continuous). On the other hand, fluctua-
tions are likely to destroy the would-be prewetting transi-
tion extensions of the contact-line transitions.

The thermodynamic properties of three-phase lines are
not easily accessible experimentally. They are delicate
and overwhelmed by surface and bulk effects. The
phenomenon that we have described here might turn out
to be conspicuous and observable in macroscopic sys-
tems, and become a suitable experimental, or computer
simulation, test ground to study the properties of line in-
homogeneities in three-dimensional systems. Very re-
cently, we learned that J. W. Cahn [15] examined the dis-
sociation of a four-phase contact line among Teflon (sub-
strate}, a methanol-rich liquid, a cyclohexane-rich liquid,
and air, into two three-phase contact lines as a function
of the concentration of water that is dissolved into the
liquid phases. This is qualitatively similar to the transi-
tion from Fig. 1(b} to Fig. 1(c), with the modification that
in Cahn's setup one liquid phase is inside the other.
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