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Anomalous difFusion in aqueous solutions of gelatin
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Dynamic-light-scattering experiments on semidilute aqueous solutions of gelatin indicate three relaxa-
tion processes: an exponential for times less than -50 psec followed by a power law at intermediate
time and then a stretched exponential at long time. The characteristic time of the stretched exponential
diverges as the system evolves to a gel. The latter two relaxations can be explained in terms of an anom-
alous diffusion mechanism where the mean-square displacement behaves as {R')-lnt at intermediate
time and (R~) -te with p(1 at late time. Length scales derivable from these diffusion mechanisms

obey scaling, and it is proposed that P is related to the fracton density-of-states exponent and the fractal
dimension of the gelatin molecules.

PACS number(s): 82.70.Gg, 05.40.+j, 61.41.+e

I. INTRODUCTION

Polymer solution dynamics in the dilute to semidilute
regime is currently an area of active interest [1,2]. In the
semidilute regime polymer overlap leading to topological
constraints on the polymer molecule motion strongly
affects the dynamics of this system and a wealth of com-
plex phenomena have been observed. The problem of
what happens when the individual molecules can bind to-
gether to form a gel begins in the semidilute solution and
would seem to add to the complexity of phenomena that
may occur. In this paper we present a dynamic-light-
scattering study of aqueous solutions of gelatin, a biopo-
lymer, in the semidilute regime and study the evolution
from sol to gel.

Dynamic light scattering (DLS) has served as a useful
probe for the molecular relaxation modes of polymer
solutions. Early DLS results showed that exponential re-
laxations in the dilute regime became very nonexponen-
tial in the semidilute regime [3,4]. Amis and co-workers
[5—7] were the first to shows that this nonexponentiality
was due to two modes of relaxation. In their study of
aqueous gelatin solutions [5] they found two exponential
modes, both q dependent, where q is the scattering wave
vector. The fast mode was inversely dependent on the
solvent viscosity and was ascribed to cooperative
diffusion related to segmental motion of the polymer
chain. The slow mode was inversely proportional to the
solution viscosity and hence was thought to represent
motion of the polymer as a whole, hence self-diffusion.
Later forced Rayleigh-scattering experiments have
brought this latter assignment into question [8]. After
the solution had set to a gel, the slow mode was gone,
leaving only the fast mode. Earlier, Tanaka, Hocker, and
Benedek [9,10] had studied DLS from set gels and found
exponential decays related to the longitudinal osmotic
modulus. Thus the concept was born that the solution
fast mode could be also thought of as an incipient gel
mode.

Since then, a number of studies have indicated the
presence of two major modes of decay in semidilute poly-

mer solutions [11—18]. The fast mode is always exponen-
tial and q dependent. No consensus seems to exist for
the slow-mode behavior and a variety of results have been
found. Typically, it is observed as nonexponential due to
a broad distribution of relaxations and not q dependent.
This distribution of relaxations has not been quantified
and often other q dependencies are seen [5,11,12,17]. In
gelled solutions the slow mode is gone leaving only the
fast mode.

The sol-to-gel transition has also elicited considerable
interest in the recent past due mostly to its possible
description by percolation theory [19,20]. Only a few
efforts, however, have applied DLS to study the evolution
of sol to gel. Adam et al. [21] studied chemically
crosslinked polyurethane by diluting samples from the re-
action bath as the system gelled. DLS showed an initial
exponential decay followed by a stretched exponential
with width parameter P (see below) that declined with
concentration until the mode was better described by a
power law in time. Martin, Wilcoxon, and Odinek
[22,23] used DLS to watch the sol-to-gel evolution in a
system of colloidal silica particles. Once again an initial
exponential was observed followed by a power law which
was cut off by a stretched exponential. The characteristic
time of the stretched exponential diverged to infinity as
the system set to a gel.

In this work we have used DLS to study aqueous gela-
tin solutions over a broad range of concentrations from
dilute to semidilute at temperatures above the gel transi-
tion temperature, T „,so the solution would not gel. In
this regime we observe three decays: a fast exponential,
an intermediate power law, and a long-time stretched ex-
ponential. We then temperature quenched our systems to
temperatures less than T,&

and watched the modes
evolve as the system gelled. Qualitatively our results bear
resemblance to earlier work on semidilute polymer solu-
tions for T & T,&

and the work of Adam et al. and Mar-
tin, Wilcoxon, and Odinek below T,&. Quantitatively,
however, significant differences are found in the shape of
the slower modes compared to earlier polymer work and
the q dependencies of these modes compared to the gel
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work. Because of this, we give an explanation of our ob-

served phenomena based on anomalous diffusion [24]
which describes our observations well. We then propose
interpretation of this anomalous diffusion picture in
terms of polymer molecule dynamics.
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II. EXPERIMENTAL METHOD

Gelatin is a topologically linear random-coil molecule.
It is perhaps the most well-known material to show gela-
tion behavior being the basis for many foods and has been
studied extensively in the past [25—27]. It is derived from
naturally occurring collagen. The random coils are de-
scribed by a fractal morphology with exponent deter-
mined by the nature of the intracoil screening. For mod-
est concentrations these strands overlap, and when the
temperature is lowered below Tz,&-—30'C, these regions
of overlap nucleate to helix junctions. This junction-
strand network grows to macroscopic size and a thermal-
ly reversible (i.e., "physical" ) gel is formed.

In our work aqueous solutions of gelatin were made up
by weight using distilled, deionized water and swine gela-
tin obtained from Aldrich. Once dissolved, the solutions
were held at 45'C for one hour to remove any history-
dependent effects. After such treatment, SDS gel filtra-
tion showed a monodisperse fraction with mole weight
1.2X10' amu. These hot solutions were then adjusted to
other desired temperatures for further experimentation
above the gel point or immediately quenched to a temper-
ature less than the gel point temperature Tg,&-—30'C in
the light-scattering cell. This quench defined a quench
time of zero, tq=0, and the systems were observed as a
function of t . Gel times t,&

ranged from 100 to 250 min
after t =0 depending on temperature and concentration
as determined by when the flow of a twin sample when
gently tipped became nonsmooth or lumpy.

Dynamic light scattering was performed in the homo-
dyne mode on -5 ml of gelatin solution held in a ther-
mostated (+0.1'C) cell to measure the scattered light in-
tensity autocorrelation function (I(0)I(t)). An Ar+
laser with A, =5145 A and a commercial correlator with
64 channels were used [28]. Due to the breadth of the
scattered light autocorrelation function, spectra were ob-
tained at three or more different sample times typically
spaced by a factor of 10 and then spliced together [28].
The autocorrelation function was used to calculate the
background subtracted and normalized dynamic struc-
ture factor S(q, t)=[[(I(0)I(t)) 8]/((I )——8)]'
The background 8 was determined from either the count
statistics available in the correlator or the value of
(I(0)I(t) ) at sufficiently long t such that no more decay
was observed. These values always agreed to better than
1%.

Solution viscosities were measured using a cone-and-
plate viscometer at low shear rates such that the solution
had Newtonian, i.e., shear-rate-independent behavior.
This device was temperature controlled to +0. 1 C.

III. RESULTS

Figure 1 displays examples of the dynamic structure
factor S(q, t) obtained from aqueous gelatin solutions for
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FIG. 1. Scattered light dynamic structure factor at 8 = 90'
for 3% and 7.0% aqueous gelatin solutions for both T=45'C
(open circles) and T=27'C (closed circles). When T=27'C the
systems had just evolved to a gel, i.e., t~ = ti,~.

—Dqt
e f, t &50 @sec

S(q, t)
—(tl~, )~

e ', t

(la)

(lb)

(lc)

In Eq. ( la) q is the scattering wave vector,

q =4m.nA, 'sin(e/2) where A, is the optical wavelength, n

the sample index of refraction, and 8 the scattering angle.
The spectra for T & T~,&

were static, whereas for T & TI,&

the characteristic time v, evolved with tq in a singular
fashion as the solution set to a gel.

The fits to Eqs. (1) are demonstrated in Figs. 2-4. Fig-
ure 2 is a semilog graph of the initial decay part of the
3% gelatin, with T =27'C data of Fig. l. A straight line
indicating a good exponential is seen.

Figure 3 is a double-log graph of a 3% solution that
has been quenched from 45'C to 27'C. One can see that
the region of power-law behavior, which is linear on such
a graph, increases with time as the sol evolves to a gel. It
would be easy to miss this power-law region in the initial
semidilute polymer solution but the evolution with gela-
tin makes it apparent.

Figure 4 shows a semilog plot of S (q, t) versus (t /r, )

with p=0.67 and ~, =6.21 msec for the 3% gelatin at
T =27 C data in Fig. 1. Linearity for (t/w, )~+0.2 indi-

cates a stretched exponential with p=0.67. We now con-
sider these modes in turn in a more detailed manner.

Figure 5 shows the fast-mode diffusion coefBcient Df
as a function of solution viscosity varied by changing the

both T & T,&
and T (T,&. Our analysis of the shape of

these spectra yields three modes: a fast exponential decay
at short times less than -50 psec followed by a power-
law decay which crosses over to a stretched exponential
at long time. These decays may be fit in a piecewise
manner to
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FIG. 3. Scattering light dynamic structure factor at 8=90'
for a 3.0% aqueous gelatin solution quenched to T=27'C. The
system evolved to a gel as a function of e=(fg

& tq )fg
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FIG. 2. Initial or fast decay of the dynamic structure factor

for a 3% gelatin solution at 8=90' for T=27'C. The back-
ground was chosen as the value of the total structure factor
(Fig. 1) at t =120 @sec. Afterpulsing and electronic dead-time
effects forced us to eliminate the first few @sec of the signal.
Only the first 60 psec are shown because beyond this the inter-
mediate decay begins affecting the data.

FIG. 5. Fast- and slow-mode diffusion coefficients Df and D,
as a function of solution viscosity changed by changing the gela-
tin concentration at t =45 C.

gelatin concentration at T =45'C. Only a small depen-
dency is seen, hence we conclude that Df is not a func-
tion of the solution viscosity. On the other hand, we
have found that Df is a function of temperature in a
manner which suggests it is inversely proportional to the
solvent (water) viscosity gso&„. This is in agreement with
Amis and co-workers [5] who also found that Df was in-

versely proportional to the solvent viscosity. This implies
a Stokes-Einstein relation, and an effective hydrodynamic
size for the fast mode can be defined as

kTPf—
6~ IsolvDf

(2)

Using Df =2 X 10 cm /sec and the viscosity of water at
45'C (0.596 cP), an effective size of 170 A is obtained.
This compares well to the radius of gyration of gelatin of
175 A measured by static-light-scattering Zimm plots
[29]. Amis and co-workers [5] measured a Df for aque-
ous gelatin roughly a factor of 2 larger than our values.
Their gelatin, however, had a smaller molecular weight of
35 000, hence we expect our Df to be smaller.

The intermediate power-law-mode interpretation of the
DLS spectrum is new to sernidilute polymer solutions and
was uncovered by the behavior of the solution as it set to
a gel. In Fig. 6 we show S (q, t) for a 3% aqueous gelatin
solution near its gel point at three different scattering an-

gles, hence q's. A dependence of the slope of these
graphs, hence a in Eq. (lb), is apparent. Values of a
versus q are shown in Fig. 7. For both T & T,&

and
T & Tg, &

the data display a linear dependence on this log-

log plot with a slope of 2.0 to imply

a=l, q (3)

0.0 0.2 0.4 0.6

(t/~c )

0.8 1.0

FIG. 4. The dynamic structure vs (t jr, )~ with P=0.67 for a
3% gelatin solution at 8=90 and T=27'C far from the gel
point with v; =6.2 msec.

Since a is unitless, the q dependence implies a new length
scale l &.

We also found that a was concentration dependent.
Thus l, is a function of the concentration c; this is

displayed in Fig. 8. The results are remarkable in that a
scaling-type behavior is seen [1]. That is, 1, is indepen-

dent of c for c 53%%uo but develops an l& -c depen-
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FIG. 9. The width exponent P for the stretched exponential
part of the fit to the dynamic structure factor as a function of
temperature.
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FIG. 7. The exponent a for the intermediate power-law part
of the dynamic structure factor as a function of the scattering
wave vector. Gelatin concentration was 3%.

FIG. 6. The dynamic structure factor for 3% gelatin solution
at 27'C near the gel point for three different scattering angles to
show the q dependence of the intermediate mode.

dence for c & 3%. The polymer overlap concentration, as
we have measured via intrinsic viscosity measurements, is
c"=2.5%. Furthermore, lt(c~0)=170 A is in good
agreement with the molecular radius of gpation R = 175
A and our own measurement of rf = 170 A.

The third or slowest decay also yields interesting
empirical results. Figure 9 shows the width exponent p
as a function of T. A rather sharp transformation occurs
near 30'C, which is the gel temperature T,&. Adam
et al. [21] saw p decrease to —

—,
' as polymer concentra-

tion increased; we do not see a concentration dependence.
Martin, Wilcoxon, and Odinek [22,23] tneasured p=0.65
in their gelling silica. This value agrees with our
P=0.67+0.05 in the gelling regime.

The characteristic time ~, displays an interesting q
dependence as shown in Fig. 10. In the sol at 45 C,
~, -q "where x =2.5+0.2. Thus we find both a and ~,
are both strongly dependent on q in the sol regime. This
is in strong contrast to a significant amount of previous
data on polymer solutions in which the slow mode, which
we envision as an unresolved combination of our power-
law and stretched exponential modes, is not q dependent.
In Fig. 10 we also show data for T (T,&

while the sys-
tem is evolving to a gel. Here we roughly find ~, -q
where x =3.0+0.4 although there is considerable fluc-
tuation in the data. Thus the q dependence of ~, changes
as we go across T,&

——30'C.
In Fig. 3 we saw how S(q, t) evolved as the system
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FIG. 8. Slow-mode hydrodynamic size r, and intermediate

mode length scale I& vs concentration.

FIG. 10. The characteristic relaxation time ~, vs the scatter-
ing wave vector for two different temperatures for the 3% gela-
tin solution. When T=27'C, ~, diverges hence its value at
E=(fg } tq)tg } 0 8 is shown as an example. A typical error
bar is shown.
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decay we propose a mechanism based on anomalous
diffusion [24], wherein the mean-squared displacements
of the walkers are given by

1', ln(t lt, ), (»)
(R') =

21', (t lt, )t', (5b)

io'

0 .003 0.4

FIG. 11. The characteristic relaxation time ~, vs

E'=(tg ] tq)fg ] for 3 0% aqueous gelatin at T=2.7'C for three
diferent scattering angles. Lines have slope —2.2.

evolved from sol to gel. Essentially the only change was

Figure 11 shows the behavior of ~, as the
quenched system evolves to a gel as a function of the re-
duced gel times e=(ts,

&
tq)ts—,&'. It appears that

diverges as a~0 in a power-law fashion as

(4)

where the times t, and tz and the lengths I, and Iz de-
scribe the elementary steps of the two random walks.
Proposition (5a) is certainly ad hoc, having as yet no pre-
cedent or physical basis. However, simulations of ran-
dom walks on fractal lattices [19]often qualitatively look
like Eq. (5a) at early times. On the other hand, the form
of proposition (Sb) is known to occur for a random walk
on a fractal lattice, and we shall make more of this below.
To calculate the dynamic structure factor we use a
Gaussian diffusion with a probability distribution
P(r, t)=(2m(R ) )

' exp( r l2(R—)). S(q, t) is the
Fourier transform of P(r, t) [30]. This assumption is an
approximation in that numerical work on anomalous
diffusion which leads to Eq. (Sb) shows that the diffusion
is non-Gaussian of the form P(r, t)-exp( r+ )

—[24].
Numerical evaluation of the Fourier transform of this
with reasonable values of 5 (0~5 1) show that the re-
sult obtained with the Gaussian assumption is a good ap-
proximation. We find the dynamic structure factor re-
sulting from Eqs. (5) to be

with x =2.2+0.3. Martin, Wilcoxon, and Odinek [22,23]
saw a similar divergence with an exponent of 2.5+0. 1.
There appears to be some rounding in the proposed
divergence below e-0.4, possibly due to our uncertainty
in the gel time t,I.

S(q,t)-t, a=1',q',
—(&I~, )~

r, =(q/, ) "t't, ;

(6a)

(6b)

IV. DISCUSSION

Our results indicate three modes of relaxation in semi-

dilute polymer solutions: an exponential, followed by a
power law, followed by a stretched exponential. Earlier
work on polymer solutions saw an exponential followed

by a broad slow mode, and we infer that this broad slow
mode is, in gelatin at least, a combination of the power
law and stretched exponential. As our system evolved
from sol to gel, the stretched exponential characteristic
time ~, diverged to infinity or at least showed divergent
behavior in the early stages of evolution. Power laws and
stretched exponentials have been inferred in DLS data
from at least two other gelling systems but the q depen-
dencies, especially for the power law, appear to be
significantly different.

What are the physical origins of the three modes of de-
cay? We cannot at this time offer a final description. We
can, however, offer a model based on anomalous diffusion

[24] which reproduces the observed experimental facts
for the second and third decays. After we present this
model, we will become even more speculative and pro-
pose interpretations in terms of a microscopic picture of
the polymer solution.

We interpret the fast exponential decay, as have previ-
ous workers [4—6], as the incipient gel mode due to
short-range monomer or blob motion of the chains, and
we discuss it no further here. For the second and third

This formulation incorporating anomalous diffusion suc-
cessfully describes the form of S(q, t) beyond the initial
fast decay, Eq. (1), observed in our experiments. Further-
more, the correct q dependencies are obtained. For a,
Eq. (6a) predicts the empirically determined Eq. (3) with
the proper q dependence. For r„Eq. (6b) predicts

r, -q ~. From Fig. 9 when T=45'C, P=0.81+0.05,
hence 2/p=2. 47+0. 16 in good agreement with the ex-

perimental 2. 5+0.2 (Fig. 10). When T =27 'C,
P=0.67+0.05 hence 2/P=3. 0+0.2 in agreement with
the experimental 3.2+0.4 (Fig. 10).

For the third decay we may define a "slow-mode"
diffusion coefficient as

(7)

Note that D, cannot be determined because tz is un-

known. Despite this we can test the efficacy of this
definition by studying the behavior of D, with the solu-

tion viscosity. In Fig. 12 we plot a log-log graph of
q„&„/Tversus ~, for a series of concentrations at different

temperatures all above T,~. For each concentration
linearity with slope of 0.83+0.05 is obtained. Since
p=0. 81+0.05 (Fig. 9) for T) T „, this implies

T/rt„I„-r, ~ Thus, by Eq. (7),. D, —T/rt„&„. This is in

accord with the Stokes-Einstein equation
D =kg T /677'g I

I" and hence lends veracity to our
definition of D, in Eq. (7).
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FIG. 12. Solution viscosity divided by temperature q„&„/Tvs

the characteristic relaxation time ~, for solutions of various
gelatin concentrations.

We return now to Fig. 5 where we have plotted D,
determined from the measured ~, at various q and a t2
value arbitrarily chosen so that D, =Df at c=1% near
the limit of c —+0. This t2 value was t2=8.3X10 ' sec.
We see D, —I/rl„(„ in contrast to Df which has very lit-
tle dependence.

Figure 13 plots D, versus c, again using
t 2

=8.3 X 10 'o sec. For c & c ' =2.5%, D, -c ', a be-
havior predicted by scaling [1]. Finally yet another per-
mutation of the data can be obtained by defining a slow-
mode hydrodynamic size via

r, =ktt T/6rrrt„)„D, . (8)

Figure 8 contains r, versus c; once again scaling behavior
is seen.

We see that the anomalous diffusion model accurately
predicts shape and q dependencies of S(q, t) Further-.
more various length scales and diffusion coefficients
derivable from our data display reasonable scaling behav-
ior with concentration with magnitudes in the c~0 limit
equal to those expected from the size of the gelatin mole-
cule. Thus a great deal of internal consistency is found in
the data and the anomalous diffusion model. Now we at-

tempt to contend with the physical origins of our results.
The following is quite speculative but is consistent with
all our results and should be useful as a stepping stone for
future refinement.

In the past [11—18] the fast and slow modes seen in
DLS experiments on semidilute polymer solutions have
been explained in terms of motion of the polymer which
is topologically constrained to a tube along its length due
to interaction with other polymers. For average displace-
ments much less than the tube diameter a, the coopera-
tive segmental motion gives rise to the fast mode, as men-
tioned above. We expect, however, that when the aver-
age displacement becomes comparable to a, the segmen-
tal motion toward the wall becomes severely hindered
due to the constraints. Based on the t behavior we ob-
serve for the second decay, we propose that this hindered
motion is described by Eq. (5a). This is consistent with
the identification of l

&
=g, the mesh size of the network

which should display scaling behavior as seen in Fig. 8.
As t approaches ~„which represents time for which rep-
tation of the entire chain becomes significant, the average
displacement perpendicular to the tube should approach
the tube diameter a. Thus (R (r, ) )=l f in(~, /t, )-a .
Based on shear modulus measurements, it has been sug-
gested that a —c '~ for c & c ' [31], where c ' =3% is
the overlap concentration. R(r, ) is plotted in Fig. 14
and one sees consistency with this prediction for c 8%.

The third mode occurs when t ~ ~„and we ascribe it
to full chain reptation along the tube. But why is the
diffusion anomalous? Computer simulations have shown
that a random walk on a fractal lattice is hindered rela-
tive to a complete Euclidean lattice due to the
ramification of the possible sites the walker may occupy
[24]. The evolution of the mean-square displacement is
slower and behaves in the form given in Eq. (5b) with
P=d, /df & 1, where d, is the spectral or fracton dimen-
sion and df is the fractal dimension of the lattice. It is
found that very nearly d, =—', [32]. Given this value of d„
we need df to evaluate P and compare to our measure-
ments. Agreement can be obtained if we use the fractal
nature of single gelatin molecules and assume that below
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FIG. 13. Slow-mode diffusion coeKcient vs concentration.

FIG. 14. Mean-square displacement of logarithmic diffusion,
Eq. (Sa), at r, vs concentration at T =45 'C.
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T,&

-—30'C water is a poor solvent for gelatin and hence
the gelatin molecules are random chains with df =2 [1].
Then p=d, /df =—', in agreement with our data in Fig. 9.
For T) T,~

water becomes a better solvent, i.e., Tz,&
is

near the theta temperature for gelatin in water, and the
molecules are self-avoiding random chains with df =

—,'.
Then p=d, /d& =—'„again in agreement with the data in

Fig. 9 for 30'C (T (50'C. To explain why the polymer
diffuses on a "lattice" of the same fractal dimension as
the polymer, we need only recall the concept of reptation.
That is, the tube in which the coil reptates should have,
on large enough length scale, the same shape hence the
same fractility of the coil. As the coil slithers along the
tube, the head and tail move along the fractal path of the
tube. It is the head and tail motion that contributes to
the third, stretched exponential decay, the rest of the coil
replacing itself along the length thus causing no index of
refraction variation. Finally, ~, diverges as the system
sets to a gel. Gelation occurs due to random crosslinking
of the polymer molecules. Thus the severely hindered
motion region of Eq. (5a) becomes dominant as reptation
becomes restricted.

V. CONCLUSION

In summary our dynamic-light-scattering measure-
ments on aqueous gelatin solutions indicate three relaxa-
tions: an exponential at short times, followed by a power
law at intermediate time, and a stretched exponential at
long time. %e interpret these modes as the normal "gel
mode" due to cooperative segmental motion of the poly-
mer, then anomalous diffusion where the mean-square
displacement is proportional to lnt at intermediate time,
and t~ with p(1 at long time. Length scales derived
from our model are consistent with molecular dimensions
and scaling. The characteristic time dividing these re-
gimes diverges as the system becomes a gel. The ex-
ponent p=d, /df where d, =—', is the fracton density-of-

states exponent and df is the fractal dimension of the in-

dividual gelatin molecules.
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