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Effect of dissipation Suctuations on anomalous velocity scaling in turbulence
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We introduce a one-dimensional model of a turbulent velocity field. It consists of a superposition of
successively smaller eddies, forming a Cayley-tree-like structure. The randomness of the eddy decay is

modeled by a multiplier distribution p(s), whose parameters can be determined from experiment. In
contrast to other cascade models, which are not stated in terms of the velocity field, every other quantity
of the turbulent flow can now be calculated consistently. Scaling relations between the statistics of the
velocity and the dissipation fields are shown to depend greatly on physical assumptions about the cas-
cade. Specifically, we study the influence of the spatial coherence of eddies, and of the action of the
viscous cutoff.

PACS number(s): 47.25.—c, 05.40.+j, 03.40.Gc

I. INTRGDUCTION

We consider statistically homogeneous, isotropic tur-
bulent How in a finite volume of extension 2~L,
(mathematically periodically continued), stirred by the
Auctuating velocity of the largest eddy. The statistical
properties of the velocity field in high-Reynolds-number
How can be described by scaling relations such as

D(r)=(( ul( x+r, t) —u(x, t)l »=be 'r r . (1.1)

Here ((. » denotes the average over the statistical en-
semble, and e=((vB;u (x)B;u (x) » is the mean dissipa-
tion rate per unit mass. The range of validity of (1.1) is
usually called the inertial subrange (ISR). At r =91 it
merges into the viscosity-controlled viscous subrange
(VSR), where g=(v /e)'~ is the Kolmogorov micros-
cale. b is found to be 8.4 experimentally (see, e.g. , [1,2]).

Though, within the present state of the art of measur-
ing [3], there are no significant corrections to (1.1), it has
been argued [4] that spatial fiuctuations in the dissipation
field

So typical velocity differences may be approximated by
v(r, x)=e„' (x)r'~, giving

D(m)( ) b(m)(([p (x)]m/3»rm
ll

(1.5)

n„

One thus has shifted the problem of calculating g(m) to
the study of the spatial fiuctuations of e(x).

Although the dissipation field e(x) is completely
defined in terms of the velocity field, one usually intro-
duces separate and independent models for the E(x) dis-
tribution. There are various such models, (see
[4,10,1,11—14] and references cited therein). The follow-
ing cascade model, first introduced by Yaglom [14,11]
and recently used for diffusion on random Cayley trees
[15],allows for a unifying description of the different dis-
tributions. A particular realization of e„&2 is obtained
from e, by multiplication with a random variable Y. The
Y's of the successive cascade steps are assumed to be in-

dependent, but their distributions are assumed to be the
same. Then every e„can be written as the product of in-

dependent random variables

E(x) =(v/2) [Bju, (x)—B,.uj(x)] gY, eL. (1.6)

should induce corrections to (1.1). Such corrections to
the classical scaling of Kolmogorov, Obukhov, von
Weizsacker, Heisenberg, and Onsager [5—9] are more ap-
parent in the higher-order structure functions. So the
scaling exponents g(m) of the longitudinal mth-order
structure function (("„»=eg & Y'&""=E'L(L/2r)I'q', (1.7)

eL is the dissipation rate averaged over some largest
length L. The number n„of Y factors is n„=log2(L/2r).
This gives

D)) '(r)=(([u(x+r, t) —u(x, t)])) » "r™
seem to differ visibly [3] for m ~6 from

(1.2) with

f(q)=log, (( Y'&}.

g„(m) =m/3, (1.3)

e„(x)= 3 f e(x+y)dV(y) .3

4mr
r

(1.4}

as found in the classical theory. Obukhov's argument is
that the statistics of the velocity difference
v(r, x)=u(x+r) —u(x) should depend on e(x) averaged
over a sphere of radius r,

Note that the exponent in (1.7) per construction depends
only on the distribution of Y and is independent of the
number of cascade steps. Therefore f (q) cannot be de-
duced from the central-limit theorem, even for n, ~ 00,
as it seems to be claimed by Yaglom [14,11]. For a recent
review on the properties off (q) see [16].

Combining (1.7) and (1.5), one obtains the desired
corrections to classical scaling
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5$(m) =g(m) —m/3= —f (m/3) . (1.9) (1.18)

f (2) is the exponent of the e correlations, usually denot-
edas p,

« [6(x) e][E( x+r) E] )) ~ E (r/L)

So one recovers the well-known formula [17,18]

p=2 —g(6) .

f (q) may be any convex function with

f (0)=f(1)=0 .

(1.10)

(1.12)

f (1)=0 follows from the obvious condition ((e„))=e
and is equivalent to g(3)=1 according to (1.9) and is
compatible with the Kolmogorov structure equation
[1,19];see also Sec. VI.

There is no obvious reason why the exponents f (q)
should be easier to evaluate than the original exponents
g(m). Attempts have been made to calculate f (2) from a
polymer analogy [20], but an accepted derivation from
the Navier-Stokes equation is still lacking. We therefore
adopt the following pragmatic view to summarize the
different functional forms proposed for f (q).

It would be simplest to assume that f (q) is a linear
function in q. Together with (1.12) this gives f(q)—=0
and one retains (1.3). The Novikov-Stewart or P model
[21,17] amounts to weakening (1.12) and to assuming that
(still linear)

f(q)=p(q —1) . (1.13)

For p, )0, (1.13) gives corrections to scaling, but contains
the flaw of violating the obvious relation f (0)=0. If one
wants to do better, one has to fit a polynomial of second
order,

f (q)=pq(q —1)/2 . (1.14)

This is the famous log-normal model of Kolmogorov [10].
Still another form off (q) is

f (q)=log [x(1/2)' i+(1—x)], x=0. 125, (1.15)

as suggested by Benzi et al. [22].
A rather general insight into the physical origin of

scaling corrections 5$(m) was obtained in [15]. Whenev-
er the scaling factors Y are not fixed but distributed,
there are corrections 5((m). For smaller m it is the
width ((log2Y —(log2Y)) )/(log2Y) of the distribu-
tion that determines the correction irrespective of any de-
tails of p ( Y). For large m the correction becomes linear
again in m, the slope being dominated now by log& Y,„
instead of (log2 Y) as for small m.

Other scaling exponents that indicate deviations from
classical scaling are the exponents g(q) of the one-point
dissipation-rate moments

are special cases: ps =g ( —', ), and px =g (2).
All models described so far rest on ad hoc assumptions

about the interrelation between velocity and dissipation
fluctuations, and are stated in terms of the dissipation
field. Instead, the model we present here consists of an
ensemble of velocity fields. Any other quantity, such as,
for example, the dissipation field, is then uniquely deter-
mined. This approach is fundamentally different from
the one taken, for example, in [13],although formally the
cascade construction might look similar. Once the en-
semble of u(x) fields is specified, there is no freedom
anymore in making assumptions like (1.5), or as in
[17,22,23].

The main point of this paper is to demonstrate that
indeed a whole variety of diferent scaling laws is con-
sistent with a hierarchical structure of eddies. The result
depends on assumptions about the coherence of eddies,
and on the nature of the viscous cutoff. To settle these
questions, detailed dynamical, i.e., Navier- Stokes-
motivated, information is needed.

Given a series of velocity scaling exponents g(m) we
obtain @=0if the eddies are coherent in space. If the ed-
dies fluctuate in space, p, =2((2)—g(4) ensues if the cas-
cade is cut off at a fixed length i), and @=2—g(6) (see
[24]) if the cascade is terminated according to a local,
fluctuating Reynolds number.

We also demonstrate our u (x) ensemble to be useful in
the analysis of experimental data. Finally, it forms the
basis of a series of investigations [25,26] in which the
statistics is actually determined from the Navier-Stokes
equation.

In Sec. II we introduce the two different versions of our
model, a spatially coherent and a spatially fluctuating
one. In Sec. III the eddy-energy distribution will be stud-
ied within the simpler coherent version, ' the spatially fluc-
tuating version turns out to give the same distribution.
This fluctuating version is considered in Sec. IV, where
we calculate the dissipation field and discuss its scaling
properties. We then (Sec. V) calculate the scale-
independent moments ((e ))/((e))q and discuss their
Re& dependence. Section VI is reserved for a discussion:
%'e explain how specific Qows can be described by the
model, compare our results with the analysis of experi-
ments, and comment on other theoretical works.

II. FOURIER-WEIERSTRASS MODELING
OF THE EULER FIELD

We start from the ansatz

iA, x /Lou(x) = g u'"(x)e '+c.c.
1=—N

«[~(x)]'&&/&&~(x)&&~ Re'". (1.16) = g u„(x)e'"",
km'

& = «(& u, )'))/« (&,u, )'»'" Re"'

and of kurtosis

(1.17)

Cascade models predict that the exponent of skewness
K =[+La 'A, , . . . , +La 'A, "j (2.1)

for a one-dimensional turbulent velocity field. Of course,
u 1, (x)=[ul, (x)]*. Lo is a reference length scale, and
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FIG. 1. The hierarchical structure of our eddy cascade. The
{NL )

amplitude of the largest eddy is u
&

. It decays into two eddies
{~L l) (NL I )

with amplitudes u
&

and u 2 . The decay process is de-
(NL I ) (NL )

scribed by the contraction factors s& and s2, u, =s, u l
(NL —1) (NL ) {NL I) (NL —I)

and u 2 =s2u
&

. With u
&

and u 2 one then
proceeds in the same way, etc.

A, &1 is a real scaling factor. We will mostly think of
u (x) as being a one-dimensional cut through a three-
dimensional velocity field u(x). So u (x) is understood to
be, e.g. , u&(x&). This is a completely adequate descrip-
tion of most existing experimental data, which are ob-
tained by measuring the velocity at a single point. Ac-
cording to the Taylor hypothesis [1], this gives a signal
equivalent to a one-dimensional section of the velocity
field. Nevertheless, our approach is not limited to one-
dimensional signals. In fact, a three-dimensional version
of (2.1) forms the basis of a recent analysis of the Navier-
Stokes equation [25].

Equation (2.1) corresponds to a decomposition of the
velocity field into contributions from different cascade
levels l, running from l = —N„ to NL. The diameter of
the eddies of level I is 2mLOA, '. The amplitudes uk(x) are

supposed to be periodic with period 2n.LpA, . So for-
mally the signal extends to infinity, but nevertheless we

NLhave introduced a largest-length scale 2~L=27TLpk
The diameter of the smallest eddies is 2m.g with—N
g=LpA, ". g obviously corresponds to a dissipation
scale, at which the cascade is cut off by viscosity. The
notation was introduced to keep g distinct from the usual
Kolmogorov scale ri = ( v /e) '

Functions of the form (2.1) with u ' "(x) =A,

0&a&1, and N&~ao were first considered by Weier-
strass [27,28] to construct continuous functions that are
nowhere differentiable. Physically, this corresponds to
the fact that velocity gradients increase if finer and finer
scales are resolved. In nature, N„certainly is always
finite, though Richardson [29] originally introduced (2.1)
into turbulence theory to raise the question of
nondifferentiability.

u'"(x) represents the amplitude of an eddy of level I at
position x. We shall take u '"(x) to be constant over each
eddy diameter 2mLpk and assume A. =2 for simplicity.

NL
—I

There are 2 eddies of this diameter on level l,—
Nz ~l ~NL. So we get a Cayley-tree-like structure

[15] as depicted in Fig. 1. This structure is very similar

III. THE STRUCTURE FUNCTIONS

In this section we shall consider the spatially coherent
monofractal case, where the amplitudes u ' "(x)= u ' " are
independent of x. Hence we have

NL
(I) i A, x/Lou(x)= g u'"e '+c c.

I=—N

(3.1)

to the multifractal models for the energy dissipation
[11—13]. The amplitudes of the eddies of level 1 will be

NL —I
denoted by u ", i =1, . . . , 2 . We introduce a sto-
chastically self-similar structure on this hierarchy of ed-
dies by specifying an ensemble for the u " in the follow-

(NL )
ing way: Let the amplitude u

&
of the largest eddy be

(NL —1) (NL —1)
uL. The amplitudes u

&
and u 2 of the two ed-

dies of the next smaller generation are obtained by multi-
plication with contraction factors s, and s2. Proceeding
in the same way down the cascade, u,'" is given by
su "+",where u"+" is the eddy that generates u ". The
contraction factors s (1 are assumed to be random.
They are chosen from a common probability distribution
p(s), since we assume all the various transitions as in-
dependent. This assures statistical self-similarity for the
velocity field like in the cascade models for the dissipa-
tion field [11].

Two alternative models are considered. In the first
one, termed "monofractal, "u'"(x) is assumed to be total-
ly independent of x, so all u "=u'" are the same. One
then has to choose only one single contraction factor s
and u'"=su"+"

In the other, called the "multifractal" model, the
different offsprings u " of each (i +1) eddy are obtained
with independently chosen s. So these models mark two
different extremes: in the monofractal case there is one
coherent plane wave in the whole volume for each level I,
i.e., the eddy decay is spatia11y completely correlated
within one level; in the multifractal model the mode am-
plitudes u " of the plane waves in each sub-box are sta-
tistically uncorrelated for i, +i2, thus we have spatial
fluctuations and only statistical spatial homogeneity.
Our terminology is motivated by the nature of the mea-
sure generated by the corresponding e field. As we will
see in Sec. IV, the monofractal case corresponds to a
space-filling e measure, thus characterized by a single, in
this case trivial, fractal dimension D = 3 (cf. [17]). In the
multifractal case, the nonlinear function g( m ) generates
an infinity of exponents or "generalized dimensions" of
the e measure. This corresponds exactly to the usual ter-
minology [12,30].

The complex amplitudes uL of the largest eddy are dis-
tributed according to an independent probability distri-
bution, which describes the statistics of the large-scale
fiow. Single brackets ( ) indicate the statistical averag-
ing in the ensembles of the u " and of uL. The distribu-
tion p (s) carries all the information on the fragmentation
process of the eddies, which dynamically would be dictat-
ed by the Navier-Stokes equation. Figure 2 gives an idea
of how a typical velocity signal looks in the multifractal
model. The specific distribution p(s) we used will be
given and motivated in Sec. III.
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dependence in the inertial subrange (ISR)—N N~
2m.A, "«r/Lo«2eA, can be extracted from Eq.
(3.5) analytically by performing the limits N~~oo and
N„~00. Rescaling then the argument r —+A.r, one ob-
tains

D(Ar)=A, D(r), r PISR . (3.6)

2mL

FIG. 2. A typical velocity signal as given by (2.1). The
u '"(x) are chosen according to the multifractal model. Parame-
ters are N& =5 and N„=4. The distribution p(s) is defined by
(3.11) with (3.12); see Sec. III for details. The smallest scale is—(NL +N )

2 ~ "2n.L, thus hardly visiblebyeye(2~L/512).

NL

D(r}=2 g &lu l
&)(, (r/Lo) ~r (3.7)

In the viscous subrange (VSR} r «rI, one may approx-
imate in (3.3) 1 —cos(A, 'r/Lo) by (A, r) /2Lo. Thus for
r E:VSR

The u '" can be written

N —IL
t("=u, gs, .

i=1
(3.2)

In the representation (3.1) the ensemble of u (x) fields is
not strictly translationally invariant, so we take tt (x +y)
and average on y, denoting this by a second bracket. The
y average now ensures « tt (x) » =0, of course. We get
for the structure function

For r RL, in the boundary subrange (BSR), the sum is
dominated by the contribution of the largest eddies. The
corresponding oscillations are visible in Fig. 3. D (r) now
depends on the large eddy shapes in a nonuniversal
fashion. The three characteristic regimes of turbulent
flow are thus built into our ansatz in a natural way.

Deviations from classical scaling appear if one allows
the contraction factors to fluctuate. The exponents g(m)
of the mth-order structure functions

D (r)=« ltt (x+r) —tt (x)l
D (r) = « lu (x + r) —u (x)I' »

=4 g & lu'"l &[1 cos(A, —'r/Lo)] . (3.3}

& f/', (e "-1)&
k+ +k =0 n=1

1

(3.8)

I= —N

In three-dimensional turbulence, D (r) corresponds to the
longitudinal structure function D((( '(r).

Let us first assume that the contraction factors s are all
equal, i.e., that the distribution p (s) is sharp,

p (s)=5(s —k 'i
) .

We then get

(3.4)

D (r) =4& luL l &(L/Lo)

NL

X g A.
'~ [1 cos(A, 'r/L—o)], (3.5)

I=—N

which is displayed in Fig. 3. The expected classical ~

are calculated most easily by the saddle-point method
[15]. The most significant contribution is obtained if
lk„rl =1. Since the wave numbers k„are kA, '/Lo, the

I„
saddle point I =I, is given by r /L p )(, or

l, =ln(r/L )/ink, , so &g„,u &=&u &(&s &)"'

Hence we have

D(m)(r) & Qm&(r/L)g(m)

g(m)=ln&s &/ink,

(3.9)

(3.10)

In principle, every concave function g(m) can be realized
by suitably choosing p(s). Since g(3)=1 is dictated by
the Kolmogorov structure equation, one only has to en-
sure &s & =A,

We decided to use as a most simple p(s) the bitnodal
distribution (and A, =2)

A
CV

V

C5

Cll
O

q/Lo -2 0 2 L/Lp Is

lag'(r /LOj

FIG. 3. The structure function D (r) with sharp velocity scal-
ing (3.4) according to (3.5). D(r) is in units of the mean ampli-
tude of the largest eddies, ( lui l ). We have chosen A, =2 and
Nl. =N„=7. This gives L/Lo =128, g/Lo= 1/128, and a scal-
ing range g/L =6.1 X 10

p (s) =p, 5(s —s, ) +pb 5(s —ss ), (3.11)

and determined the free parameters p„s„sb by a fit to
the g(m), which are reported by Anselmet et al. [3] from
their data analysis.

p, =0.65, s, =0.71,

pb =1—p, =0.35, sb =0.91 .
(3.12)

The bimodal distribution p (s) determines the statistics of
the velocity field itself instead of only the dissipation-rate
distribution, as in Ref. [13]. As seen in Fig. 4, the fit is
quite reasonable, but we attach no physical significance
to the specific form (3.11)ofp (s).

Within our model, we have put all the dynamical infor-
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velocity-scaling exponents. No x dependence and thus no
spatial intermittency of the u'" is necessary to obtain
nonclassical g( m ).

IV. DISSIPATION CORRELATIONS

0
0 20

A quantity of fundamental interest in turbulence is the
dissipation field

2

FIG. 4. The velocity moment scaling exponents g(m) as
given by (3.10)—(3.12). The parameters p, =0.65, s, =0.71,
pb =0.35, sb =0.91, and A, =2 were chosen to model the data of
Anselmet et al. (dots) as closely as possible with our bimodal
distribution (3.11). The constraint &s'}=A, ' is satisfied.

mation on the fluctuating field into the parameters (3.12).
Apart from Nz, N„, and the large eddy amplitude uL,
these parameters will sufBce to calculate any static quan-
tity. Note that the monofractal model considered in this
section already allows for an arbitrary spectrum of

I

e(x) = 15v
du (x)

dx
(4.1)

The prefactor 15 was chosen to define e= « e(x) }}equal
to its usual value for a three-dimensional isotropic field.
v is still an arbitrary constant with the units of
(length) /(time). Since uk(x) is assumed to be locally
constant we neglect its derivative, and from (2.1) we get

e(x)= —15v g uk (x)uk (x)k, kate
' ' . (4.2)

kl, k2EE

Its mean value is

NL N~

e=3OvL, -' g & ~u'"(x) ('}X-"=3OvL & ~u, ~') y a-"(&s') )
'

I= —N I= —N

—
3Q L —

2& ~u ~2)g L[($2& 2s}) L « I]/($2&s2} 1)

=3ov& ~u " ~2}«) 2[& &s ) —(P &s2) ) «]/(P &s }—1) (4.3)

Equation (3.7} takes the form D (r}=(e/15v)r, as it should in the VSR. The dissipation field for the monofractal mod-
el is plotted in the upper part of Fig. 5. Obviously, the activity is evenly distributed, showing no intermittency. The
reason is that (4.2) effectively represents a geometrical series, which would diverge if N„+~ and hen—ce is dominated

by the terms with k„=kA, /Lo. So one mainly observes the sinusoidal oscillations of the smallest eddies. The scaling
behavior is the same at any point as it should for a monofractal field. The lower part of Fig. 5 gives the dissipation field
in the multifractal case; for comparison, an experimental field is reproduced in Fig. 6. The amplitudes u " were con-
structed as described in Sec. II. Our artificial signal exhibits the same impressively intermittent character as observed
in experiments. It is therefore natural to look for the e correlations:

C,(r) = « e(x + r }e(x)}}

=(15v)
kl+k2+k3+k4=0

i (k3+ k4)r
&uk (x)uk (x)uk (x+r)uk (x+r)}k,k2k3k4e (4.4)

The key observation is again that the terms k„=+A, "/Lo=k«} ' dominate. Thus we can write

C,(r)=(15v) «) {4& ~u "(x)~ ~u "(x+r)~ )+2& Iu "(x)[u "(x+r)]'] )cos(2r/«I)) . (4.5)

At inertial range scales r ))g the second term oscillates
very fast and therefore does not enter the average depen-
dence of C,(r) on r. The remaining task is to calculate
& ~u' '(x)~» ~u' '(x+r)~ }.«This correlation function has
been studied extensively, both analytically and numerical-
ly, by several authors [32—34]. The basic idea in evaluat-
ing it is that the length r fixes a cascade level
l„=log&(r/2«rLo), above which the contraction factors at
x and x+r are the same, while they are di8'erent for
lower levels. Therefore, every level between I„and XL

contributes a factor &s «}, and the levels between —X„
and I, give a factor &s«} . Thus we obtain

& iu'"(x)i'iu'"(x+r)i')

=&~u, i2»)&s") ' "(&s»&')" . (46)

The x dependence is irrelevant for the scale dependence
on r, as shown in [34], since the fields at x and x +r are
raised to the same power q.

Of course, the exponent I„—I is 0 if r is less than the I-
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FIG. 5. Upper: The normalized dissipation field

e(x)/((e(x))) in the monofractal version of our model. We
chose NL =5 and N„=4, corresponding to a Taylor-Reynolds
number of about 1000; see Sec. VI. The amplitudes u'" of the

N —/

eddies of level I are given by u'"= uL P„~, s„, with the s„ran-
domly chosen according to our standard distribution (3.11) and

(3.12). Lower: The normalized dissipation field e(x)/((e(x)))
for the multifractal model. Parameters are the same, but now

the amplitudes u "of the eddies are chosen independently.

@=2((2)—g(4) . (4 8)

The same relation has already been conjectured by Nel-
kin and Bell [18]. It differs from the Kolmogorov-
Obukhov 1962 scaling, where g( m ) =m /3
—pm (m —3)/18 implies 2g(2) —g(4) =(4/9)p. Since
g(m) is concave, one always has p ~ 0. For classical scal-
ing, g(m) is a linear function of m and therefore p=0. In
the monofractal model u' '(x) is independent of x, so
C,(r) does not depend on r and p=0 irrespective of g(m),
following classical scaling or not.

To confirm our statement that the velocity scaling is
not altered by multifractality, we consider the second-
order structure function

eddy size, and XL —I„ is 0 if r is larger than 2~L. Substi-
tuting (4.6) into (4.5) finally leads to

C,(r)=4(15v)») (~uL ~
)(s ) "((s ) )'

(4.7)

As we will show below, the scaling of the structure func-
tions D' '(r) is the same in the mono- or multifractal
case. So (3.9) with (3.10) remain valid and we have from
(4.7) C,(r) ~ r &' ' &' ', giving the scaling relation

$] JkI i IJIII J i ill ~~s(~&ldklsii I
~]I ~i I

X

FIG. 6. The measured dissipation field in the turbulent wake
of a cylinder [31]. The Taylor-Reynolds number in this experi-
ment is only about 90 according to [23].

We conclude that the scaling of the u(x) and e(x)
fields is governed by two completely different mecha-
nisms: The structure functions D' '(r) are dominated by
eddies of typical size r. Although larger eddies have
larger amplitudes, they simply convect both points x and
x+r, so their contributions drop out of the velocity
differences. By varying r, one thus probes the vertical
structure of the hierarchy. In the e(x) field, on the other
hand, the contributions of the smallest eddies are most
important, since they have the highest velocity gradients.
So the e correlation mainly gives information about the
spatial structure of the smallest eddies.

V. ONE-POINT MOMENTS

%e first study the scale-independent moments of e.
For q a natural number we have

2q

«e»(x)»=( —15v)» y & g u„k„) .
k), . . . , k2q n =1

k„=0

Making the usual approximation k„=+g ', this gives

« e'(x) )& =(15v)»[(2q)l/(q! )']

X&~u' ""~' »'-"'
which leads [with (3.10)] to

&~u "I"& (s"& '
((p))» ( ~„' v'~2)» ( 2)»'~a+

' g(2q) —qg(2)
D' i(r)=4 y (~u "i(x)~ )

I= —N '9 L
(5.1)

(u'"(x +r)[u'"(x)]')x 1—
& I

'"( )I'&

Xcos(A, 'r/Lo) (4.9)

We now have to relate (rI/L) to Rei. To that end some
other moments are needed. Using again (3.10) and taking
the limit NL +N ~ ao (more precisely,

Here we can safely neglect the x dependence of the
(u'"(x +r)[u'"(x)]') correlation function as before.
For l ) l„we have ( u ' "(x +r )[u ' '(x ) ]*) = ( ~

u ' '(x ) ~ ),
so the sum converges in both the XL ~ ao and Nz~ ao

limits. Consequently we find a saddle point near l =l, as
before giving D' '(r)=( ~ul ~

)(r/Lo)&' '. The same ar-
guments also apply to the higher-order structure func-
tions.

((-

I= —N
Yl

=2& ~u~('&(I —X &"')

X(1—X~'2i-')-' .

(5.2)

(5.3)
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These moments already allow us to calculate the Taylor
microscale

' 1/2
« u ' ))

(((duldx) »
({2)—2

L g(2) /2- [2—/{2))/2 (5.4)

X(1—
A, P ' )/30] (5.5)

One expects the dimensionless combination
(IuL I )l(eL) to be Rei-number independent, since
the mean amplitude (~uL I

)'/ of the largest eddies is
unaffected by the eddy decay. It should therefore be in-
dependent of the length of the cascade. We relate
( IuL ~ ) /(eL) to the amplitude b~) in

D' '(r)=b (er) (r/L)s
II II

via the Poisson summation formula [35]

A, '[1—cos(A, 'r/LO)]

(5.6)

�

in(2 —a)/2 (x)

ink,

—2n'in log&r dn/in8

X I'( a+i 2—m n /ink, )

T' L.
a

Taking only the n =0 term into account, we get
from (3.3) apart from small oscillatory
corrections D(r)=4A(IuL I )(r/L)~' ' with A
=I'(1—g(2))cos[mg(2)/2]/g(2)ln/(, . Comparison with
(5.6) gives B +—,

' =g(2),

Since (((du ldx) )) =e/15v, one also obtains by solving
for v an expression for ri=(v /e)'

[(~L)2/3(
~

I2)
—lLg(2) —2/3-2 —g(2)

(b /2A)3/2[15/(1 g
—g(2))(1 gg(2) —2)1/2]

X (L /- )1
—g(2)/2 (5.10)

~e now combine (S.l) and (5.10), which gives for g (q)
defined in Eq. (1.16)

g(q)=2[qg(2) —g(2q)]/[2 —g(2)] . (5.11)

and

ps = [3g(2)—2g(3) ]/[2 —g(2) ] (5.12)

px = [4g(2) —2g(4)]/[2 —g(2) ]=2@,/[2 —g(2) ] . (5.13)

The formulas given in this section now allow one to
calculate various physical quantities (such as e, A, T, and
Re&) once the model parameters NL, N„,
(To/Lo) (Iur ~ ), and p(s) are specified. As the time
scale To we take Lo/v, since v is a given constant
characterizing a fluid. A11 the other quantities adjust
themselves when the boundary conditions are specified
and thus characterize the flow.

VI. DISCUSSION

First we outline how our model can describe the veloci-
ty signal of a specific flow. Typical quantities given from
experiment are

ri, Xr, g(rn), and b((. (6.1)

It is a straightforward consequence of our model that the
skewness

NL —1

3 g Z
—3l —

2Im[ (u(I)[(u(I+1))2]+ ) I
1=—N

scales with Re& in the same way as ((e ))/((E»
One only has to choose the distribution of uL such that
Im[(uL(uL )') I is negative. This ensures S(0, as re-
quired by the Kolmogorov structure equation; see (6.7)
below. Therefore, continuing (5.11) to nonintegral q, we
get for the exponents of skewness and kurtosis

bii=4A(iuL I )/(sL)

and (5.5) simplifies to

ri
—

[ [4A( 1 gg(2) —2)/30b ](I /21 )p(2) —2/3] 3/4ri

(5.7)

(5.8) NL, N„, (Lo/v) ( ~ uL ~ ), and p (s) . (6.2)

rj and A, T characterize the flow, whereas g(m) and b~~ are
supposed to be universal. The model parameters we wish
to calculate from (6.1) are

So in the presence of intermittency, g(2) )2/3, 21 and 21

define two different types of scales, as already observed by
Mandelbrot [36]. As the Re number is increased,
L/g »1, and eventually g »g. So, in principle, the cas-
cade may extend far beyond the Kolmogorov scale g.

The Taylor Re number is defined as

R =k (( ' » ' ' / = (( ' » /(( (
' )' » ' '

=v'15«u » /(ev)' =3/15«u »/(E7J)'

p(s) is defined by its moments (s ) =A, ~( '. For most
practical purposes, we may take g(2) =—', in the formulas
of Sec. V. By virtue of (5.7) and (5.3), (Lo/v) (~ui ~

)
can be calculated from NL and 1V„using the value

bII =2.3 for the universal constant bII. This value was ob-
tained from a least-squares fit to available experimental
data [2]. If the scaling parameter is chosen as A, =2 we
have

Using (5.7) and (5.2} this gives (L / ) () ~
)=19.3X2 (6.3)

Rei = [3/15/2A( 1 —A. ~' ') ]b1(L / I)Y
Inserting (5.5) into (5.9}finally leads to

(5.9)
So only WI and N„have to be adjusted to a specific flow.
This is done using
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TABLE I. This table compiles various numbers characteris-
tic of the turbulent state. The data for the duct flow are from

[3], Table 1, for the atmospheric fiow from [37], Table 1, Run
16. The values for NL and N„are calculated from this data via
(6.4) with La=1 cm. In turn, given NI and N„, all quantities
above them in the Table can be calculated (in units of Lo and
Lo/v) using (6.3) and (5.2)—(5.10). In this sense our Fourier-
Weierstrass model describes realistic velocity signals of high-
Re-number flow.

Quantity (units)

e(cm s ')
v(cm s ')

g (cm)
v (cm s ')

(/(u »)' (cm s ')
(((u'»)'") (s ')

AT (cm)
Re&

Duct
flow

1.12X 10
0.147
0.013

35.8
169
225

0.75
852

Atmospheric
ffow

740
0.149
0.046
3.24

143
18.6
7.7

7353

12
2

—N
rt/Le =0.18X2 ", A, r/Lo =4.01 X2

(6 4)

Re„=u " (x)LoA, "/v (6.5)

reaches a critical value Re„. Thus the cutofF scale g„will

which follow from (5.8) and (5.4). We note some flow
characteristics, together with the corresponding model
parameters, for two difFerent experiments in Table I. The
data of the first and second columns are from [3] and
[37], respectively.

We now discuss the different scaling relations for p,
ps, and pz. As mentioned in the Introduction, we have
also studied [24] a refined version of the model presented
here. Instead of fixing a cutoff scale g, the cascade is ter-
minated at the level N„at which the local Re number

in general fluctuate between different realizations of u (x)
as well as in space. Its average value ( ri„& is proportion-
al to the Kolmogorov length g. If the eddies are spatially
independent, we find p =2—g(6) as in the Obukhov
theory. Perfect spatial coherence again leads to p=0, of
course. Nelkin [38] studies a fractal model in much the
same spirit, and finds

ps 9p/16, pz =3p/2 (6.6)

to lowest order in p, in agreement with our own results
[24]. Note that the scaling relations obtained for the fluc-

tuating cutoff theory do not rely on dimensional argu-
ments like the Obukhov theory [4,17,39], presented in the
Introduction. Nelkin also makes the interesting observa-
tion that the relation

& (ti, u, )'& = —2v((t}',u, )'&, (6.7)

which follows from the Kolmogorov structure equation,
puts constraints on turbulence models. Specifically, our
constant cutoff assumption can only be approximately
valid, since it can be shown to violate (6.7}. On the other
hand, (6.7) can easily be satisfied with an appropriate
choice of Re„ in the version with fluctuating cutoff.

In Table II we document how the scaling relations
(4.8), (5.12), and (5.13) compare with direct experimental
measurements of p, ps, and pz, and the results of the
fluctuating cutoff theory (1.11) and (6.6). The necessary
values of g(m) are taken from the (3.10}—(3.12) interpola-
tion of the empirical values obtained by analyzing veloci-
ty signals of real flows. The measurements seem to sup-
port the fluctuating cutoff theory. But in view of the
available data, it seems fair to say that this support is not
very conclusive. For example, p depends heavily on the
kind of correlation function used. The value of 0.18
given in the table is based on ((e(x, t}e(x+r,t)&& (as is
our calculation of p}, whereas 0.48 is obtained [3] if the
centered correlation function is used, as in (1.10). More-
over, p depends sensitively on the choice of the inertial
range. The data of Van Atta and Antonia [40] collected
from many different experiments, show so much scatter

TABLE II. Here we give some exponents that characterize the e fluctuations. p is the exponent of
the e correlations and pz and pz describe the Re&-number dependence of skewness and kurtosis, re-
spectively. p, as quoted in the first line was taken from [3], ps and px from [40]. These exponents
represent the analysis of the available data. The second line summarizes the results of the fluctuating
cutoff theory [4,24,38] [scaling relations (1.11) and (6.6)] with g(m) from (3.10)-(3.12), which fit the
empirical values from analyzing the data [3]. The third line stems from our scaling relations (4.8),
(5.12), and (5.13), with g(rn) also according to (3.10)-(3.12).

Dissipation
exponent

From data
analysis 0.18 0.15 0.41 0.44 0.37

Fluctuating
cutoff theory 0.20 0.30 0.67 0.38

Constant
cutoff
theory 0.09 0.05 0.14 0.66 0.39
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p, =2 —3g(2), (6.8)

for the Navier-Stokes equation with external Gaussian
white noise coupled to it. The external force was as-

that they also seem to be consistent with much lower
values for pz and pz. Somewhat arbitrarily, only the
data with Re& & 500 are used for the fit.

On the other hand, if the older empirical values of Van
Atta and Park [41,42] are used for g(m), our theory
agrees very well with the direct measurements of p. They
report p=0. 5 and the fit g(m)=m/3 —pm (m —3)/18.
This gives p=0. 22 with our scaling relation (4.8) instead
of @=0.09, and ps=0. 13, @x=0.35 from (5.12) and
(5.13), all rather near the values of the Obukhov theory
and of experiments.

We already stressed the fact that once a u (x) ensemble
is specified, the scaling relations between the u and e fluc-
tuations are fixed. The monofractal and the multifractal
versions of our model led to different scaling relations. It
seems reasonable to believe that there is some correlation
between the eddies of the same generation l without en-
joying complete coherence, i.e., the correct scaling rela-
tion might be between (1.11) and @=0. But clearly we
must conclude that a detailed knowledge of the underly-
ing dynamics is necessary to make reliable scaling predic-
tions.

We investigated the dynamical implications of our
model in two recent papers [25,26]. A three-dimensional
version of both the monofractal [25] and the multifractal
[26] model was inserted into the Navier-Stokes equation.
This results in dynamical equations for the coefficients
u„(x). Keeping only interactions between neighboring
levels, these sets of equations constitute approximate
solutions of the Navier-Stokes equation. The statistics of
uk(x) can now be inferred from the Navier-Stokes gen-
erated dynamics.

In the monofractal case we have p=0, of course, but in
principle exponent deviations g'(m)%0 are consistent
with this, as shown above. Nevertheless, we found self-
similarity, but also 5$(m) =0 within the error of our cal-
culation. Therefore, the dynamical origin of 5((m)%0
must be sought in a spatial variation of uk(x), as in our
multifractal model. In fact, in our dynamical counterpart
[26] of the multifractal model, we now found appreciable
corrections g(m )%0. Due to the nature of the approxi-
mations made, we were so far not able to study the e fluc-
tuations independently. Hence investigations of the type
performed here give very important complementary in-
formation on the nature of the cascade.

Many of the conclusions drawn here are also contained
in a paper by Kraichnan [43]. Specifically, he noticed
that e„(x,t) =e, r EISR, as in our monofractal model, is
consistent with large Auctuations in the energy transfer
(cf. Sec. II of his paper). This means that @=0 is con-
sistent with 5$(m)%0. To support this view, Kraichnan
gave plausible arguments, but did not use a specific model
that really verifies it, as we did.

Recently, Yakhot, Orszag, and She [44] derived still
another scaling relation,

sumed to correlate as

(f;(p, &)f,(p', r')) =2Do~p~ ' " (2') p,, (p)

X 5(p +p') 5(t —t') . (6.9)

The exponent —3+p/2 was chosen to ensure
(e(x+r, t)e(x, t)) ~r ". From (6.9), g(2) can be calcu-
lated exactly [45] to give (6.8).

We want to demonstrate that (6.8) is not due to fluctua-
tions, but solely results from the specific form of the ener-

gy input. This type of correction is thus beyond the aim
of the present model. From the Navier-Stokes equation
with an external force one can easily derive an analogue
of the Kolmogorov structure equation [1]

D'„"(r)—6&a„DI"(r) =—, r'E„(')d' .12 ~,4
~

(6.10)

Here E~~ is the energy input rate per unit mass,

E~~~(r) =(f;(x, t)u (x+r, t) )r, r /r. (6.11)

If the energy is fed in only on the largest scales, E~~(r) is
constant and E

~~

( r ) = (f, (x, t)u; (x, t) ) /3 =e/3. This
gives D~~

' ~r irrespective of any fluctuations. For the
force (6.9), by contrast, we find within standard Langevin
theory [46]

(f;(p, t)u;(p', r)) =(d —1)Dorp~

X(2n) 5(p+p') . (6.12)

The energy input rate into one wave-number octave

p /&2 ~ k ~p &2 increases with p as p "~, since the num-
ber of modes within the octave increases as p . There-
fore, the energy is favorably fed in at the smallest scales.
Inserting (6.12) into (6.9) gives D~~ '(r) r' ",in con-
trast to our usual assumption g(3)= 1.

In our Navier-Stokes-based Fourier-Weierstrass
analysis of high-Re-number fiow [25] we did not couple
external noise. There is no relation like (6.9). Instead,
the fiuctuations are purely due to the nonlinear character
of the dynamical equations, i.e., they are deterministic
chaotic.

Let us summarize our results as follows: To date, all

existing theories connecting velocity and dissipation
correlations are based on dimensional arguments general-
izing the classical theories of the 1940s. Instead, we in-
troduced a model that allows for a consistent derivation
of the relevant scaling relations. It is based as closely as
possible on the properties of the velocity field itself and
on popular notions about the origin of intermittency.
This means that intermittency is traced back to the fluc-
tuations involved in a succession of eddy decays of the ve-

locity field. So we are able to disentangle the mechanisms
that produce velocity and dissipation correlations. Nev-
ertheless, there is ample freedom to define different mod-
els, so that one really has to consider the underlying dy-
namics. One might even say that further progress in tur-
bulence theory without specific reference to the Navier-
Stokes equation will be illusionary.
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