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We investigate the current status of the mode-coupling theory (MCT) of the glass transition by making

a comparison with two recent sets of experiments: the scaling data resulting from the dielectric measure-

ments of Dixon et al. [Phys. Rev. Lett. 65, 1108 (1990)] and the neutron-scattering data. Our main con-

clusions include the following. (a) Experiments do show the sequence of time scales in the relaxation

predicted by MCT. In particular, we believe that the high-frequency tail of the data of Nagel and co-
workers is the realization of the so-called von Schweidler relaxation predicted by MCT in the frequency

regime. (b) The nature of scaling discovered by Dixon et al. is quite different from and more universal

than that predicted by MCT, which is basically a time-temperature superposition. Furthermore, the

dielectric measurements show that there exists a universal relation between the exponent b governing

von Schweidler relaxation and the exponent P governing s stretched exponential: 1+5= 4(1+P). (c)

Dixon et al. 6nd no evidence for the existence of a special temperature To (well above the phenomeno-

logical glass-transition temperature T~ ) above and below which the relaxation dynamics is substantially

different. This constitutes a discrepancy between the two sets of experiments since neutron-scattering

experiments have been interpreted as con6rming the existence of such a temperature well above T~. A
possible reinterpretation of MCT is suggested so as to reconcile these two sets of experiments and MCT.

PACS number(s): 64.70.Pf

I. INTRODUCTION

Recent theoretical [1] and experimental [2] develop-
ments treating the dynamics of the liquid-glass transition
have led to considerable clarification of the nature of this
"transition. " A scaling picture [3] is emerging with a
complexity far more elaborate than one would have
guessed only a few years ago. From a theoretical point of
view there has been considerable progress due to the so-
called mode-coupling theory (MCT) of the glass transi-
tion. Leutheusser [4] initiated this development by show-
ing that a model obtained from the kinetic theory of
dense Auids exhibits an ergodic-nonergodic transition
which shares many features with the liquid-glass transi-
tion. This model also leads to a viscosity which diverges
as (T —'ro) r as the temperature T approaches the
"ideal glass-transition temperature" To. The exponent y
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PIC)f. 1. A schematic plot of the sequence of relaxation mech-

anisms predicted by MCT; (a) power-law-decay t ' relaxation,
(b) von Schweidler relaxation —St, (c) primary relaxation
e "~', (d) exponential relaxation e

was found [5] to take values y=2. Das and Mazenko
later discovered a cutoff' mechanism [6] which rounds off
the sharp nature of the ergodic-nonergodic transition,
keeping the system ergodic and the viscosity finite for all
temperatures. Another, less appreciated, feature of the
Leutheusser model is the existence of a sequence of time
scales (see Fig. 1) which enter the relaxation on the liquid
side of the transition. Recent experiments [7] have given
support to this scenario of a sequence of time scales, as
carefully elucidated and generalized in MCT by Gotze
and Sjogren [8], in the relaxation. On the other hand,
however, it is also true that there are serious discrepan-
cies between the MCT picture of Gotze and Sjogren and
the high-precision measurements of Nagel and co-
workers [3]. These experiments point to a scaling picture
which is considerably more universal than that suggested
by MCT [9]. It is also true that Dixon et al. [3] find no
evidence for the ideal glass-transition temperature To
highlighted by Gotze and Sjogren [8] in their work.

In this paper we investigate both the considerable
agreement between the MCT and experiments and the
unresolved discrepancies.

We begin in the next section with a review of the basic
theoretical MCT picture as elucidated primarily by
Gotze and co-workers. This will then serve as a frame-
work in which to discuss some of the important recent
experiments.

II. MODE-COUPLING THEORY: OVKRVIK%'

The basic assumption of the mode-coupling theory is
that the slowing down observed near the glass transition
is governed by density fluctuations. Another, less crucial,
assumption is that the glass transition is insensitive to the
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probing wave number q and it is typically assumed that
the various wave-number components can be treated in-
dependently. Under these assumptions the theory is for-
mulated in terms of the normalized density-correlation
function

(p (t)p (0) )
p(t) =

(p (0)p (0) )
(2.1)

where the wave-number dependence of P(t) is suppressed.
The Laplace transform of P(t), defined as

P(z)=( i)—f dt e "P(t}, Im(z) )0,
0

(2.2)

has, in the mode-coupling model, the representation [6]

z +id (z)
z

z Q—a+id (z) [z +i y(z) ]
(2 3)

The frequency Qo in (2.3) corresponds to a microscopic
"phonon" frequency. The renormalized viscosity d(z) in
(2.3) is coupled back to the density-correlation function
(t(t) via

d(z)=d +0Q fiidt e'"H(P(t)) (2.4)
0

where d0 is the bare viscosity governing the microscopic
dynamics. It has typically been assumed that the mode-
coupling kernel H(P(t) } can be truncated at a low finite
order in an expansion in P(t):

P(t) =f +(I—f)P,(t)
or equivalently, in terms of the Laplace transform,

(2.11)

For sufficiently large to one can make y(z) rather small.
We assume here that y(0) can be made sufficiently small
so that it can be neglected in (2.3) except in treating the
longest-time scale.

If we set y(z) =0, we can combine (2.3) and (2.4) to ob-
tain the equation of motion for P(z):

—Qop(z) =z +ido+i Qo f dt e"'H($(t)) . (2.9)
1 —z z 0

Equation (2.9) has the form in the time domain

P(t)+dog(t)+Qadi(t)+Qo f ds H(P(t —s))P(s) =0
0

(2.10)

with initial conditions P(0)=1 and P(0)=0. Equation
(2.10) forms the basis of the "mode-coupling model"
(MCM). The associated parameters are do, Qo, and the
Cn.

The basic assumption in the analysis of (2.10) is that
there is, depending on the values of the c„, an extended
intermediate-time regime over which P(t) is very slowly
varying. Indeed it is assumed that there is a time range
over which P(t) is approximately time independent and
one can write

N

H(f(t))= g c„P"(t) .
n=1

(2.5) y(z) =—+ (1 f )y,(z), —
Z

(2. 12)

P(z) =

where y0 is a constant that is —1. It is easy to see that
(2.7) leads to substantial values of y(0) unless one ex-
cludes the early-time contributions to y and writes [12]

y(z)=y, f dt +"e'[P(t)]'. (2.8)
fo

As discussed further below, the origin of the linear term
in (2.5) is not clearly understood from the point of view of
fundamental theory. The model where only c2 is nonzero
corresponds to the original Leutheusser model. The
more general model given in (2.5), but with c, =0, was in-

troduced in Ref. [10]. The importance of the c, term was
first pointed out by Gotze [11]. In (2.3) all quantities are
considered as rather weak functions of wave number,
which has been suppressed.

The frequency y(z) in (2.3), introduced by Das and
Mazenko [6], serves to cut off the ergodic-nonergodic
transition that one finds in its absence. If, as z —+0, the
viscosity d (0) becomes very large, then (2.3) reduces to

(2.6)
z+iy(0)

and p(t) decays to zero as e r'. If, however, y=0, then
P(z)-z ' and P(t) does not decay to zero as t~ oo and
the system is not ergodic. It seems crucial, in order to
obtain the very slow relaxation observed in experiment,
that y(t) remains small for all times and y

' must be
larger than any other time in the problem. Theoretically,
at lowest order in perturbation theory, y is given by

y(z)=yo f dt e""[j(t)]' (2.7)

where f is a metastable value of P(t) yet to be specified.
For the frequency region where the inequality

Izg„(z}I
« 1 (2.13)

is valid, substituting (2.12) into (2.6) and expanding the
left-hand side of (2.9), keeping leading orders up to
0(P„(z)),we obtain, for P (z),

+ cr,P„(z)—zP (z}+AL (P„(t) )(z)=0 (2.14)

where L stands for the Laplace transform. The
coefficients o.0, o.

&, and I, are defined by

oo=(1 —f)V(f),
o i =(1 f)'V'( f), —

A, = —,
'

( 1 f ) H "(f), —

(2.15)

(2.16)

(2.17)

where V(f)=H(f) f/(1 f) and V'(f—)=B—V/df, etc.
Equation (2.14) is the fundamental equation for the
analysis of the time regime (called the intermediate-time
regime here) leading up to and including the early stages
of a relaxation. (See Fig. 1.)

The self-consistency of (2.11) and (2.14) is maintained
only if the parameters o.0 and o. , are "small. " Slow relax-
ation results for those values of c„ for which o.0 and o.

&

are small. Gotze and Sjogren take this one step further
[8] and assume that cro and o i can be made small by ad-
justing the temperature and density. For reasons
developed below we refrain here from this assumption.
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An ideal metastable state is achieved if both crp and o
&

are zero. We are free to determine f by requiring cr, =0,
and obtain from (2.16) that

H'(f)=
(1 f)—' (2.18)

Ht =c2$ (2.19)

This forces cz to take a single critical value cz =4. For
the Gotze model [11]

Equation (2.18) can be solved to give

f=f (c„},cro=oo(c„), and A, =A(c„). From a mathemat-
ical point of view the ideal transition state is achieved for
the set of c„' where o o(c„')=0. For the Leutheusser mod-
el [4]

quite different for the cases cTp&0 and 0'p&0. For crp&0,
(2.22) has the solution P„(z)-(oo)'/ /z as z ~0 and

f=fo+c(cro) /2+O(oo)' (2.28)

p (t)= B(t—/r ) (2.29)

where 8 is a positive constant determined from the mi-
croscopic details and where the exponent b satisfies

I (1+b)
I'(1+2b)

where fo is the value off at the ideal transition point and
c is a constant. The dynamics are more interesting for
the case where cr p &0. In this case the solution, which is
more singular than 1/z as z ~0, has the form in the time
regime

HG =Clf+C2

one has a line of critical values

2i, 1

(2.20)
Equation (2.29) is known as the von Schweidler relaxa-
tion law. Since the von Schweidler relaxation eventually
violates the inequality (2.13), this decay mechanism is val-
id in the time regime

c2 =1/A.
(2.21)

Op —zP'„(z)+AL(P'„(t) }(z)=0 . (2.22)

For the higher-frequency region where the first term can
be neglected compared with other terms in (2.22),

where A, takes values —,
' (A, & 1.

For higher-order models one obtains critical surfaces.
The key assumption associated with the existence of slow
dynamics is that op is small. This requires that the sys-
tem chooses the set of c„such that O.

p is small. This does
not require that O.

p possess a zero at some definite values
of density and temperature. Equation (2.14) can then be
written as

w. « t «z
where ~ is given by

i

—( i /2a + I /2b)
a +p

(2.31)

(2.32)

(2.33)

For t + ~, the system enters into the a-relaxation re-
gime [13]. In this regime the equation of motion (2.22}
cannot be used since the inequality (2.13) breaks down
and one has to consider the original equation of motion
(2.9). While the analytic solution for (2.9) is not known,
the numerical solution for (2.9), or equivalently (2.10), for
certain sets of parameters in the a-relaxation regime is
well fit by a stretched exponential. Therefore, by assum-
ing that the stretched exponential of the form

P(t)=fe

Eq. (2.22) reduces to

—zP„(z)+AL(P„(t))(z)=0 .

Equation (2.24) is satisfied by

(2.23)

n=1
(2.34)

is a solution of (2.10) and looking at the small-frequency
limit, we obtain an approximate expression for the ex-
ponent P in terms of the parameters c„;

P„(t)=A(tQo) ' (2.25)

where the constant A is determined from the microscopic
details which are already eliminated from (2.14). The ex-
ponent a is given in terms of the parameter A, by

I 1—
=A.=—,'(1 f) H"(f)— (2.26}

where I is the gamma function. The inequality (2.23)
and the solution (2.25) imply that the above solution
holds only in the time region

no '«««. —= I~ol (2.27}

The time scale ~, diverges at the ideal metastable state
where o o=0. Therefore P(t} decays algebraically toward
the specified metastable value f of P(t).

For the time region where t »~„ the dynamics is

As an example, for the Leutheusser model (2.13), (2.34)
can be rewritten as

ln2

ln(c2f )
' (2.35)

ln2

ln[c2f/(1 —c, ) ]

ln2

ln(1 —
A, )

(2.36}

In this model, for example, with A, =0.6, (2.36) yields
@=0.76.

Equation (2.35) gives P close to 1 near the ideal metasta-
ble state where c2 =4 and f= ,' and hence the relaxatio—n

is exponential, not showing a stretching behavior. Gotze
[11] pointed out that by adding a phenoinenological
linear term c,P to HL, the model shows a stretching. For
Gotze's model (2.20) P can be written as
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In summary, the sequence of time scales predicted by
MCT follows from the behavior of the parameter o 0 (see
Fig. 1). For o 0&0, we have first the power-law decay,
followed by the von Schweidler relaxation, the stretched
exponential relaxation, and finally the cutoff y enters and
one obtains, finally, exponential decay. For op=0 the
power-law decay is extended to the longest-time scale un-
til the cutoff y becomes relevant. For 0p) 0 the system,
after the initial power-law decay, freezes in a state of
structural arrest until finally the cutoff y enters and re-
turns the system to ergodicity.

III. EXPERIMENTAL RESULTS

A. Scattering experiments

We now turn our attention to recent experiments and
discuss in detail the extent to which MCT is compatible
with these experiments. Consider first the neutron-
scattering measurements of the normalized density-
correlation function P& ( t } of the ionic liquid [14]
[CaD 4KQ 6(NO&), 4] and polymeric liquid (polybutadiene)

[15] at q =q0, the wave number associated with the first
maximum in the structure factor. These experiments re-
veal that P (t) has two well-separated relaxation re-

q0

gimes. The earlier regime, probed by neutron time-of-
flight measurements [16] with a time window extended to
10 sec shows the power-law decay t ' predicted by
MCT. The intensity spectrum in the recent liglit-
scattering experiments by Tao, Li, and Cummins [17] ex-
hibits an co " ' frequency dependence in tive

intermediate-time region, supporting the existence of the
power-law decay. Neutron spin-echo measurements [14],
with a time window of 10 —10 " sec, shows a slowing
down as the temperature is lowered. The relaxation is
well fit by the stretched exponential form (2.33} with

f -0.84, P-0.58 for the ionic liquid and f -0.90,
P-0.45 for the polymeric liquid. It was concluded that
for these systems, f and P in (2.33) are temperature in-

dependent and the relaxation time ~ alone carries the
temperature dependence. In this case the scaling takes
the form of "time-temperature superposition. " This
means that data at any temperature can be fit by (2.33) by
adjusting the temperature-dependent relaxation time ~.
Hence, (2.33) is indeed a scaling function of the relaxa-
tion, that is, the time-temperature superposition holds.

Another main result of the neutron-scattering experi-
ments is the measurement of the temperature dependence
of the plateau value f. In (2.28), if it is assumed that
o.0(T) ~ TD —T, T0 being the temperature at which an
ideal metastable state is achieved, then we have

specific temperature Tp, above and below which the dy-
namics is quite different.

There are a number of other experiments [19] and nu-
merical simulations [20] which find results similar to
those described above.

B. Dielectric measurements

A~(P), « I
COp

1ng(co) =
AH(P) —(1+P)ln(co/co ), » 1

COp

(3.2)

where

A (P)=ln I 1+—co r1
L p P (3.3)

Nagel and his collaborators [3] recently discovered a
sophisticated form of scaling in the a relaxation of super-
cooled liquids. From the measurements of the dielectric
susceptibility of a variety of glass-forming liquids they
observed that the data for all sample liquids studied can
be scaled so that they fall on top of one another over 13
decades of frequency (10 Hz & co/2n & 10' Hz). The
scaling curve is described by two parameters, the peak
frequency coP and the normalized width W (with respect
to the Debye width Wd =2 log&o(2+ v'3) = l. 14. . . ) of
the imaginary part of the dielectric susceptibility g '(co).
While the observed scaling curve can be well fit by a
stretched exponential in the low-frequency region, it
significantly deviates from the scaling curve for the
stretched exponential in the high-frequency tail. We be-
lieve that this high-frequency tail is the realization of the
von Schweidler relaxation (2.29) in the frequency regime.

The scaling discovered in the dielectric measurements
corresponds to plotting (1/W)log, 0$(co) versus

(I/W)(i+I/W)log, 0(co/coP ) where p(co) is the Fourier
transform of the normalized density-correlation function
and is related to the susceptibility via the fluctuation-
dissipation theorem: p(co)=(g"(co)/y)(coP/co), y being
the static susceptibility. Both 8' and co are found to be
strong functions of temperature. One of the intriguing
aspects of the scaling is the presence of 1/8'and 1+1/8'
factors. The longest-time regime can be fit to the
stretched exponential form (2.33) where r and P are
strong functions of temperature and one finds the empiri-
cal [21] relation 1/W-/3.

We briefly discuss here why the stretched exponential
form satisfies (approximately) the scaling discussed by
Dixon et al. [3]. It is easy to show for (2.33) that

and

The above cusplike temperature dependence has been ob-
served in a polymeric liquid [18] where they found
Tp=216 K, about 35 K above the phenornenological
glass-transition temperature T . This observation has
been viewed as important evidence in favor of MCT. The
important implication is that above T there exists a

AH(P)=ln I (1+P)sin (co r)8~
2

(3.4)

We see that dividing by 1+1/W=l+P renders the

high-frequency slope temperature independent. Then,
the 1/W factor in the scaling makes (1/W)AL H(P)
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log&of(co) = Ao(P) —(1+b)log&o
COp

»1 (3.5)

where
r

Ao(P)=log, o Bol (1+b)sin (co r)b~ b

2

with Bo being an amplitude factor governing the cross-
over from the stretched exponential relaxation to the von
Schweidler relaxation. Equation (3.5) can be written in
the scaling form

log~p(()(co) =Pro(P) 1+11 1+b 1

1+ 8'

X log)p
COp

» 1, (3.6)

where it is assumed that 1+1/ W= 1+p. Thus the
high-frequency slope in the scaling plot is given by
(1+b)j(1+p) and the scaling implies that this slope is
independent of temperature. Experiment gives the result

weaker functions of p than AL H(p), hence, approximate
scaling holds. Since, for example, (I/W )AL H(P) are
even weaker functions of p, one finds that the plot
(1/W )log, og(co) versus (1 /W )(1+1/8')log, o(co /co~)
leads to improved scaling. It is important to note that
this is no longer true for actual data in which the high-
frequency region significantly differs from the stretched
exponential form and the 1/W factor is preferred. There-
fore the factors of 1/8' and 1+1/W are essential in or-
der to obtain the scaling for the experimental data.

MCT predicts [13]that the high-frequency tail of the a
relaxation is characterized by the frequency spectrum of
the von Schweidler relaxation (2.29). Using (2.29), we can
then obtain an approximate expression for the high-
frequency representation for the data as

satisfy (3.7) since in the asymptotic region the model al-

ways yields b &p. There are choices of the parameters

[c„I which do lead to (3.7). We find [23] that the sim-

plest schematic model yielding the linear relation (3.7) is

H(P)=c, /+czar +c3$ +c4$ (3.g)

There is, as yet, no principle for choosing such models ex-
cept the desire to fit the experiments.

This last point is indicative of the main weakness at
present of the MCT. One does not know how to deter-
mine the coupling parameters c„(T,q) for a given physi-
cal system. Indeed the parameter c&(T,q), introduced
phenomenologically by Gotze is known to be important
in obtaining the stretching in the a relaxation but is not
generated in the kinetic-theory approach or in the non-
linear fluctuating hydrodynamic approach. Thus work
remains to establish a principle for its existence [4].

There appears to be a discrepancy between MCT and
the results of the scattering experiments, which indicate
the existence of a special temperature To, and the scaling
of Nagel and co-workers shows no temperature sensitivi-
ty for temperatures near To. It appears, if these two sets
of experiments are to be reconciled with each other and
MCT that the MCT must be reinterpreted. The experi-
ments of Nagel and co-workers are clearly carried out at
a temperature range which includes any reasonable esti-
mate for To. This can be seen from an analysis of the
temperature dependence of the peak frequency co . The
high-temperature data for co

' can be fit to the form
(T To) and —one finds, as shown in Fig. 2, for salol,
To =270 K which is well placed in the middle of the tem-
perature range studied. The simplest interpretation
reconciling MCT and the data in Ref. [3] is that
—oo-~ ' and o.o is activated at low temperatures. This
assumption is not in agreement with (3.1). However, it
may be that the To measured using (3.1) refiects the ki-

1+b 3

1+P 4 ' (3.7)
2.0

leading to the linear relation between the two exponents b
and p. Note that according to the linear relation (3.7),
the condition b &0 leads to a constraint on p, that is,
p& —,'. This means [22] that the width cannot be larger
than 3. Likewise, the condition p ~ 1 leads to b ~

—,'.

C. Comparisons

There does seem to be agreement all around that for
temperatures T& To (cro(0) there is a relaxation se-
quence which can be roughly described by von
Schweidler's law followed by stretched exponential be-
havior. The experiments of Dixon et al. [3] go further,
and the scaling they find implies a universal relation be-
tween the exponents b and P. Indeed they find a com-
plete universal curve.

Does MCT provide an explanation for the linear rela-
tion (3.7)'? MCT gives a relation between b and p via
(2.30) and (2.34), and this relation is in general highly
nonlinear. Note that Gotze's model, (2.20), does not

N

l.0—
N

~/
~/

b/
d/

b /
/ I

250 350
I

T(K)
400

FIG 2 vp (GHz '
) temperature T (K) for sa1o1, which is

taken from Ref. [3]. The dotted line is a linear fit to the last five
points of the data. The crossover temperature is estimated to be
To =270 K, which lies in the temperature range studied in Ref.
[3].
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netic effect that as T is lowered and ~ grows there will be
a temperature where ~ passes beyond the time window
sampled by a particular experiment. This temperature
will have a rough correspondence to To [25].

It seems appropriate to conclude that there is a tem-
perature range aroung To where relaxation times cross
over from power-law to activated temperature depen-
dence. This process is shown in Fig. 2. Once this tem-
perature dependence is absorbed in co then there is no
residual temperature dependence near To in the scaling
function.

IV. CONCLUSIONS

While the MCT has led to considerable progress in un-

derstanding the time sequence associated with relaxation

near the glass transition there remain significant ques-
tions which require study. One must find some method
for determining the parameters c„appropriate to a given
physical system and their variation with temperature,
density, and wave number. If one is to obtain the univer-
sal results of Nagel and co-workers, then there must be
some important and universal principle which inAuences
the physically selected c„.
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