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Numerical solution of the Onsager problem for an isotropic-nematic interface
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The interfacial profile of the isotropic-nematic interface of a rigid-rod system is solved numerically
based on a generalized Onsager model. For long rigid rods, the surface tension has the lowest value at a
/2 tilt angle between the nematic director and the normal to the interface. The density and order pa-
rameter are found to have different interfacial widths and interfacial positions. We find a dip in the den-
sity profile near the isotropic phase when the nematic director is almost parallel to the interfacial nor-
mal. The surface tension obtained here is 50% lower than the best variational calculation.

PACS number(s): 64.70.Md, 82.65.Dp, 68.10.Cr

In 1949, Onsager considered a system of rigid rodlike
molecules interacting with each other through steric,
excluded-volume interactions [1]; he demonstrated that
at sufficiently high density, the system exhibits a first-
order, disorder (isotropic) to orientation-ordered (nemat-
ic) phase transition. Subsequent models and numerical
simulations have confirmed Onsager’s picture, which is
now commonly regarded as the main mechanism for the
formation of the nematic ordering in liquid crystals [2].
The interfacial properties between the isotropic and
nematic phases, however, have received less attention un-
til recently [3-8]. In particular, the role played by aniso-
tropic steric excluded-volume interactions in determining
the interfacial properties is still unsatisfactorily ex-
plained.

Because of difficulties in solving this interfacial prob-
lem analytically, the existing theories propose either an
artificially imposed interface profile (sharp or smooth)
[4,5(a),6], or a square-gradient expansion [5(b)] which
cannot be used to account for the effect of a nontrivial tilt
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Here the number density per unit solid angle, p(r,Q), is a
function of the position r and solid angle Q. For steric
interactions the function w is assumed to have value 1
when two rods overlap and O otherwise.

For a homogeneous system, i.e., for the bulk phases,
p(r, Q1) becomes independent of the position r and the
free-energy model (1) reduces to the Onsager model for
the isotropic-nematic phase transition [1]. The minimum
of the free energy is found by a variation with respect to
the angular distribution function f(8), which leads to an
integral equation for f(6):

In[f(8)]=A—C [ W(y)f(6')dQ" . @)

In Eq. (2), W(y) is the excluded volume of two rods of
orientations ( and €', having a relative angle v, and A is
a normalization constant. Dividing the region (0,7) for
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angle between the nematic director and interfacial nor-
mal [5(a)]. These theories have arrived at different
answers regarding the possibilities of the existence of a
nontrivial tilt angle. While Holyst and Poniewierski [4]
claim that a tilt angle of 7 /3 between the director and in-
terfacial normal exists as a result of the excluded-volume
interactions of hard rods with a large aspect ratio L /d,
other authors found that the excluded-volume interaction
favors a 7 /2 tilt angle for large aspect ratio [5,6]. An
open question is whether or not these discrepancies are
caused by the approximations mentioned above. In this
paper we report a numerical solution of the generalized
Onsager model for the isotropic-nematic interface of long
rigid rods that avoids the pitfalls of these approxima-
tions. We conclude that, for long rigid rods, the surface
tension has the lowest value at a 7 /2 tilt angle.

Based on a second-viral-coefficient approximation for a
spacially inhomogeneous system, we can express the free
energy of molecules with anisotropic shapes as [1]

= [d*r dQp(r,Q)Indnp(r,Q)+1 [ d*r d*r' dQdQ w(r,r',Q,Q)p(r', Q' )p(r,Q) . )

f

the variable 6 into ny=40 equal segments and using a
Simpson’s rule to approximate the integral, we discretize
Eq. (2) into ny+1 equations with ny+1 variables f(6;),
(i=1,...,ny9+1). Neglecting end effects for long rigid
rods (i.e., taking the length-to-diameter ratio L /d >>1)
and solving this set of nonlinear equations, we confirm
that a first-order athermal phase transition exists at
sufficiently high density. At the phase-transition point,
the isotropic phase has a number density C; with the
value

C,=C;Ld =4.188+0.001 , &)

and the nematic phase has a number density C, and a or-
der parameter S with the values

C,=C,L%d=5.341+0.005 , (4a)
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S =(P,(cosf))=0.7935+0.001 , (4b)

where L and d are the length and diameter of the rigid
rods, respectively. Using appropriate units, one can write
the chemical potential at the phase transition as

ﬁ:1+1n6,-+§5,-=9.010i'0.002 ) (5)

The average in Eq. (4b) is performed using the angular
distribution function of the rigid rods. These values can
be compared with the results C;=4.190, C, =5.377, and
§$=0.796 from a bifurcation analysis of Kayser and

Raveché [9] and the results C;=4.189, C,=5.336, and
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S =0.792 by Stroobants, Lekkerkerker, and Odijk [10].
In our numerical procedure, the Onsager trial solution [1]
for the distribution function of the nematic phase pro-
vides an initial guess, and at each iteration step, the dis-
tribution function is updated using a Newton algorithm
for solving a coupled equation set of n,+ 1 variables.

The inhomogeneous interfacial problem is more com-
plicated; the free-energy model (1) must be solved taking
into account the spacial variable r. Assuming a flat
isotropic-nematic interface normal to the z direction and
using the rescaled variables X=x/L, y=y/L, z=z/L,
p=pL*d, and @ =Lw /d, we can rewrite the free energy
(1) in the form

= [ dzdQp(z,Q)indnp(z,Q)+1 [dzd*F d0de w(z,7,0,9)5z,0)5(2,0) , 6)

where A is the interfacial area. The interfacial profile is determined by requiring the quantity fi(z) identical to the bulk

value [i, where
S(F/AkgT)
az)=————
6p(z,9Q)

with the boundary conditions p(— «,8)=C,f,(6) and
pl,8)=C;/4m. Here f,(6) is the bulk nematic angular
distribution function.

Because of the rather sharp interface found below, it is
not adequate to expand the last term in the right-hand
side of Eq. (6) in a square-gradient approximation.
Furthermore, as recently pointed out by Moore and
McMullen [5], a square-gradient theory only includes a
Legendre polynomial of the tilt angle up to rank two and
thus is not suitable for examining the nontrivial tilt-angle
effect. Therefore, it is desirable to obtain a solution of
Eq. (6) beyond the square-gradient approximation.

We have developed a numerical procedure in order to
solve the nonlocal integral equation (7). For simplicity,
we assume that the number density 5(Z,{) is only a func-
tion of Z and the polar angle 6, where 6 is measured from
the director of the nematic phase. In general, since the
rotational symmetry about the director is destroyed as a
result of the presence of the interface for an arbitrary tilt
angle, the number density p at the interface should also
be a function of the azimuthal variable ¢; it is generally
expected that this dependence is weak. We have ob-
served in our numerical solution that the introduction of
the ¢ dependence amounts to a 1% change in the final re-
sults for surface tension, which is within the error of the
numerical procedure. In order to evaluate the integral in
Eq. (7), the Z coordinate is divided into n pieces of slabs
with width AZ bounded by planes at (z=Z, , Z; +AZ,
Z,+24AzZ,..., Z;+nAz). Inside each slab bounded by
(Z;,Z; +1), we calculate analytically the integral

© z
[° axdy [z w(z,r,0,0052,0),

by assuming that the function p(z’,0') can be approxi-

=1+1n47p(z,Q)+ fd37’dﬂ'w(f,f’,Q,Q')ﬁ(E’,ﬂ') ) @)

mated by a linear interpolation between the number den-
sity at Z;, p(Z;,0'), and at Z; ; ,, p(Z; ;,0'). For each z;, in
order to solve the nonlinear problem (7), we further
divide the range (0,7) for the angle 6 into ng4 equally
spaced segments and carry out the angular part of the in-
tegral using a Simpson’s rule as for the homogeneous
case. The interface is arbitrarily assumed to be within
z/L=[—5,5], and this interval is divided into n =40
sections of slab with a mesh size Az/L =0.25. This as-
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FIG. 1. Surface tension for different tilt angles 8,. The error
bars indicate estimated numerical errors, and the solid curve is
an interpolation of the calculated points. The apparent
minimum at 6,=0 is within the numerical error. The dotted
curve in the inset corresponds to the surface tension obtained by
Holyst and Poniewierski [4], and the dashed curve corresponds
to the surface tension obtained by McMullen [5(b)]. The solid
curve in the inset is the same as the one in the larger plot with a
different vertical scale.
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sumption is justified below by the fact that the interfacial
width is found to be of order 2L. A step-function form is
assumed for the initial guess of the interfacial profile. By
requiring the chemical potential (7) at every mesh point
to be the same as the bulk value (5), we obtain an updated
interfacial profile using a Newton algorithm for solving a
system of (ny+1)Xn=1640 equations with
(ng+1)Xn=1640 variables. This interfacial profile is
then used to determine the next one and so on. The itera-
tion is assumed to converge when the local chemical po-
tential fi(z) deviates less than 0.01% from the bulk value
in (5).

In order to study the effect of the tilt angle 6,, we nu-
merically solve Eq. (7) for given values of 6,. No varia-
tion of the tilt angle is assumed across the interface. The
surface tensions determined for different tilt angles are
shown in Fig. 1, which clearly shows a minimum at
0,=m/2. (The solid curve in Fig. 1 is a spline fitting to
the points calculated.) Therefore, we conclude that for
the nematic-isotropic interface consisting of long rigid
rods, the tilt angle between the nematic director and nor-
mal to the interface is m/2. The surface tension o(6,)
determined here can be compared with the surface ten-
sion found by McMullen [5(b)], as shown in the inset of
Fig. 1 (long-dashed curve). McMullen has obtained the
surface tension using a variational method with an
artificially imposed hyperbolic profile; his result is almost
twice as large as from this study. Holyst and Poniewier-
ski [4] have also determined the surface tension using a
step-function density profile. Their function o(6,) deter-
mined for the aspect ratio L /d =20 shows a minimum
near 6,=m/3, which is clearly an artifact arising from
their approximation, since the corresponding surface ten-
sion is greatly overestimated, as shown by the dotted
curve in the inset of Fig. 1.

In Figs. 2(a) and 2(b), we show the order-parameter
profile S(z) and density profile C(z), respectively, for
different values of the tilt angles. Three interesting
features can be found. First, the centers of the profiles
for C(z) and S (z) are different, where a center of a profile
is defined as the position in the interface at which the
profile decreases 50% of the bulk-value difference from
the nematic value. The distance & between the centers of
these two quantities is plotted in Fig. 3. A typical value
of this quantity is of order 0.5L, which can be compared
with 0.25L from a variational analysis [5]. When one
goes from the nematic to the isotropic phase, there is a
“phase shift” for the order-parameter profile toward the
isotropic phase compared to the density profile. Physi-
cally, this is reasonable since it takes approximately one
rod length for isotropic rods to interact with the ordered
ones. Although the present model is based on a second-
virial-coefficient approximation, this effect should be gen-
erally valid.

Second, the interfacial width at 8, =m/2 is narrower
than those of other tilt angles. This can be shown by
defining an interfacial width A as the distance over which
the profiles decrease from 90% to 10% of their bulk-
value difference. Figure 3 shows the interfacial widths
for the density and order-parameter profiles.

Finally, it is surprising to find a shallow dip in the den-
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FIG. 2. (a) Order-parameter profile S(z) and (b) density
profile C(z) at the interface. The centers of the density profiles
are shifted by L in order to clearly display the profiles for
different tilt angles. The relative differences between the centers
of the order-parameter and density profiles are retained in this
plot.

sity profile near the isotropic phase for tilt angles smaller
than 7/4. It can be seen from Fig. 2 that in the region of
the dip, the order parameter still does not approach zero.
For 6, =0 the dip persists as long as one rod length. The
total free energy (1) contains two terms, an entropy term
that prefers isotropic distribution and an excluded-
volume interaction term that prefers a nematic phase.
The nematic-isotropic phase transition, and therefore the
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FIG. 3. Interfacial widths of the density profile A., of the
order-parameter profile Ag, and distance 6 between the centers
of the density and order-parameter profiles.
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nematic-isotropic interface, is a result of the competition
of these two terms. This dip is related to the substantial-
ly finite value of the order parameter at this point, which
encourages the system to exclude disordered rods from
this region in order to decrease the total excluded-volume
interactions at the expense of some entropy.

For the nematic-isotropic interface of 4-
methoxybenzilidene-4' —(n-butyl)aniline (MBBA), the
optical-reflectometry experiments by Langevin and
Bouchiat indicate a nearly 7 /2 tilt angle, confirming our
analysis [7]. However, Faetti and Palleschi [8] have
discovered that the interface in 4-cyano-4'-(n-
alkil)biphenyl (nCB) displays a tilt angle close to /3. It
has been argued by some authors that this nontrivial tilt
angle is caused by the end effect of the excluded-volume
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interactions of rigid rods [5]. A numerical solution of a
nematic-isotropic interfacial problem accounting for the
end effect is currently under investigation.

In conclusion, the numerical procedure developed here
to solve a generalized Onsager model for a nematic-
isotropic interface has provided information about the in-
terfacial properties that can be used for further under-
standing of the excluded-volume effect in this class of
problems.
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