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We construct a statistical-mechanical treatment of equilibrium flows in the two-dimensional Euler
fluid which respects all conservation laws. The vorticity field is fundamental, and its long-range
Coulomb interactions lead to an exact set of nonlinear mean-field equations for the equilibrium state.
The equations depend on an infinite set of parameters, in one-to-one correspondence with the infinite set
of conserved variables. We illustrate the equations by solving them numerically in simple cases. In more
complicated cases we use Monte Carlo techniques, with the eventual aim of detailed comparison with
the Red Spot dynamical simulations of Marcus: Preliminary efforts show good agreement. We review
previous literature on two-dimensional (2D) Euler flow in light of our theory. In particular, we derive
the Kraichnan energy-enstrophy theory and the Lundgren and Pointin point-vortex mean-field theory as
special cases of our own. Our techniques may be generalized to a number of other Coulomb-like Hamil-
tonian systems with an infinite number of conservation laws, including some in higher dimensions. For
example, we rederive Lynden-Bell’s theory of stellar-cluster formation, as well as the Debye-Hiickel
theory of electrolytes. Our results may also be applicable to cylindrically bound guiding-center plasmas,
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which under idealized conditions provide another realization of 2D Euler flow.

PACS number(s): 47.20. —k, 05.20.Gg, 52.25.Kn, 92.90.+x

I. INTRODUCTION

We present the statistical-mechanics theory of the ideal
inviscid two-dimensional (2D) (Euler) fluid. There have
been many attempts at constructing such a theory, dating
back to Onsager [1] (for a review see Ref. [2]). A motiva-
tion for this work has been to explain the generic oc-
currence of large isolated vortices in numerical simula-
tions and observations on flows that may be approximat-
ed as two dimensional. Such “coherent structures” are of
obvious importance in many phenomena. Also the re-
sults of a previous approximate statistical mechanics of
the undamped undriven fluid were used to motivate the
idea of an inverse cascade of energy to long wavelengths
in the driven and damped (but high-Reynolds-number)
flow, i.e., two-dimensional turbulence [3].

This subject has renewed interest with the recent mod-
eling of large scale planetary atmospheric phenomena,
such as the Great Red Spot of Jupiter, in terms of invis-
cid two-dimensional fluid dynamics [4,5], and subsequent
numerical investigation of the time evolution of the Euler
equations [6]. Large coherent vortices are indeed a typi-
cal final state for wide ranges of initial conditions and pa-
rameters. Another experimental application is to one-
component plasmas in a strong magnetic field, which may
under certain approximations be treated as an ideal two-
dimensional fluid [7]. Recent experiments have investi-
gated this analogy in some detail.

The statistical mechanics of the two-dimensional invis-
cid, incompressible fluid is an interesting field theory in
its own right: it is the statistical mechanics of volume-
preserving diffeomorphisms in the plane. However, it is
convenient to discuss the approach in terms of the appli-
cation to the experimental phenomena described above.
In particular we will introduce the ideas by comparing
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with the recent numerical evolution of the dynamics
equations by Marcus [6].

We begin by describing the model [4,6]. The planet Ju-
piter for our purposes comprises a two-dimensional an-
nulus, with rigid boundaries. The winds of Jupiter are
realized by applying to the annulus an external potential,
which is equivalent to some combination of a background
shear, potential vorticity, and Coriolis force. The exter-
nal potential possesses an orientation, which breaks the
equivalence of positive and negative vorticity.

The initial conditions for the calculation are deter-
mined completely by the initial vorticity field. A typical
initial vorticity field involves two spots of vorticity of op-
posite sign, placed on opposite sides of the annulus.

We may then follow the time evolution of the fluid [6].
The spot of vorticity with opposite orientation to the
external potential breaks down and disperses, whereas the
spot of vorticity with the same orientation as the external
potential remains largely intact. At long times, only the
vortex sharing the sense of the external potential persists.

Marcus [6] suggests that the persisting vortex possesses
a number of characteristics that bear qualitative resem-
blance to Jupiter’s Great Red Spot. In particular, the
shape and vorticity profile of the persistent vortex are
consistent with those of the spot. Of course, the model
used in the simulation is idealized; one could, if one
wished, include the effects of the free surface, bottom to-
pography, planetary curvature, etc. Nevertheless, the
simulation suggests that the basic physics of the
phenomenon may well be encapsulated by the simplified
model.

We now ask whether we can predict and explain the
long-time evolution of flows such as the one introduced
above without resorting to dynamics. There are two
reasons for wishing to accomplish such a task. One is
simply pragmatic: dynamical simulations demand exten-
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sive computation and incur substantial error at long
times. An independent method of calculating the asymp-
totic evolution of a flow provides a check on the dynami-
cal calculation and might plausibly replace it. The other
reason is that when dynamics are unimportant, as in con-
ditions of statistical equilibrium, we may understand the
basic physics through simpler, static considerations.

The exotic feature of the 2D Euler equations when a
statistical mechanics is contemplated is that the flow
preserves an infinite number of conserved quantities that
are dynamically relevant. (These can be crudely
represented as area integrals of all powers of the fluid
vorticity.) Previous statistical-mechanical treatments
have ignored all these extra conservation laws, or have
explicitly maintained only one—the ‘“‘enstrophy” (the
quadratic power). Our treatment incorporates these con-
servation laws in the construction of the theory: Our re-
sults are therefore in general different than in previous
formulations. We remark that, to our knowledge, no
convincing justification for ignoring the higher-order
conserved quantities in inviscid flow has been put for-
ward. It has been suggested that the addition of viscosity
will serve to disproportionately quench the higher-order
quantities; however, we believe that the addition of
viscosity to the problem is an extremely difficult theoreti-
cal question that cannot be addressed so glibly. We do
not have any results on this question.

Our basic results are contained in Egs. (5.6)-(5.8).
Since the results depend in general on an infinite number
of conserved quantities, they are necessarily somewhat
complicated (although simple examples to be discussed
below display the main content of the theory). Equation
(5.7) is a field equation for the stream function (r),
which gives the long-time vorticity-field distribution.
The equation involves Lagrange multipliers 3 (the scaled
inverse temperature) and the function u(o). These are
determined implicitly by demanding that the energy and
conserved quantities take on the specified values, for ex-
ample, as set by the initial vorticity field in a numerical
evolution. The extra conserved quantities are completely
specified by the vorticity distribution function g(o),
which specifies the amount of vorticity at the level o
(e.g., as set by the initial configuration).

We have described a microcanonical formulation, as
would be used in predicting final long-time averages from
a given initial state. The inverse temperature S simply
plays the role of a Lagrange multiplier. It turns out that,
for nontrivial solutions, 8 is often negative and always so
in the case of vanishing net vorticity. (This latter result
depends only on very weak assumptions about the regu-
larity of the initial vorticity field.) Thus if we consider a
canonical formulation we must consider equilibrium with
a “heat bath” at negative temperatures. In particular, we
cannot allow equilibrium with the molecular degrees of
freedom, which are always at positive temperatures, as,
for example, mediated by viscosity in a real fluid. There
are certain results of this theory that will be discussed in
more detail below, but which are at first sight counterin-
tuitive and therefore worth a preliminary discussion.

There are no fluctuations at any physical length scale
in the statistical equilibrium: Mean-field theory is exact.
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The long-time solutions are steady (except for symmetry-
related dynamics such as uniform rotation about the an-
nulus) and in particular are nonchaotic. In addition, al-
though the infinite number of conserved quantities play a
crucial role in constructing the theory, integrals of the
powers of vorticity measured on any physical scale [i.e.,
as determined by (5.6)—(5.8)] will not be the same as in
the initial state. [We discuss this phenomenon in terms
of a “bare” vorticity distribution g(o) and a “dressed”
vorticity distribution g;(o) in Sec. VD.] This surprising
result appears entirely natural when the dynamic evolu-
tion from a smooth initial condition is considered. It is
well known that the flow becomes highly filamented, with
regions of high and low vorticity becoming intertwined
on finer and finer length scales as time proceeds. On
these fine scales the integrals of powers of the vorticity
are indeed conserved; however if the fine scales are aver-
aged over before the powers are taken, then the conserva-
tion laws will apparently be violated. In the asymptotic
long-time limit that the statistical theory addresses, the
mixing scales have become arbitrarily fine, and quantities
defined on any physical length scale will show this viola-
tion. It should be remarked in particular that the conser-
vation of enstrophy too is apparently violated: using this
conservation as a diagnostic of good numerical conver-
gence in a long-time evolution may not be appropriate.

There are two major assumptions in our work. The
first is that we only consider initial vorticity distributions
which are sufficiently regular: this leads to the prediction
of asymptotic statistical states that are free of fluctua-
tions. This assumption does not seem much of a restric-
tion in the microcanonical formulation aiming at the
long-time asymptotics from a smooth initial condition.
We cannot, however, rule out more dynamic, and there-
fore perhaps more interesting, statistical states, perhaps
corresponding to positive temperatures, if this regularity
constraint is violated.

The second assumption, which is harder to justify in
detail, is the assumption of ergodicity, i.e., we construct
the averages assuming the fluid samples all configurations
restricted only by the conserved quantities. Ergodicity is
hard to justify in any interesting physical system, and is
usually assumed without comment. The assumption may
be riskier in the present case since the infinite number of
conserved quantities may be imagined to place severe
constraints on the passage between allowed regions of
phase space. The justification of this assumption will
have to rest on future comparisons with experiment and
simulation. Certainly if the initial condition leads to a
strongly dynamic state with the mixing of the vorticity as
described above, one might hope that ergodicity would be
well approximated. On the other hand, we would not be
surprised if very special, highly symmetric initial condi-
tions yield nonergodic dynamics even if weakly per-
turbed. The Kida solution of an oscillating elliptical vor-
tex, if indeed stable, as has been suggested [18] may be
just such an example.

The outline of the paper is as follows. After we remind
the reader of some basic properties of Euler flow in Sec.
II, we argue in Sec. III that earlier attempts at a
comprehensive statistical mechanics for the two-



2330

dimensional inviscid fluid have been unsuccessful. These
failures originate primarily in the mistreatment of the
infinite family of conserved quantities of Euler flow.
Much of this section is of interest mainly to experts, and
may be omitted on a first reading. Section IV lays out the
computation that needs to be done, in a manner that
highlights the role of the conserved quantities. In Sec. V
we present two different methods for deriving the mean-
field equations that equilibrium configurations of the fluid
must satisfy, and we prove the ‘“‘dressed-vorticity corol-
lary.” In Sec. VI we solve some illustrative special cases
of the mean-field equations, as well as rederiving the
Lynden-Bell theory of star clusters which antedates our
own statistical mechanics. We also point out the connec-
tion to the Debye-Hiickel theory of electrolytes. We dis-
cuss the physical content of these theories in Sec. VII. In
Appendix A we outline a recent development: the possi-
bility of defining a series of lattice Euler flows with an ar-
bitrary large, but finite, number of conserved quantities.
Although these models do not have a simply analyzable
statistical mechanics, they may be important for numeri-
cal simulations. In Appendix B we summarize our pre-
liminary attempts at a numerical solution of the mean-
field equations, with the eventual aim of detailed com-
parison with dynamical simulations, such as those of
Marcus [6].

The major results of this work have been published in a
Letter [9]. Here we present full derivations and some nu-
merical comparisons.

II. PRIMER ON THE IDEAL FLUID
IN TWO DIMENSIONS

In this section we collect a few standard facts about
Euler flow in two dimensions, to which we shall refer re-
peatedly in the ensuing text. A transparent derivation of
the properties of Euler flow may be found in Ref. [1].

A. Notation

The two-dimensional velocity field is denoted by u(r):
the (scalar) vorticity field w(r) is defined as

o=VXu=09,u,—0d,u, . 2.1

We label by Q the region containing the fluid; p is the
pressure, p the density.

B. Euler equation

Following Landau and Lifshitz [11] we observe that in
a coordinate system comoving with an (infinitesimal) fluid
element v, the force on the fluid element is given by

—$. pds=— [ vpdv,

where dv is the boundary of v, so that Newton’s equation
reads

(2.2)

(2.3)

where D /Dt denotes a covariant (convective, material)
derivative. In a stationary coordinate system, the covari-
ant derivative may be rewritten to obtain Euler’s equa-
tion
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Du _ du
Dt ot

When we require the density p to be constant, the equa-
tion for mass conservation

+(u-V)u=-—%Vp . 2.4)

§£+V-pu=0

2.
Y (2.5)
entails the incompressibility condition

V-u=0, (2.6)

which will be taken for granted in the remainder of our
work.

Taking the curl of Euler’s equation (2.4) and using the
incompressibility condition, we readily obtain in two di-
mensions

Dw _ dw

—_— =4 . =0 .

Dr a1 (u-V)w
That is, the convective derivative of the vorticity van-
ishes. In two dimensions (2.7) is entirely equivalent to
(2.4) and (2.6) (see below).

(2.7)

C. Stream function

The vanishing of V-u in two dimensions entails the ex-
istence of a scalar function (the stream function) ¥(r)
such that

u=VX¢=(3,%,—d,9) 2.8)

and consequently w(r)= —V%)(r).

D. Conserved quantities

For any closed path d7(7) moving with the fluid in time
t, and whose interior 7 is contained in the fluid, the circu-
lation

r= §an<z)u'dl - fn(,)“’ d’r

is conserved by Euler flow. In fact, in two dimensions,
given any function f(w) of the vorticity field, the quanti-
ty f T,(t)f(a)(r))d?‘r is conserved by the flow:

(2.9)

da 2

L)

a1 +u-Vo

=0. (2.10

=[ dxf(w)
7(t)

If we take f(w)=w?, the corresponding integral invariant
is called the “enstrophy,” a term apparently originating
in Ref. [12].

E. Boundary conditions

Ordinarily, we shall assume rigid boundaries: that is, u
is assumed to be tangent to the boundary 9{) of a bound-
ed planar region 1 containing the fluid. When €
possesses n holes, we may define the quantities I',, to be
the circulations around each of these holes. We observe
[13] that together w(r) and Ty, ..., I, uniquely deter-
mine the velocity field u.
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III. REVIEW OF STATISTICAL MECHANICS
OF THE TWO-DIMENSIONAL FLUID

A. Introduction

Our discussion throughout will be confined to the two-
dimensional Newtonian fluid. The Navier-Stokes equa-
tions for an incompressible fluid

P

%%-Hu-V)u ] =—Vp+vVa,

(3.1
V-u=0

are thought to be a valid description of a viscous fluid in
a variety of physical regimes. We shall not discuss when
and why the two-dimensional fluid is a good physical
model for fluids in a three-dimensional world. We refer
the reader to the text by Pedlosky [14] for a justification
of the two-dimensional model. We remark only that a
variety of laboratory and geophysical flows display essen-
tially two-dimensional behavior, a nearly invariant prere-
quisite for which is rotation of the plane containing the
fluid about the perpendicular axis. The well-known
Taylor-Proudman column (see, e.g., Ref. [15]) graphically
illustrates this kind of phenomenon in the laboratory;
planetary atmospheres provide a geophysical setting.
The elimination of the third dimension entails several
consecutive approximations, and one must maintain care-
ful control of the time and length scales that one wishes
to describe.

Similar attention to time and length scales is needed to
justify the additional approximation of discarding the
viscous term in the Navier-Stokes equation to derive the
Euler equations, which in two dimensions take the form
2.7

§= —(u-Vo ,

V-u=0.

(3.2)

Later on, we shall give an informal argument that the
physics of certain flows may permit us to neglect the
effect of viscosity on length scales of interest. For the
bulk of our work, we shall simply assume that the physics
is described by the inviscid Euler equations in two dimen-
sions, (3.2).

B. The Onsager theory of negative temperature states

Onsager [1] was the first to attempt construction of a
statistical mechanics for the two-dimensional fluid. Since
subsequent papers refer to this one with hardly an excep-
tion, we discuss the ideas contained in his paper in detail.

Onsager wants to explain the generic occurrence of
large isolated vortices in unsteady flow. He begins by re-
stricting himself to a subset of Euler flows: those that
can be described by a system of point vortices. The
point-vortex system consists of a linear superposition of
point sources of vorticity,

o(r)=Fw;8(r—r;) . (3.3)
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Writing V2(r)=—wd(r—r,) for a single point
vortex with vorticity ®, located at r, we obtain
Y(r)=w,9(r,1y). Here 9(r,1,) is the Green’s function for
the Laplacian on the region containing the fluid, and its
form depends on the boundary conditions. For example,
free boundary conditions yield a logarithmic potential

1
9(r,1y)= ——z;ln(lr—rol/Ro) ,

where R, is an arbitrary constant with dimensions of
length. Obviously, 9(r,ry) corresponds to the potential
at r due to a vortex at 1y,

The potential of a point vortex is finite at any finite dis-
tance from the source. There exists no a priori bound on
how closely two point vortices may approach each other.

It had been observed much earlier that the equations of
motion of a superposition of N point vortices can be de-
rived from a Hamiltonian [16]. It is precisely this feature
that leads Onsager to restrict himself to the special case
of point vortices. Without a Hamiltonian, it is not obvi-
ous how to construct a statistical mechanics; once one
has a Hamiltonian, no choice in that construction
remains (see Sec. IV for details).

The Hamiltonian is

ﬂ=%2a),mj9(r,,rj)
iJj

i#j

(3.4)

and the equations of motion are derived by regarding the

two components of the position vector of each vortex as

conjugate variables,
dr;

w; ‘E— =V,; X .
Notice that phase space coincides with configuration
space. Using Onsager’s notation, we write the volume of
phase space near some configuration

(3.5)

dQ=dxdy, - -dxydyy . (3.6)
If we demand that the fluid be contained in some com-
pact region of space, we see that f dQ, the total volume
of phase space, is finite.

The boundedness of phase space has a peculiar conse-
quence. Ordinarily, we expect that, as a function of ener-
gy, the volume of phase space available to a system,
Q(E), increases exponentially [17]. But here, the finite
phase volume precludes this alternative, and the possibili-
ty exists that the volume of phase space available to the
system could decrease as we increase the energy. Put
another way, if we take the entropy at some system ener-
gy to be given by S=In{)(E), then, above some energy
E,,, the quantity dS /dE, which is formally equal to the
inverse of the temperature T, may be negative. In this re-
gime the energy is so high that vortices, with the same
sign, cluster together, and vortices with opposite signs re-
pel. The equilibrium consists of two isolated clusters of
vortices. For a finite number N of point vortices in a
bounded volume this is indeed what happens.

Addition of the usual kinetic momentum term p2/2m
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to the Hamiltonian (3.4) would eliminate the negative-
temperature regime. The total phase volume would no
longer be finite, and the momentum degrees of freedom
could accommodate any energy. Microscopic degrees of
freedom, for example, are usually (with the exception of
spin systems) described by a Hamiltonian with a kinetic
momentum, and cannot take on negative temperature.
These remarks emphasize a basic feature of Onsager’s
theory for macroscopic vortices in fluids: the fluid sys-
tem at negative temperature cannot be in equilibrium
with molecular degrees of freedom. Negative tempera-
tures are higher than any positive temperature and a
negative-temperature system, on being placed in thermal
contact with an ordinary positive-temperature heat bath,
will dump energy into the bath.

While this analysis does encompass the essential phys-
ics of the problem, Onsager remarks that it cannot apply
quantitatively to many flows of physical interest. Flows
such as those in the model for the Red Spot discussed
earlier involve continuous distributions of vorticity. But
how to approximate a continuous distribution of vorticity
by means of point vortices is not obvious, and in fact,
generally not possible. One way to comprehend the
difficulty is to look at quantities conserved by Euler flow.
Consider, for example, the integral of any finite power of
the vorticity. For a vorticity field consisting of point
sources, these integrals involve powers of d functions and
are therefore singular. Yet in typical physical models the
vorticity field has perfectly well-defined moments, to
which we ought to be able to assign any consistent set of
values.

C. Subsequent approaches

A direct approach to the statistical mechanics of a con-
tinuous vorticity field is taken by Lee [18]. In his statisti-
cal field theory, the only conserved quantity is the energy.
Rewriting the Euler equations in Fourier space, he ob-
tains a Liouville theorem

Sy

0 3.7
ka ’ ( )

implying incompressible flow in the spectrally decom-
posed phase space. Lee’s derivation applies in any di-
mension; in Sec. IV we will give an argument specific to
the 2D Euler fluid. The Liouville equation is crucial to
the statistical treatment since it determines the measure
on our phase space. Imposing only energy conservation
at finite temperature, Lee finds an energy spectrum of the
form E (k)x<k, which is ultraviolet divergent. He im-
poses an ultraviolet momentum cutoff to obtain a finite
energy. Lee remarks that, in two dimensions, conserva-
tion laws preclude simple (i.e., conservation of energy
alone) ergodic behavior, and in consequence he restricts
himself to three dimensions.

As an aside we remark that an analogous problem in-
volving an infinite set of constants of motion was stated
and solved contemporaneously by Lynden-Bell [19] in the
context of stellar dynamics. We shall discuss this work in
Secs. VI and VII. The connection to Euler’s equation
was apparently not realized prior to the present work.
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Kraichnan [3] constructs a statistical mechanics by
keeping as his conserved quantities not only the energy E
but also the enstrophy 2. He truncates the Fourier rep-
resentation of the Euler equations to obtain a truncated
dynamics which explicitly conserves these quantities, and
for which a Liouville theorem holds in the remaining
finite number of spectral variables [2,20]. Since both the
energy and the enstrophy are quadratic in the stream
function, this field theory is Gaussian. By the standard
procedure he obtains an equilibrium spectrum of the
form

E(k)=1/(Bk*+a) ,

(3.8)
Q(k)=k*/(Bk*+a) ,

where a and 3 are inverse temperatures conjugate to the
energy and the enstrophy, respectively. As in the theory
that exclusively conserves energy, we need a large
momentum cutoff at any finite temperature. We refer to
this theory that conserves only energy and enstrophy as
the energy-enstrophy theory.

Kraichnan justifies the elimination of constants of
motion other than the energy and enstrophy on grounds
that the cutoff dynamics conserve only quadratic con-
stants of motion. Agreement with point-vortex theory is
also deduced (we shall show below that this correspon-
dence may only be justified in a very limited regime). The
reader will find additional supporting arguments of an in-
formal nature in an article by Kraichnan [20]. The trun-
cated dynamics, when used properly, is claimed to be
faithful to both inviscid and viscous fluids in statistical
equilibrium.

Within the context of the 1967 theory, the energy-
enstrophy theory contains three parameters: a momen-
tum cutoff, a temperature conjugate to the energy, and a
temperature conjugate to the enstrophy. Each of these
quantities is to be finite. If we take the limit of infinite
momentum cutoff with the remaining two parameters
finite, we deduce easily from (3.8) that the energy
diverges logarithmically, and the enstrophy quadratically
with the cutoff. In order to treat the continuum limit,
without artificial cutoffs, finiteness of a and 3 must be re-
laxed. Kraichnan [20] and Basdevant and Sadourny [21]
point out that by choosing the following scaling for the
energy and enstrophy temperatures one can obtain finite
values for the energy and enstrophy in the (continuum)
limit of infinite momentum cutoff k,,

B—mk2 /29,

a/B——k}+klexp(—kLE/Q),
where k is an infrared momentum cutoff determined by
the finite system size. Note that this scaling is only possi-
ble at negative values of the inverse energy temperature
a. We will obtain these sorts of scalings as a consequence
of our general theory as well: see Secs. V and V1.

A dynamical simulation by Deem and Zabusky [22] eli-
cited a spurt of publications in which the predictions of
the energy-enstrophy theory are compared with results of
dynamical simulation. The comparison is generally quite
favorable. We mention two examples. Fox and Orszag
[23] test by means of numerical simulation an explanation

(3.9
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of the Deem and Zabusky results in terms of the energy-
enstrophy theory. They find general agreement with the
theory, except for substantial deviations at low and high
wave numbers, which they attribute either to insufficient
relaxation time or to the effect of additional constants of
the motion. The computational technology of fluid simu-
lation has evolved in the last 20 years, and the extent to
which numerical simulation by present standards would
validate these results is unclear. Basdevant and Sadourny
[21] confirm the energy-enstrophy theory for the truncat-
ed dynamics by means of an Arakawa code, which explic-
itly conserves energy and enstrophy. These latter authors
emphasize that the energy-enstrophy theory ought only
to apply to the truncated dynamics and not to the full
inviscid dynamics.

D. Mean-field theory and random-phase approximation
for the point-vortex limit

In the mid 1970s a large number of authors derived
and studied mean-field equations for the equilibrium
configuration of a system of point vortices [24-32].
Lundgren and Pointin [26,27], for example, derive two
limits of the point-vortex system as N, the number of vor-
tices, diverges. The two limits are distinguished by the
scaling of the energy with N. In the “low-energy limit,”
the energy scales as the number of vortices, whereas in
the “high-energy limit,” the energy scales as the square
of the number of vortices.

For ease of discussion in what follows, we consider
only systems with vanishing total vorticity, except where
otherwise noted.

The low-energy limit can apply only at positive tem-
peratures, for reasons that emerge below, and entails an
extensive thermodynamic scaling: for nontrivial results
we require the density to be constant in the limit of large
N, with energy proportional to N. This regime corre-
sponds to the neutral two-dimensional Coulomb gas, to
which the standard thermodynamic prescription may be
applied (see also Sec. II1 E).

The high-energy limit obtains at negative temperatures
for neutral systems (for non-neutral systems the high-
energy limit is also correct at positive temperatures and
the low-energy limit is trivial). For the high-energy limit
to be valid, the area of the system is best thought of as
remaining finite in the absence of additional constraints
on the phase space, such as angular momentum conserva-
tion [26]. In the high-energy limit, the area of the system
remains constant and the density of vortices diverges as
N, with energy proportional to N2. Furthermore, be-
cause the high-energy limit is not extensive, the tempera-
ture must be scaled as 1/N to yield a nontrivial equilibri-
um. One can derive a mean-field equation for the spatial
distribution of vorticity as N — «,

o(r)=—V%

= _ -1
=exp(—4/T) [ d’rexp(—4/T)] ", (.10
where T denotes the scaled temperature. This equation
has been deduced by a number of authors, using a variety
of approximations. Lundgren and Pointin [27] claim to
derive it rigorously, but a truncation of the frequency
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spectrum at the very beginning of their argument de-
pends on an unproven assumption that two particular
limits commute. On the other hand, we expect that (3.10)
is nevertheless valid in some limits (see Sec. VI).

Using numerical methods, many authors went on to
compare the long-time dynamics of point vortices with
the predictions of this statistical-mechanical theory of
point vortices. They obtain good agreement between the
long-time spatial distribution of vortices in dynamical
simulations and the equilibrium vortex-density profiles
calculated from Eq. (3.10). We draw attention in particu-
lar to Refs. [24,26,31,33]). Aref and Siggia [33] study
long-time dynamics of point vortices in a shear layer.

In calculating the vortex-density response function in
the low-energy limit, Lundgren and Pointin [27] use an
approximation introduced by Edwards [34] in a calcula-
tion of the properties of a neutral plasma at (finite) posi-
tive temperature. Edwards approximates the Jacobian in
a change of variables from particle to collective coordi-
nates, and is emulated by Edwards and Taylor [35],
Seyler [36,37], Seyler et al. [38], Taylor (39], Taylor and
McNamara [40],[41] and others in treatments of the 2D
plasma. The approximation, which they call the
random-phase approximation (RPA), is equivalent to that
of Pines and Bohm [42]. The RPA is a well-understood
perturbative tool which has been used in a variety of
physical contexts [43]. In the particular case of particles
with a Coulomb interaction, the RPA is only valid in a
screened phase, where the number of particles within a
Debye screening length, AD=(27re2n /T)" 12 of one
another is large (e is the charge of a particle; n is the par-
ticle density). Under these conditions, charge fluctua-
tions around the mean charge density are small, justifying
a perturbative treatment. A linear-response calculation
of the density-density correlation yields [42]

(pi?) =nk?/(k*+23) , (3.11)

which is to be compared with the enstrophy spectrum of
the Kraichnan theory, Eq. (3.8). The similarity of Egs.
(3.8) and (3.11) has led several authors to conclude that
the 2D Coulomb gas possesses the same energy spectrum
as the energy-enstrophy theory of the Euler fluid (see
Refs. [44,45,20,37] and the low-energy limit of Ref. [31]);
however, this identification can in fact be made only in
the limited regime in which the RPA is applicable. In
particular, whenever the fluid undergoes macroscopic
charge separation in equilibrium, the RPA breaks down,
and a nonperturbative calculation is required. In the lim-
it of infinite charge density, the energy spectrum obtained
from (3.8) applies only to a homogeneous vorticity field
with no structure on any finite length scale.

E. Rigorous results

We next discuss two mathematical papers that describe
rigorous results on the statistical mechanics of point vor-
tices and Euler flow. Froéhlich and Ruelle [46] prove that
extensive negative-temperature states do not exist in the
point-vortex gas; Benfatto, Picco, and Pulvirente [44]
claim that the statistical mechanics of an Euler fluid is
given by the energy-enstrophy theory. We will argue that
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each of these results, while correct, applies only in re-
gimes with trivial structure at finite length scales. In
both cases, their conclusions depend on using a tempera-
ture that is not appropriately scaled with the number of
degrees of freedom. Their arguments and conclusions
can be completely understood within the context of the
caslici studiesweraveskeiched above.~ ~—--

Frohlich and Ruelle [46] treat a neutral collection of
point vortices on a torus. They wish to prove that there
can be no negative temperatures in the thermodynamic
limit of Onsager’s point-vortex gas. By thermodynamic
limit, they mean the limit in which the volume of the
fluid diverges, while the density and energy per vortex
converge to finite values; the temperature, of course,
remains finite. Whereas Onsager [1] argues that for a
finite collection of vortices there exists an energy at
which dS /dE changes sign from positive to negative,
Frohlich and Ruelle [46] show that this energy itself
diverges as the number of point vortices goes to infinity.
Consequently, a regime where S decreases as a function
of E is unattainable in this particular thermodynamic
limit.

In fact, this limit does not correspond to interesting
solutions in the fluid. This outcome may be attributed in
a simple way to screening. First, let us observe with
Frohlich and Ruelle [46] that the absence of a scale in the
logarithmic potential permits us to rescale the volume of
the fluid to a finite value as N — . So we may just as
well talk about a limit in which the density diverges, but
the energy per vortex remains finite. We understand the
physics of this system very well at positive temperatures:
vorticity fluctuations will be screened, and the long-range
potential becomes effectively short ranged. At infinite
vortex density, the screening length vanishes and the in-
teraction becomes irrelevant. Consequently, this thermo-
dynamic limit yields a vanishing mean vorticity (the sys-
tem being overall neutral) and trivial correlations.

To see this more explicitly, think for a moment of N
positively charged vortices contained in a domain {} and
distributed uniformly in a blob of finite radius. Now,
multiply the number of vortices by some factor 7, and
ask what would be the energy of a blob with precisely the
same relative vortex charge distribution. It is not difficult
to see that the long range of the logarithmic interaction
entails that the energy scales by a factor % If we were
not to rescale the energy, then the N vortices would dis-
tribute themselves more evenly over (: the normalized
amplitude of the blob would decrease. In any mean-field
description, the normalized amplitude of a charge inho-
mogeneity will remain constant only if the energy is scaled
by the square of the number of charges.

On the other hand, if we scale the energy in the
manner suggested by the high-energy limit, that is as N2,
then a new feature emerges. While, at positive tempera-
tures, screening dominates since opposite signs attract, at
negative temperatures where opposite signs repel, the
screening of the long-range potential is suppressed. Mac-
roscopic charge inhomogeneities persist (and are, in fact,
unavoidable) in the limit of large N. As discussed earlier,
the scaling of the temperature as 1/N is corequisite to the
scaling of energy with N2. Frohlich and Ruelle [46] elim-
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inate any possibility for negative temperatures and mac-
roscopic charge inhomogeneities in the thermodynamic
limit by their most basic assumption of the scaling that
constitutes a thermodynamic limit.

Benfatto, Picco, and Pulvirente [44] also predicate
their argument on an unnecessary restriction of the scal-
gy tiaitreypenniv-in tire-ther mrodywamae-iinmt: - These
authors once again treat neutral flow on a torus,
represented by N blobs of vorticity with radius € and
charge =V 0. Their Hamiltonian describes a gas of parti-
cles interacting with a logarithmic potential which is
smoothed over a length of order €, so as to remove the
short-distance logarithmic divergence. They construct a
canonical partition function with inverse temperature a,
where a is a finite quantity that is not scaled with the
number of particles. As N— o at constant V, the radius
and charge squared per vortex scale as e=N"° and
o0 =(27)*/BN, respectively. The quantity & must be
chosen correctly from the interval (0,8/27a). The prin-
cipal result of Benfatto, Picco, and Pulvirente [44] is that
for large N, this system may be described by the energy-
enstrophy partition function, with energy temperature a
and enstrophy temperature 3.

Benfatto, Picco, and Pulvirente [44] assume that both
a and f3 possess finite and positive values. For «a finite,
we expect the vortices to be uncorrelated in the infinite-
density limit. For example, in the case of periodic bound-
ary conditions, it has been shown by Lundgren and Poin-
tin [26,27] that the uncorrelated vortices will have an en-
ergy (contributed by the image charges) diverging as InN,
where we have corrected for the scaling of the charge
used by Benfatto, Picco, and Pulvirente [44]. As we have
observed earlier, the energy-enstrophy partition function
also yields a logarithmically diverging energy for this pa-
rameter range.

In summary, Benfatto, Picco, and Pulvirente [44] have
shown that the low-energy limit coincides with the
energy-enstrophy theory for a neutral vortex gas at posi-
tive temperature in the dense limit. This regime is homo-
geneous, and has no interesting structure at scales on the
order of the system size. Its behavior on scales large
compared with the screening length should be given sim-
ply by a theory that incorporates the energy and particle
number as conserved quantities. For a gas of =1 charged
vortices, the summed square vorticity is sufficient to
determine the latter. Higher-order couplings are expect-
ed to be irrelevant on these scales. Neither Frohlich and
Ruelle [46] nor Benfatto, Picco, and Pulvirente [44] have
anything to say about regimes in which the fluid has non-
trivial structure on length scales larger than the screening
length.

F. Appropriate scaling of the temperature

We now assume that the proper way to use these sta-
tistical methods is to take the limit of an infinite number
of degrees of freedom, and scale the temperature(s) in
such a way as to extract the desired energy (and other
conserved quantities such as enstrophy). This scaling will
fall out, in a natural way, of the full theory presented in
Sec. V. We have seen a special case of it in our discussion
of the point-vortex mean-field theory. We may further il-
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lustrate what is involved using the energy-enstrophy
theory of Kraichnan [3], where Eq. (3.9) constitutes
another example of such a temperature rescaling.

As observed in Sec. III C, we can choose temperatures
a and B so that the energy-enstrophy theory yields any
consistent total energy E and enstrophy Q. Values of Q
are in fact constrained by a choice of value for E. An ele-
mentary variational argument reveals that the minimum
value of Q corresponds to Q. (E)=k3 E, where |k,| is
the system’s smallest wave number.

A body of literature investigates the properties of flows
possessing the minimum value of Q consistent with a
given E. The rationale is a “minimum enstrophy princi-
ple” based on crude arguments about the action of viscos-
ity [47]. We shall not discuss “minimum enstrophy vor-
tices” [48] in any detail here since they do not generalize
to the full theory; however, Carnevale and Frederiksen
[49] point out that these same flows do emerge from the
energy-enstrophy theory in the limit described by Eq.
(3.9): All of the energy resides in the smallest wave num-
ber k; the enstrophy in the smallest wave number is ex-
actly Q,..(E)=k3E; whatever enstrophy is left over sits
at infinite wave number. This partitioning of the enstro-
phy carries an interesting implication: The energy is
sufficient to determine the macroscopic flow completely.
The enstrophy exceeding (,;.(E) disappears completely
from the flow at infinite time, since it drains to
infinitesimal spatial scales at infinite wave number. Con-
sequently, all long-time flows possessing the same energy
must be identical. The dependence of the energy-
enstrophy theory on two parameters is illusory.

There is nothing unsound about a one-parameter
theory; we shall see that the one-parameter theory, which
we derive as a special case of our formalism at the end of
Sec. VI, comprises a crude approximation to the full sta-
tistical mechanics of the two-dimensional inviscid fluid.
The two main lessons to take away from the one-
parameter theory, which are essential ingredients in the
full theory, are the proper choice of the temperature vari-
able that is conjugate to the energy and the fact that
long-time flows may push part of a conserved variable to
infinite wave number, leading to its apparent nonconser-
vation in the macroscopic flow. The latter was alluded to
in Sec. I and will also be discussed in detail in Sec. V.

We have not discussed the following relevant issues,
for the details of which we refer the reader to the litera-
ture.

(1) Dynamical properties of point vortices.

(2) Applications of statistical mechanics to geophysical
flows.

(3) Turbulence. Equilibrium statistical mechanics is
not relevant to turbulent cascades; however, following
Onsager, we do hope that statistical mechanics may yield
a description of turbulent flow on length scales of order
of the system size.

(4) Dynamical simulation of two-dimensional fluids. A
thorough understanding of numerical computation of
inviscid fluid flow, especially with regard to its faithful-
ness to the conservation laws, may be necessary in order
to generate simulations that confirm the predictions of
statistical mechanics.
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IV. STATISTICAL MECHANICS

Our construction of a statistical-mechanical formalism
for the two-dimensional inviscid fluid is a fairly straight-
forward application of completely standard ideas from
statistical thermodynamics. Landau and Lifshitz [17] re-
view these ideas.

In short, we calculate the expectation value of a quan-
tity Q by the following rule: Average Q over all regions
of phase space sharing given fixed values of the conserved
quantities. Underlying this rule is the basic assumption
of statistical mechanics, the ergodic hypothesis, which
postulates that our averaging assigns to each element of
phase space an identical weight.

We dissect this rule into a few discrete steps.

(1) Define phase-space variables so that the dynamics
preserve arbitrary phase-space volumes: phase-space
flow must be incompressible. Since the ergodic hypothesis
ascribes weights in proportion to phase-space volume, the
phase-space flow preserves relative probabilities (weights)
in the chosen variables. Equivalently, we need to choose
variables for which a Liouville theorem holds.

(2) Determine those functions @ of the phase variables
which are conserved by the dynamics. For a typical par-
ticle Hamiltonian, the only such quantities are energy
and total density. Anything we wish to calculate will be
parametrized by these quantities, so we shall fix them to
particular values, €.

(3) Given a quantity Q whose expectation in statistical
equilibrium is required, we calculate its average over all
of the phase space in which the conserved quantities take
their chosen values. In this manner, we arrive at {Q ),
the expectation value of Q in statistical equilibrium.

The recipe we have given is a microcanonical formula-
tion. We might just as well employ a canonical or grand
canonical approach; in the case of interest here it is sim-
plest to think within a microcanonical framework, but
one obtains identical results no matter which of the three
ensembles one chooses. For purposes of calculation, we
shall find the grand canonical point of view most useful.

Statistical mechanics is most often applied to dynamics
that can be derived, at least in some limit, from a Hamil-
tonian. The reason is that (canonical) Hamiltonian dy-
namics manifestly preserves phase-space volumes. The
Liouville theorem follows trivially, almost tautologically,
from the Hamiltonian equations of motion,

ox;  0p;
ox; ap;

In a closed box, the usual many-particle Hamiltonian
H(xy,py, - - ., Xy,Py), With particle coordinates x; and
momenta p;, possesses one conserved quantity, the ener-
gy, which coincides with the scalar value of the (manifest-
ly) conserved quantity H. (We do not allow particles to
enter or leave the box). Given a value of the energy E,,
we may calculate the expectation value of a quantity
Q(x,Py» - - -, Xy,Py) by integrating over all values of
X;,p;» i=1,...,N on the manifold determined by the
constraint Eq=H(X,p;, ..., Xy,Py)-

We follow an analogous recipe for the two-dimensional
inviscid fluid.

25;5;———50. 4.1)
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(1) We choose the phase-space variables w(r) for which
a Liouville theorem, Eq. (3.7), holds. Our phase space
consists of scalar fields defined on the region Q contain-
ing the fluid.

(2) We set the values of quantities conserved by Euler
flow. These quantities comprise the energy, and some
infinite set of scalars which determines the vorticity dis-
tribution. We are now restricted to the scalar fields on Q
which share the fixed values for these quantities.

(3) We integrate over all fields on the manifold deter-
mined by the constraints given in (2).

The main hurdle we face is in setting up the calculation
of (3) in such a way that we can carry it out. Before we
do so, we shall discuss steps (1) and (2) in greater detail.

A. Hamiltonian formulation of inviscid fluid flow

Just as in the discrete-particle case, a Hamiltonian for-
malism may be used to set up our approach to statistical
mechanics. In fact, any explicit use of the Hamiltonian
dynamics for our system seems arguably superfluous.
Lynden-Bell [19] sets up the problem for the collisionless
Boltzmann equation without any explicit recognition that
his equations of motion could be recast in Hamiltonian
form. The feature of the equations of motion, which in
both cases leads immediately to statistical mechanics, is
that they give rise to a phase-space flow that is in-
compressible. That is, one may derive directly from the
equations of motion a Liouville theorem.

Although the Hamiltonian nature of the system is un-
necessary for construction of the statistical mechanics, it
deserves some emphasis for two reasons: first, it under-
lies the well-known, indeed classic, Hamiltonian dynam-
ics of point vortices, in which Onsager’s statistical
mechanics originated; second, it falls under the rubric of
the “noncanonical Hamiltonian formalism” into which a
variety of physical systems have been collected (see, e.g.,
Ref. [13]), each of which is amenable to the statistical-
mechanical program which we are constructing in this
work. These systems, among which are examples of clas-
sical and relativistic dynamics in both two and three
space dimensions, each possess at least one infinite family
of conservation laws. On these grounds we have chosen
merely to outline very briefly the basic features of the
Hamiltonian formalism for ideal fluid mechanics in two
dimensions. A substantial body of literature exists to
which the reader may refer for details.

Underlying the Hamiltonian description is a symmetry
of the physics: the equations of motion in the form (2.3)
are invariant under volume-preserving coordinate
reparameterizations. This invariance, a kind of Newtoni-
an covariance principle known also as “particle-
relabelling symmetry,” can be viewed as a gauge symme-
try, and through Noether’s theorem gives rise to the
infinite set of conservation laws of two-dimensional Euler
flow [50]. These same coordinate transformations, which
constitute the group of volume-preserving diffeo-
morphisms, D, (Q), form the configuration space for
fluid motions. Starting from an arbitrary reference coor-
dinate frame, an element of D, () carries particles in the
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reference frame to a new configuration which may be la-
beled by this group element. Any motion of the fluid is
described by the action of a group element on a
configuration; Arnol’d [51] describes a variational
method to derive the motion of the fluid, which of course
must correspond to the Euler equations.

Rather than discuss Arnol’d’s construction, we shall
follow the (equivalent) route of Marsden and co-workers
(see, e.g., Holm et al. [13]). (We ignore any technicalities
involving boundary conditions, etc.) For arbitrary func-
tions F and G of w we define a Poisson bracket (see also
Appendix A):

8F 5G

[F.G}(0)= [ d’ro(n) 2=, 25t 4.2)

where {f,g},,=(9,/)(3,8)—(3,8)(3,f), the wusual
(canonical) Poisson bracket in the variables x and y. The
Hamiltonian is the kinetic energy of the fluid,

7{=%fd2ru2=%fd2rz//w s
the Poisson bracket of which we take with the field o, as
usual

—={o,H ()}, (4.3)

ot
which by way of an easy calculation yields Euler’s equa-
tions.
In particular, for any integral of the form
Cf=fd2rf(w), the Poisson bracket of C, with any

functional of @ yields zero, implying that these integrals
would be conserved quantities for any Hamiltonian sys-
tem possessing this Poisson bracket. Such quantities are
labeled ““distinguished functionals,” by Olver [52], who
argues that because of their trivial character with respect
to the Poisson bracket, they do not suffice to make the
Hamiltonian system integrable.

Not surprisingly, the Hamiltonian description of point
vortices can be viewed as a special case of this more gen-
eral formulation, as discussed by Marsden and Weinstein
[53].

B. Liouville theorem

Because w is not a canonical coordinate, we have no
conjugate variable with which to write a Liouville equa-
tion in the form (4.1). Nevertheless, as alluded to in Eq.
(3.7), a Liouville theorem may easily be written in terms
of the Fourier components of w. The derivation for 2D
Euler flow is straightforward. Using the stream function
¥ in Fourier space we write

wn)=i3 1, —1 )¢’
' | 4.4)
w(r)=2m2¢merm-r .
m
The equation of motion for @ becomes

d)m: _2” ><ln)wldjm—l 4
i

and differentiation with respect to w, yields
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D

(4.6)
dw,

=2(nXm)¢y_, .

Setting n=m yields the desired result 8 /dw,=0,
which demonstrates precisely the incompressibility of
phase flow in the space of w,’s. Now we observe that the
transformation to real space variables is trivial: it is
merely a linear superposition of w,’s with coefficients
that do not depend on the vorticity field in any way.
Consequently, we shall obtain a factor in the partition
function, corresponding to the determinant of the trans-
formation between real space and Fourier variables.
Since the Fourier transform is an orthogonal transforma-
tion, we obtain from this determinant only a trivial con-
stant which we may ignore.

The conserved quantities make no difference to the
particular volume form we use in the phase space, pro-
vided that we restrict ourselves in the functional integra-
tion to the manifold determined by these same con-
straints. For example, a microcanonical partition func-
tion for a particle Hamiltonian would entail the integral

Z(E)= [ [1dp,dq;8(H(x,,py, . . ., xy,py)—E)  (4.7)

with phase volume form [],dp;dg;. This latter is the
measure on phase space conserved by the Liouville flow,
not the measure on the surface to which the single con-
served quantity, the Hamiltonian, constrains the integra-
tion. This measure may be complicated, depending on
the derivative of H perpendicular to the energy hypersur-
face. In a paralle] manner, we expect a microcanonical
partition function for the Euler equations to take the
form (up to some overall factor accounting for the change
of variables from real space to Fourier space)

Z(E)= [[Ido8(#(w)—E)[8(C(0)=C)),  (4.8)
i J

where J] ; denotes a product over all independent con-
served functions of the vorticity.

It is this partition function (4.8) whose properties we
need to compute. We carry out the necessary computa-
tions, on the grand canonical form of (4.8), in Sec V.

V. DERIVATION OF THE MEAN-FIELD EQUATIONS

In this section we present two derivations of the mean-
field equations. Very similar to that of Lynden-Bell [19],
the first derivation [9] is combinatorial and relies on the
weakness of the divergence in the Coulomb-type interac-
tion between vortices at small distances. On very short
length scales the vortices may be treated as an ideal gas
of hard-core particles, whereas on large length scales the
interaction energetics are determined entirely by the
averaged Coulomb potential of small patches over which
the ideal-gas degrees of freedom have been integrated
out. This separation of length scales is the key to the ex-
actness of mean-field theory. We present the complete
derivation here; a summary may be found in Ref. [9].

A second and more formal derivation may be comfort-
ing to those familiar with the standard mappings and ma-
nipulations used in critical phenomena. The formal de-
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vice is the Kac-Hubbard-Stratanovitch transformation
which allows one to convert the long-range Coulomb in-
teraction into a purely local square-gradient interaction.
The exactness of mean-field theory is a consequence of
the standard wisdom in critical phenomena that interac-
tions of sufficiently long range give rise to mean-field crit-
ical behavior. More precisely, if the interaction in d di-
mensions decays less rapidly than r ~3¢/2, mean-field criti-
cal behavior will result. The Coulomb interaction r2~¢
[In(r) in d =2] clearly satisfies this condition, and decays
so slowly (in fact growing in d =2) that mean-field theory
holds over the entire phase diagram.

Both derivations generalize to higher dimensional
models, Lynden-Bell’s [19] being an example. As will
emerge later, Debye-Hiickel theory of the three-
dimensional plasma [54] is a special case of our theory,
the limit of a dense point-charge distribution.

A. Definitions, conservation laws, and results

To begin with, we write the kinetic energy of the Euler
fluid in terms of the vorticity field

H=1 [ d’lu(r)]?
=—1 [dry(r)V2(r)

=1 [d [ d* o(n)9(r,r (1) (5.1)
where ¥(r) is the (scalar) stream function, u(r)=V X(r)
is the velocity field, and w(r)=V Xu(r)=—V?*(r) is the
vorticity field. The Green’s function $(r,r’) satisfies
—V28(r,r')=8(r—r'), is symmetric in its arguments, and
in each variable satisfies the same boundary conditions
that ¥(r) does, for example y=const at a rigid free-slip
boundary. For free boundary conditions, as appropriate
to an unbounded system, the Green’s function can be
written down explicitly:

r—r'

R,

’

e 1
9(r,r') 21Tln

where R is a reference separation. For an arbitrary vor-
ticity configuration, we have

)= [dr'9r,relr'), (5.2)
the boundary conditions on §(r,r’) ensuring the corre-
sponding ones on ¥(r). For the particular case of period-
ic boundary conditions, we have to be more careful. We
require a uniform, compensating background vorticity in
order to define 9(r,r'). Equivalently, we demand that the
system be neutral: f d*ro(r)=0. The equation for
9(r,r') becomes —V?Q(r,r')=8(r—r')—1/V. The 1/V
term ensures that the left-hand side integrates to zero,
and removes the zeroth-order Fourier component from
the & function. Neutrality ensures that (5.2) still holds.
Next we discuss the conserved quantities of Euler flow.
Incompressibility, V-u=0, has been incorporated
through the existence of the stream function. The energy
was already displayed in Eq. (5.1). We suppose that the
fluid is confined to a bounded domain, so that the net
momentum vanishes. When the region possesses azimu-
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thal symmetry, the angular momentum will be conserved.
Only the component perpendicular to the flow plane is
nonvanishing, and is given by

szndzeru(r)

=—1[ drrem+1 ] rurdl . (5.3
Angular momentum will be conserved only if the
domain has cylindrical symmetry. In that case the last
term has the value R2I'/2 where R is the radius of the
system, and I“=fr=Ru‘dl=fd2ra)(r) is the circula-
tion, which is also a conserved quantity, as we show
below. For an annulus, with inner radius r=R; and
outer radius r =R, things are a bit more complicated.
The last term becomes RI", —R?T;, and the difference
AT =T,—T; arises from a static source of vorticity lo-
cated inside r =R;, which enforces the boundary condi-
tions at the inner radius. Irrespective of angular-
momentum considerations, the circulation around any
impenetrable boundary is a conserved quantity.

One may also consider a boundary that comoves with
the fluid, locally adjusting its shape with the flow so that
no fluid breaches it. Incompressibility entails that any
such boundary encloses a constant area. It follows from
the vanishing of the convective derivative of the vorticity,
Dw/Dt=0, that the circulation around the moving
boundary is also constant in time, leading to an infinite
set of conservation laws. The most convenient way to
parametrize these conservation laws is, for each real
number o, to define the quantity Q,, the region of fluid
on which w <o. The area of this region is conserved by
the flow, and the normalized area

— -1 2
Glo)=V(Q,)/V="; [d*ry(oc—a(r)) (5.4)
is a constant of motion. Here 7(o) is the step function:
n(o)=1 for 0 20, and 1(0)=0 for o <0. Perhaps more
convenient is the derivative

= 4G _

= 5.
do (5.5)

glo) <%fd%&0—whn.
We may interpret g(o)do as the fractional area on
whicho <w=c-+do.

Now the question arises: does the single variable o
suffice to parameterize all relevant conservation laws? At
first glance it might seem that a single variable is inade-
quate. As is well known, a region €, which is connected
at time O remains connected for all time (see, e.g., Arnold
[51]. In principle, two distinct blobs of vorticity cannot
evolve into a single blob, or vice versa, even though we
can easily envision cases where both configurations pos-
sess the same function G(o). Loosely speaking, a full set
of conservation laws ought to specify the number of dis-
tinct disconnected domains into which each set
{o(r)=0} is divided, the topologies of these domains
(simply connected, annular, figure eight, etc.), and the
fractional areas of the domains, only the net area of
which are determined by g(o). The flow will preserve
each of these properties.

It should be observed that conservation of connectivity
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differs from conservation of area integrals g(o') in a basic
way. Up to sets of measure zero, the topological con-
straints do not preclude the vorticity field from taking
any particular spatial configuration we wish to choose.
That is, the set of configurations accessible to the topo-
logically constrained fluid is dense in the set of
configurations available to the unconstrained fluid. A
ring of vorticity can evolve into two widely separated
blobs, provided the topology is preserved by a filament of
vorticity. Since we generally confine ourselves in this dis-
cussion to vorticity fields with a finite maximum vortici-
ty, a fine thread of vorticity can contribute very little to
the dynamics, especially if the dynamics are in fact dom-
inated by structures on much larger scales. In contrast,
the area integrals do affect the accessible vorticity
configurations, essentially by rendering the vorticity field
itself incompressible. When we alter the value of an area
integral, we find that new vorticity fields arise which can-
not necessarily be duplicated by the action of any
volume-preserving diffeomorphism on the original flow.
Of course, through this alteration, vorticity fields also
arise which can be duplicated by an area-preserving
transform. Our statistical average will range over all ac-
cessible vorticity fields, subject to the conservation laws.
Consequently, we neglect the topological laws, which en-
tail no restriction on the vorticity field, but we take into
account explicity the area integrals to the extent that
they in fact constrain the vorticity field.

This basic assumption of our work can be justified by
several lines of physical argument. (1) We are interested
exclusively in long-time properties of the flow. In the
infinite-time limit the fluid will be kneaded on all scales:
infinitely folded and stretched. As stated above a single
connected blob of vorticity can give birth to two (ap-
parently) separated blobs, provided that the two blobs are
in fact joined by a thread of vorticity of infinitesimal
width. The finite maximum of the vorticity suggests that
the thread cannot have a dynamical effect. (2) Topologi-
cal conservation laws of this type exist in other dynami-
cal systems without constraining ergodicity. For exam-
ple, phase-space flow for any Hamiltonian system may be
viewed as the flow of an incompressible fluid of probabili-
ty density [55]. The volume of any closed hypersurface in
phase space is preserved by the flow, although its shape
may change. Nevertheless, phase-space flows can be mix-
ing: the average of the probability density becomes uni-
form in phase space. The topology of the particular
closed hypersurface does not matter. Mixing can be
thought of as a source of macroscopic irreversibility [55]
and is accompanied by a loss of information in the evolu-
tion from microscopic to coarse-grained vorticity distri-
bution, which we discuss later. (3) Point-vortex systems
are subject to these same topological constraints. For
point-vortex systems the area integrals are singular, and
their only effect is to set the relative numbers of vortices
carrying given charges. The area integrals no longer
prevent adjacent vortices from approaching each other
arbitrarily closely, so that the point-vortex gas is
compressible; nevertheless, point vortices yield a
divergence-free velocity field, and any curves we draw in
the fluid must maintain their connectivities. But the er-
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godicity of a system of point vortices has been amply
demonstrated by a number of authors [24,26,31,33].
These authors find that dynamical simulation of systems
of point vortices confirms the predictions of statistical-
equilibrium theory. Kraichnan [3] has also argued that
the topological constraints have no effect on the flow at
long times. In contrast to conservation of connectivity,
the conservation of g(o) affects the fluid motion in a fun-
damental way.

The result of the statistical mechanics, derived in Secs.
V B and V C is that the statistical averages are completely
dominated by a single macroscopic configuration (i.e.,
mean-field theory is exact). This configuration is con-
veniently represented in terms of a function n,(r,o), the
local (but coarse-grained) density of vorticity with value
o. The we find n is determined self-consistently as

exp( —B{o[Yy(r)—h(r)]—ula)})
[ 7 do'exp(—B{o’[¢(r)—h(r)]—pla")})
(5.6)

nyl(r,o)=

where the stream function y(r), with accompanying vor-
ticity wy(r), is determined by n,

—Vr)=wyr)= [ doony(r,0) . (5.7)
In Eq. (5.6) the Lagrange multiplier function u(o) en-
forces, and is determined by, the g(o) constraint

g(a)=ind2rn0(r,a) , (5.8)

and f is determined by fixing the energy
E=—1[d% ogr)y(r) .

The field A (r) may include external potentials coupling to
the vorticity field via

AH=— [d’th(D)o(r) (5.9)

such as might come, for example, from a Coriolis force,
and also additional Lagrange multiplier terms to enforce
any additional constraints due to the symmetry of the
system such as angular-momentum conservation. Note
that to solve equations (5.6) and (5.7) we must solve a sin-
gle spatial partial-integro-differential equation for ,(r),
but depending parametrically on a function determined
by functional constraints. These full equations are cer-
tainly quite complicated. Some simple special cases de-
scribed in Sec. VI may make their content more ap-
parent.

We now proceed to the derivation of these equations.
Results and consequences are taken up again in Sec. VI.

B. Combinatorial derivation

As discussed above we derive the equilibrium statistics
under the assumption that, at most, H, L, and g(o) need
to be explicitly accounted for. For counting purposes we
discretize space into a lattice with spacing a, and perform
calculations with fixed a. We shall eventually take the
limit @ —0. Convergence is more or less ensured by the
softness of the Coulomb interaction at short distances.
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More explicitly, we define the coarse-grained vorticity
field
_1 2

wi_?fﬁid T o(r) (5.10)
where B, denotes the lattice square centered at r;. The
lattice clearly breaks (local) Galilean invariance, so an as-
sociated discrete dynamics can probably not be realized.
We are investigating discretizations that preserve Galile-
an invariance, but we expect them to yield the same equi-
librium statistics (see Appendix A). The discrete static
energy is perfectly well defined,

-7{a=%a4zgijwiwj . (5.11)
iJj

The matrix §;; is the inverse of the discrete Laplacian

*z(gi‘{'r,j_gi,j):sij ’ (5.12)
NNy

where NN stands for nearest neighbors. We need to
choose a scale R, which sets the value of §,,. A stan-
dard choice is to take §,,=0, which corresponds to
R,/a equal to a particular fixed constant [56], but we
shall later require that R, be of the order of the system
size, independent of a as a —0 [see the discussion follow-
ing (5.49)]. Appropriate boundary conditions should be
imposed as well.

The canonical statistical configuration average is also
well defined and consists of a sum over all permutations
of the N =V /a? boxes, in which we regard boxes possess-
ing the same vorticity o as indistinguishable. The permu-
tations are weighted by the Gibbs factor e ~* ¢, where
B, =1/T, sets the average energy. We shall see later that
T, must scale with a. This prescription obviously
respects conservation of the function g(o)=N,/N,
which merely counts N, the number of squares with vor-
ticity o.

In order to carry out the configuration sum, we take
advantage of the separation of scales alluded to earlier.
We need to alter the discretization slightly: we discretize
the field o(r) on a finer scale than the matrix $(r,r’). In
other words, we satisfy (5.12), but allow the indices i,j to
run over a lattice with spacing / >>a. We define

Hia=7a 42 9ij@ia;p
ap

where the Greek indices run over the (I /a)? a cells within
each [/ cell, which is labeled by Latin indices. In what fol-
lows we shall consider the limit a —0 for fixed I, then
take / —0 in the end. Since 9;; is well behaved for small
|i —j|, this procedure should yield the correct continuum
limit, so long as the bulk correlations are much larger
than /.

Equation (5.13) is constructed in such a way that per-
mutations of the w’s within a given / cell do not affect the
energy. We may perform the sum over this restricted set
of permutations explicitly. In order to control the limit-
ing procedure properly, the allowed values of the vortici-
ty must be discretized as well. A convenient way to do
this is to partition the range [0,1] of G (o) into p; uniform

(5.13)
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intervals of width A;=1/p;, which will vanish when
I —0. For small A, this corresponds to a partitioning of
the o axis into intervals o, <o <o, +Aog,, where
G(o,)=kA, and g(o,)Ao,=A; with k=0,1,...,p,.
Strictly speaking, we must assume here that g(o) has
compact support; otherwise Ao, and AUP/ could be
infinite [ie., G Y0)=— o and/or G (1)=+w]. If
g(o) decays to zero sufficiently rapidly, we could relax
this condition, and allow the support of g(o) to diverge
at the same time that /—0. We shall have more to say
about what happens when g(o) does not decay
sufficiently rapidly later—this condition obtains for point
vortices.

We now introduce the following notation. Let
N =V /a? be the number of a cells and M=V /I*=N /n
be the number of / cells. Let v;(0;) be the number of
a cells in I-cell i with vorticity o,;, and let
vi(o,)=3,v;(0,) be the total number of a cells with
vorticity o,. Note that 3,v;,(g,)=n, 3,vi(o,)=N,
and that

vi(o)/N=A,=g(o,)A0, . (5.14)

The last equality holds generally, even when the intervals
A, are not independent of k. The average vorticity in I-
cell i is
. _ 1 1
0;=— 0, vi(o)=—Fw, . (5.15)
n< n<
The energy (5.13) remains constant so long as the @; are
fixed throughout. We now examine the combinatorial
factor that results from distributing vorticity in all possi-
ble ways for given values of {v;(0,)}. This factor is
given by

W[{'Vi(o'k) (5.16)

_ n!
} I:I Iivitor )’
which represents the number of ways of distributing each
v;(0; ) among the n a cells in I-cell i. The total partition
function is

~ [vi(o)}

Z[g]=tr _Eaﬂl,ai"i(ak)]

[Wi{vi(oy)}e 1, (5.17)

where the trace is over all distinct ways of assigning the
{v;(0,)} with fixed {vT(o)] given by (5.14).

We must be careful to normalize the trace correctly.
The Liouville theorem implies that the correct
configuration sum should have uniform measure in the
space of fields w(r), or, on a lattice, in the space of the
;.. Before discretizing g(o ), the trace is defined by

(@) o 1
tr = do,,— ,
gf_m e

where g, is a reference vorticity needed to make Z di-
mensionless. Upon discretizing g(o ) this becomes

(5.18)

{ } P AO’k
w1 5
ihak=1 90
Aoy |Vo%)

) (5.19)
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where the sum is now over the discrete values
0;,€ {0 }4 =;. It is understood that appropriate 8 func-
tions should be introduced in (5.18) and (5.19) to preserve
the conservation laws. In (5.19) they take the form

A(v,g )= l]_(IavT(ak )’21"’,'(‘71( )I;[Sn,zkvi(ok) ’ (5.20)
where we remind you that v;,(c,)=3,6, .o, Our final
expression for the partition function then becomes

T
) Ao vilo,)
Z(g) =t | =%
k d0
X W {v,(o;)}Alv,g)e P | (521

in which the trace is now a free sum over all
0=wv;(o;)=n. Itis easy to check that when #=0, (5.21)
yields the expected hard-core ideal-gas result

N!
AG’k
90

Z(g, H=0)= (5.22)

—vrloy)

IT

k

vrlo )

Using Stirling’s formula m !~V 27m (m /e )™, which is
valid for large m, we may further evaluate (5.21). Define
the I-scale entropy by

T,
AO’k viloy,)
Sl=1n H WI{'V,'(O'[()} . (523)
k 90
We obtain
AO’k
S[=2VT(O'k )ln +Nln(n)

k 90

(5.24)

—Svilo)In[v,(o,)]+O[In(N)] .
ik

On defining n;(o,)Ac, =v;(0;)/n, and dropping terms
of O[In(N)], (5.24) becomes

Acrk
S = —NETni(ak)ln[qon,-(ak)]
ik

——»—Nfdzrfda n(r,o)ln[gyn(r,0)] as n—o .
(5.25)

Similarly, the logarithm of Eq. (5.22) has the continuum
limit

S(#=0)——N [dog(o)in[geg(a)], (5.26)

where we have used Eq. (5.14). The field

2
n(r,0)=f ﬂ5(<r—co(r)) R

lcellatr 12

which represents the fine-grained number density of vor-
ticity o at r, obeys the two constraints
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fda n(r,o)=1,
1 (5.27)
Vfdzrn(r,0)=g(a) ,

representing incompressibility and the conservation laws,
respectively. The coarse-grained vorticity at r is

a(r)= [do on(r,0) (5.28)

so that the Hamiltonian reads
?[—»%fdzrfdzr’fdcrfda'an(r,o)o’n(r’,a’)
X Q(r,r’) , (5.29)

as n— . We now make the key observation which
leads to the scaling of the temperature with a, and to
mean-field theory: the coarse-grained entropy S; diverges
as VN=V¥?2/a* and it is extensive relative to a in the
sense that it is proportional to the number of a latticcle

—N

Z(g )=A}im trexp

lVfd2rfdan(r,a>1n[q0n(r,a)]+(/§/2V)fdzrfdzr'a(rm(r')g(r,r')’

2341

sites. Extensivity ordinarily refers to scaling with the
volume V'=V(Q); however, we are interested in the limit
N — o, V=const. The energy (5.29) is finite as a —0,
scaling only with V(Q), but as we shall see shortly, not
linearly. Clearly, if B, is independent of a in (5.17), the
entropy will completely dominate the energy, (5.26) will
ensue for any ¥, and vorticity will be distributed uni-
formly without structure over the entire system. In order
to have competition between energy and entropy, leading
to nontrivial flows, both terms must be of the same order.
This condition entails the scaling
B,=B/a*=T,=Ta? (5.30)
where B remains fixed as a —0. The combination B, %,
then scales as ¥”/a?, where the value of the exponent p
will be addressed below.
Returning now to (5.25), (5.29), and (5.17), the parti-
tion function reads

, (5.31)

where the trace is over all fields n(r,o) subject to (5.27). It is now clear why mean-field theory is valid: in the limit
N — oo the trace will pick out the minimum of the quantity in large parentheses. The average of the field n(r,o ), which
we denote by ny(r,o), is then determined by minimizing the functional

—Llnz=g[n]=ﬁl;fd2rfdan(r,ann[qon(r,a)]+(1/2V)fdzrfdzr'a(r)a(r')g(r,r')

B.V

subject to (5.27). In order to derive a differential equation
from (5.32) we use Lagrange multipliers to enforce the
constraints. (We could also at this stage include, for ex-
ample, conservation of angular momentum in an axisym-
metric situation and external potentials.) Define

9[n,,u,7»]=7[n]—fdop(o)fdzriyn(r,a)

1
—Jdtun [donro),  (533)

where the constraints (5.27) determine p(o) and A(r).
The required differential equation is obtained by
differentiating (5.33) freely with respect to n(r,o) and
setting it equal to zero

8F

dn(r,o) =0=In[gon,(r,0)]+1

+Ef dr'owy(r')9(r,r')

—Blulo)+Ar)], (5.34)

where wy(r)=({w(r))= [do ony(r,0) is the equilibrium
vorticity field. Define the equilibrium stream function

Yo(r)= [ d%r' 9(r,r" )ay(r’) (5.35)

which, since (5.35) is a linear relationship, is just the aver-
age ((r)). We then have

gono(r,0)=exp[ —1+Bulc)+BA(r)—Bay(r)] .

The function A(r) may be immediately eliminated by in-

(5.36)

(5.32)

|

tegrating both sides over o,

exp(—k(r)ﬁ+l)=qudoexp{ —Bloyy(r)—ulo)l}
0

(5.37)

so that

exp{ —Bloy(r)—ulo)]}
[ do'exp{ —Blo"Yo(r)—p(a")])

which corresponds to (5.6), although the one-body field
h(r) has been left out for simplicity. A differential equa-
tion for y4(r) may be obtained by multiplying both sides
of (5.38) by o and integrating, leading to Eq. (5.7), and
the function p(o) is determined by integrating (5.38) over
all space, leading to Eq. (5.8).

Not only is the temperature appearing in Eq. (5.38)
scaled with the cutoff, it also is often negative in physical
situations. In fact for total vorticity zero (neutral system)
the only nontrivial Euler states are necessarily described
by negative temperatures. To see this consider the neu-
tral lattice Coulomb gas at positive temperature T, de-
scribed by the Hamiltonian #, in (5.11), but without the
a* prefactor,

no(r,o)= , (5.38)

— 1
‘7{Coul= TE g,]a),wj N
ij

(5.39)
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This system is well understood. Its average energy scales
linearly with N, the number of lattice sites. The low-
temperature phase consists of tightly bound, oppositely
charged dipole pairs (we consider the two-species case
;= *q or O for simplicity.) There is a transition at finite
temperature T, (the Kosterlitz-Thouless transition in two
dimensions) to a neutral-plasma phase, in which the op-
positely charged vortices are decoupled, which persists
for arbitrarily high temperature. In both phases, correla-
tions decay on the scale of the lattice spacing a (as power
laws for T < T, and exponentially for T > T,). The origin
of the decay of correlations is screening: oppositely
charged vortices attract and interfere with one another,
yielding an effective interaction whose range is finite on
the scale of the lattice spacing a. It is clear that any
coarse grained [ cell will be effectively neutral when
[ >>a, and that vortices in different / cells will be uncorre-
lated. These features violate the assumptions upon which
we based our argument that the lattice Hamiltonian
(5.13) and the @ —0 limit will yield the correct continuum
limit, and suggest that the positive-temperature neutral
system is not properly described by a such a theory.

There is a simpler way to understand the failure of
(5.13). Since (5.39) yields an energy which scales linearly
with N, the equivalent hydrodynamic energy (5.13) will
scale as Na*=Va?, and vanish with a. Equivalently, we
have the correspondence PBc,,=B,a*=Ba’ so that
T =T, a’ vanishes with a at fixed T,,. Intuitively, a
positive hydrodynamic energy requires macroscopic
flows, on the scale of the system size, while screening im-
plies flows only on the microscale, invisible on any mac-
roscopic scale. As is apparent from (5.28) and (5.29), hy-
drodynamic flows require macroscopic non-neutral re-
gions of vorticity. In a neutral system, charge can segre-
gate macroscopically only if, by some means, like charged
vortices happen to attract rather than repel. Homophilic
charges correspond to reversing the sign of the energy
(5.13) or (5.39), or equivalently of the temperature (5.30),
and naturally lead us to examine negative-temperature
states of #/,,. As we remarked in the historical review,
negative temperatures are inaccessible to systems consist-
ing of real particles, since (the kinetic part of) the energy
is not bounded from above. Crudely, we need to ensure
that [dep(e)exp(—e/T) be finite, where p(e) denotes
the density of configurations with energy €. This condi-
tion will be satisfied when the energy is bounded from
above and below, or when the configuration space is
sufficiently constrained to yield at least exponential de-
cay in p(¢e) for both e— + © and e— — .

Since inviscid Euler dynamics is an approximation that
neglects coupling between molecular and hydrodynamic
degrees of freedom, it is perfectly consistent for the de-
grees of freedom at these respective length scales to be
out of equilibrium with each other: the former at positive
temperature; the latter at negative temperature. Viscosi-
ty, an agent of diffusive transport, would provide a route
for energy to drain from the hydrodynamic degrees of
freedom and excite molecular degrees of freedom, yield-
ing in the long-time limit a warmer fluid, devoid of mac-
roscopic motion. (More generally, since viscosity
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preserves the total vorticity, depending on boundary and
initial conditions, a rigidly rotating fluid might result.)

In order to clarify further the idea of negative tempera-
ture, which originated in this context with Onsager [1],
we may view it simply as a mathematical device for set-
ting the energy. In the microcanonical ensemble, ther-
modynamics is inferred from appropriate averages over
the phase-space hypersurface at a given energy E. By the
standard argument, we allow E to fluctuate, while we fix
only the average energy using the Lagrange multiplier 8
to obtain the canonical ensemble, both descriptions coin-
ciding in the thermodynamic limit. If the density of
configurations p(e) decays rapidly enough, there is no
reason for restricting 3 to be positive. Only by recogniz-
ing that any real system will be in contact with positive-B
molecular degrees of freedom do we restrict our attention
to positive-B equilibria. If contacts between the system of
interest and the positive-8 bath are weak, there may arise
a time scale much longer than intrasystem equilibration
times, but much shorter than the intersystem equilibra-
tion time through the contacts, over which negative-3
equilibria are a valid thermodynamic description. This
separation of time scales occurs in certain paramagnetic
systems of nuclear moments in a crystal, where negative
(spin-) temperature states have been experimentally
demonstrated (see Landau and Lifshitz, Chap. 6 [Ref.
17)).

The presence of a separation of time scales may not be
easy to establish, especially as different parts of our sys-
tem may equilibrate more rapidly through the contacts
than others. It is clear, for example, that viscosity ought
to equilibriate first regions with large second derivatives
in the velocity field, so that small-scale structures such as
filaments of vorticity will be rapidly smoothed out,
whereas large-scale structures will have longer lifetimes.
We might hope that high-Reynolds-number turbulence,
in which the dimensionless parameter reflects the domi-
nance of convective processes over the diffusive effects of
viscosity, might permit such a separation of time scales,
particularly when an additional length scale (such as sys-
tem size) exists to set the scale for coherent structures.

The reader may find it useful to think about positive
and negative temperatures in the context of nearest-
neighbor ferromagnetic spin models. There, negative-
temperature equilibria are the usual positive-temperature
equilibria of the corresponding nearest-neighbor antifer-
romagnet. Statistics of the high-energy states of a fer-
romagnet are simply those of the low-energy states of the
antiferromagnet. In general, a sure sign of the existence
of negative temperature states is an energy that remains
finite when T-— + . This energy is the unweighted
average of the energy over all states, and the system can
never achieve energies larger than this particular energy
unless T becomes negative. We observe that the thermo-
dynamics is continuous through T=x%w, (8=0), not
T=0. The latter corresponds to the ground state for
T — 0+, and to the most excited state for T—0—.

In contrast to the ferromagnet, where interactions are
short-ranged, the negative-temperature states of the
Coulomb gas do not have energies that scale linearly in
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system size. This property returns us to the question of
the value of the exponent p below Eq. (5.30). An easy cal-
culation reveals that rescaling the number of lattice sites
by a factor a yields an energy-rescaling factor a? (modulo
Ina corrections that are unimportant in this argument).
In a general dimension d, the energy rescaling factor is
a??*1, So long as decreasing the coarseness of the mesh
in (5.13) does not affect the macroscopic vorticity distri-
bution (an assumption basically equivalent to conver-
gence as a —0), the energy 7, will scale as N%a*=V?2
The combination B, #, , scales as V*/a? i.e., p =2. This
value corresponds to the scaling for S, reconfirming that
we have made the correct choice for ,.

C. Mean-field theory:
Kac-Hubbard-Stratonovich transformation

We now turn to the second derivation of the mean-field
equations. This time we introduce appropriate Lagrange
multipliers into the statistical mechanics from the outset.
Unlike the multipliers introduced in (5.33), which consti-
tute merely an exact method for solving constrained
differential equations, statistical Lagrange multipliers al-
low us to remove constraints on the partition sum direct-
ly. In the mean-field limit the two constructions coincide
because only a single state contributes to the partition
sum.

In standard fashion, we introduce into the Hamiltonian
a Lagrange multiplier yu; for each conserved quantity,

Qi[w],

Hlw]=8 Hlo]=ZpiQilo] (5.40)

The partition function consists of an unconstrained trace:
Z =trexp¥f. The value of a conserved quantity may be
obtained from the appropriate free-energy derivative

_1 —_OF
4=p(QleN=-3", (5.41)
where F=—(B8V) 'In(Z). Conservation of g(o) leads
to a term

#,=~ [do p(o) [ Sd*8(o—a(r)

__1
== [ d’muta(r) (5.42)

with the function u(o) to be determined from the func-
tional derivative

SF
dulo)

glo)=— (5.43)

An alternative formulation of this term is obtained by as-
sociating, to each n=1,2,3, . . . a Lagrange multiplier y,

with the corresponding power of the vorticity
Q,= [dro™(r),
H,=—3Su.Q, . (5.44)
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We observe that the u, are the Taylor coefficients of
plo),

wo)=3 u,o", (5.45)
n=1
and corresponding to (5.43) we have
1 - n( \__ OF
(Q,)=[doo"glo) o0, (5.46)

so that (Q, ) are the moments of g(o).
Angular-momentum conservation is incorporated by
means of a term

FHy=— [drh(Do(r), (5.47)

where h(r)=—lar’+h.(r), and h, (1) contains any
external fields that might couple linearly to the vorticity
field. For example, the Coriolis force in the S-plane ap-
proximation yields 4.,,(r)=pr>. The derivative —3f /0a
yields the first term in (5.3). To obtain the contribution
to L from the circulation, observe that
R2T,—RT;=R2Q,+(R}—R})I;, where Q, is calcu-
lated from (5.43) or (5.46) and T'; is enforced by an imagi-
nary point vortex at the origin of strength I';. The latter
appears as an additional external field 4,(r)=T";9(0,r) in
(5.47), which may be seen most simply by separating out
a static contribution I';8(r) to the vorticity field in (5.1)
and dropping the self-energy term proportional to I'Z.
The complete Hamiltonian now reads

ﬁ:%ﬂfdzrfdzr’ S(r,r")o(r)ol(r')

B
— 5 JdrpetN =B [drhinolr)  (5.48)

and Z =tr“[exp(—%£)] is now a free trace over all vorti-
city configurations «(r). Equation (5.48) is the Hamil-
tonian for a continuum, continuous-spin Ising model,
with exchange constants $(r,r'), spin-weighting factor
(o), and external magnetic field A(r). More typically,
for applications to critical phenomena, 9(r,r’') is short-
ranged [e.g., 9(r,r')=—8(r—r')V?], and u(o) is a low-
order polynomial, Bu(o)=1ro?+uc* (the ¢* model).
We are not restricted to analytic forms for u(o). The
usual Ising discrete measure arises from the choice
exp[Bu(o)]=1[8(c —1)+8(0 +1)]; whenever the func-
tion g (o) consists of a series of 8 functions (a finite num-
ber of vortex charge species), so does exp[Bu(a)].

We now introduce the Kac-Hubbard-Stratanovitch
transformation. The idea is the following. All of the
terms in #, except for the first, are local. We may con-
vert the first term into one that is purely local at the cost
of introducing a new field ¢/(r). The basic formula we use
is

exp [%2 Ays;s; ]
ij
1 © _
:WH f_wdzlx,-exp [-%Z(A l)ij¢i¢j—2¢i5i )
i ij i

(5.49)
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where A is any positive definite matrix, {s;} any set of
real or complex numbers, and N=det(274)'/? is a nor-
malization factor. If A4 is negative definite the same for-
mula holds with ¥, replaced by i¢; in the exponent on
the right-hand side. We shall apply (5.49) with
A;=—B7'9; and s, =Pw,a’ [see (5.11)].

Since §;; is the inverse of the negative Laplacian opera-
tor —A;;, § will be positive definite except, perhaps, for
the eigenvalue corresponding to the constant eigenfunc-
tion. If conducting boundary conditions are used, the 8§
function §,; has no constant component, so —A; is posi-
tive definite and invertible and this problem does not
arise. For periodic boundary conditions we must be more
careful. In that case, the constant component, §; of G;; is
arbitrary, and we choose it to be positive. This choice is
equivalent to demanding that #[w] be positive for a uni-
form vorticity field w(r)=const#0, which may be en-
sured by requiring the reference separation R, to be
larger than the system size SO that
—(1/2m)n|[(r—1')/R,| is always positive. The constant
G, does not affect the physics, since it only sets a refer-
ence energy, which corresponds to an additive term
%QOQ% and vanishes for periodic boundary conditions
where ;=0 [see the discussion below (5.2)].

With proper choice of &, we have the representation
for the discretized Coulomb energy

exp [—%Baa“zg,-jco,ij ]
iJj

=tr¥ exp

%Baz(g‘l)iﬂl’ﬂ/’j _Bz¢iwi ] ] , (5.50)
Lj i

where
=N " dy;,

N=det(2mB;'9)!"?,

and B=p,a” as before. We have incorporated a rescaling
of the temperature with lattice spacing. Equation (5.50)
is valid for B, <0. For 8, >0, i{; must be used in place

of ¥, in the exponent. By construction
|
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(g_l),]:— 2(8‘_*_5’]_8,})_{'(90]\,)‘1 (5.51)
NN§

where the constant term is present for periodic boundary
conditions (we shall see shortly that it is canceled).

Now define the Laplace transform
exp[BW(n)]= [ * do exp{ —BloT—u(0)]} , (5.52)

in which the variable 7 may be complex. The partition
function may be written

Z =tr'exp B XS ! )i i +52 WY, —h;]
ij i

(5.53)
In the continuum limit we have
1 _ , _
= D= —V3B(r—1)+(G V),
yielding
Z =tr'exp(— B, VF(¥]) , (5.54)

where

Fyl= —indzrzgx/J(r)( —V2)(r)+ W[(r)—h(r)]}
2

1
+ [y (5.55)

1

B=p,a* has again emerged via (5.52) as the natural tem-
perature variable. Mean-field theory results as the
coefficient 3, ¥V =pBN in (5.54) diverges as a —0. The sad-
dle point of (5.55) determines the free energy, here a max-
imum, since B<0. For B> 0 we replace ¥(r) by if(r) and
seek the minimum; however, as is common in steepest-
descent calculations, we shall always find the saddle point
to be at real values of if(r). We shall write the free ener-
gy in the form (5.55) and remember to seek the appropri-
ate extremum depending on the sign of (3.

We proceed to derive the mean-field equations from
(5.55). The extremum 1,(r) is given by the equation

® o doexp{ —Blo(Py(r)—h(r)—pula)]}

Ll ]=0=—V2¢ (r)+# d’ry(r)— —= (5.56)
dY(r) 0 gon o fj do exp{ —Bla(Y(r)—h(r))—pu(o)]}
and the averaged vorticity field is then given by
5F 1
oyr)={w(r))=— ah[(r)] =—V2¢O(r)+?ond2r¢v0(r) : (5.57)

Equation (5.57) implies that ,(r)= f d?r9(r,r')wy(r'), which yields

1 —
?OVfdzrzpo(r)—Ql/V.

But Q= f d’r wy(r) vanishes whenever the 1/, term is present as we remarked following (5.49). Evidently, we may
discard the 1/9, term. Equations (5.56) and (5.57) reduce to the quoted result (5.7), complete with external field A (r).
Finally, the constraint equation is
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[0(¢o(r>—
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h(r))—u(a)]}

f e expf

g(0)=—
f dcr exp{—

8,u( o ) o' (Pt

which is (5.8).

, (5.58)
—h(r))—ulc")]}

An equation for angular-momentum conservation can be similarly obtained by differentiating the o

dependence of A(r) [see (5.3) and the discussion following (5.47)]

(LY=—1[drloyr)+R3Q,+(R3—RHT, . (5.59)

This derivation of the mean-field equations, although
requiring the introduction of the a lattice, made no use of
the [ lattice. The results of both derivations coincide,
verifying the irrelevance of interactions between vortices
below the microscopic scale /.

It is amusing to see the averaged flow potential y(r)
emerge as the Kac-Hubbard transformed vorticity vari-
able. The origin of y,(r) lies in the form of the energy,
which may be written 1 f d’r o(1)Y(r), similar in form to
the coupling term in (5.50), and in the relation o= ——V21/J
which minimizes the exponent in (5.50) for given -
mean-field theory enforces this relation on average. It is
also interesting to see, from the first derivation of the
mean-field equations, the interpretation of the integrand
of the spatial integral in (5.58) as the microscale vorticity
distribution function ny(r,o ) [see Egs. (5.38) and (5.6)].

D. Dressed-vorticity corollary

Equations (5.6) to (5.8) are a complete solution to the
equilibrium states of a Euler flow given the distribution
function g(o). A key observation is that, except for Q,,
the vorticity-conservation laws are all violated on the
macroscopic scale. If we introduce the dressed distribu-
tion function from the mean-field solution,

gd(o)=ind2r5(o—wo(r)) , (5.60)
then, except under very special circumstances, we will
find that g (o )7g(o). Since g,(o) will be the distribu-
tion function observed on any finite length scale, we see
that it is (experimentally) impossible to infer g(o) from
the equilibrium state alone. At first glance, this loss of
microscopic information would apparently make a
theoretical prediction impossible in the absence of any
knowledge of the initial conditions: information about
initial conditions is absent for geophysical flows like the
ones on Jupiter.

Fortunately, knowing only g,(o), we may make some
partial predictions based on the following dressed-
vorticity corollary [9]: The averaged vorticity field wy(r)
is the maximum energy solution (corresponding to
T—0" or B— — ) of the mean-field equations with
constraint function g,(c). For the maximum energy
solution, g,(0)=g(o): The constraint function is un-
renormalized.

To verify this claim, we consider again Egs. (5.6)-(5.8),
now with the constraint function g,;(o). As B— — 0, we
see that for each r, ny(r,0) becomes peaked in o around
the maximum of the exponent o[y(r)—h(r)]—ulo).
That is, (5.6) becomes

r
lim ny(r,0)=8(c —w,(r))=n_(1,0), (5.61)
B——

where o, (1) satisfies
L (1)]= o (D) —h(r) (5.62)
do

(for B—+ o we would look for the minimum rather
than the maximum) which must be solved with the usual
consistency equations. Equation (5.61) shows the equali-
ty of the bare and dressed distribution functions for
B— — . Since g, is the bare distribution function for
n, we have

g lo)=— fd rn,(1,0) . (5.63)
Thus from (5.60) , (5.61), and (5.63) we have
1 1
— Jdrdlo—o (=1 [drdo—ar),  (5.64)

which establishes that w (r) has the same dressed distri-
bution function as wg(r).

To prove that o, (r)=wy(r) we argue as follows. It is
easy to see that w(r) is the result of maximizing the en-
ergy (5.48) alone, subject to the constraint g,(o), while
wo(r) is the result of maximizing the sum of the entropy
and energy (5.32) or (5.33), with constraint g(o). We
claim that wy(r) yields the same energy as w,(r); that is,
the maximum possible energy subject to the coarse-
grained constraint g;(o). Suppose w,(r) were to yield a
smaller energy. Since w((r) and w.(r) have the same
dressed distribution function g (o), they are related by
an area-preserving diffeomorphism: there exists some
function M: V-V with unit Jacobian such that

o(I)=wo(M(r)). We define #y(r,0)=ny(M(r),o),
whlch yields the same entropy and satisfies the same con-
straints (5.27) as ny(r,o), but has first moment
Jdoony(r,0)=0,(r). Intuitively, we view M(r) as a
reshuffling of the / cells in the argument leading to (5.25),
in which we keep the a-cell microstructure within each I-
cell fixed. But since w,(r) has a higher energy than
wo(r), it is clear that 7y(r,o) has a higher free energy
(5.32) than ngy(r,o). This deduction contradicts our as-
sumption that ny(r,o0) gave the free-energy maximum.
Provided w,(r) is a unique energy maximum, we may
conclude that wy(r)=w,(r), which establishes the corol-
lary.

VI. SIMPLE EXAMPLES AND COMPARISONS
WITH PREVIOUS WORK

A. Single charge-vortex fluid and point vortices

To illustrate the formalism we consider the case of two
vorticity levels, which we take to be 0 =¢ and 0 =0 on
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fractional areas a and 1 —a, respectively:

glo)=abdlc—q)+(1—a)dlo), 0<Za=<1. (6.1)

The statistical mechanics is easily understood in terms of
po(T), the density of the charged species g at r. Then

- 1 2 —
wo(r)=gpo(r) and 7fd rpor)=a. (6.2)
For lattice discretization size ¢ we must simply calculate
the distribution of elementary squares with (circulation)
charge ga? in an effective potential ,(r) determined by
the coupling to the stream function [see the Hamiltonian
(5.1)]. Since, as shown above, the energy is dominated by
the long-length scales, whereas the entropy is dominated
by the constant energy redistribution over the short
length scales, this distribution reduces to the distribution

of a hard-core ideal-gas in an external potential

@o(r) (r) 1
= r = —

N PR

with B=p/a? as before and 4 the relative chemical po-
tential related to the general u(o) via

exp[Bu(o)]=exp(Bu,)8(c —q)+8(a) .

(6.3)

(6.4)

B and u, are fixed by the total energy and the normaliza-
tion condition (6.2). Thus in this simple two-level situa-
tion we solve the self-consistency condition

L
| g Lt =]

and the vorticity source density is given by the Fermi
function. (We are again ignoring the conservation of an-
gular momentum and external potentials for simplicity.)

We may simplify further to the special case of the
point-vortex limit which we define as the limit in which
the fractional area a—0 but g— o so that the total
charge (circulation) ag remains fixed. In this limit where
the density p of vortices becomes small everywhere, the
exclusion effect of the hard core becomes unimportant
and the 1 in the denominator of the right-hand side of
(6.5) becomes negligible. This equation becomes

—Bu(r)

(6.5)

wo(1)=—V*hy= Ae (6.6)

with 4 a constant (into which we have absorbed the p,
term) to be determined by the integral condition

1
7fd2ra)o(r)=Q=aq , 6.7)

hence
4= [ [d¥rexpl—Bbn)]

and where B=pyq is the inverse of new rescaled tempera-
ture T=T /q that should remain fixed as g — o in order
that a well-defined limiting profile wy(r) and energy exist.
This requires that 7= TQa ™! diverge as a—0. The
reason is that point vortices tend to collapse unless the
temperature is very high: a hard core no longer keeps
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them apart. Note that we have taken the limit a —0 be-
fore the limit a—0, so that the mean-field equations are
valid at every step. Equation (6.6) has been written down
many times as the mean-field equation for point vortices.
Our derivation justifies the result as a particular limiting
procedure. We reemphasize that as a description of the
continuum fluid the point-vortex equation is only good in
the restricted regime of small enough total circulation
and large enough |7 (low enough energy) that p,(r) is
everywhere small compared with unity.

It is interesting to consider the phase diagram for this
single-charge-species case in the B—g plane for a fixed to-
tal vorticity Q. In Fig. 1 we show results for Q =0.1 for
a disc geometry of radius unity. (For simplicity we do

1+ 1 1
S (a) A (b)
e =
‘S S
= T
s k
0 0]
. 1
° Position r © Position r
1 1 1 )
. (c) s (d)
= =
S .S
= ©
0 (¢}
1
© Position r © Position r
1 ] 1| 1
R (e) s (f)
) =
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© +
0 0
1
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1
] A
s (g) Sozy
£ Zos {8 . LIE R
o =
= 8
0 Ll—oo £ P
—e—2-1 0 1 2
o 2

" A
Position r Inverse temperature 8/8m

FIG. 1. Radial profiles in the single-charge case on the unit
disk: g(g)=(1—a)8(c)+adloc—1), obtained numerically with
various a and scaled inverse temperature 3, as shown. The
overall charge Q=w/10 is fixed. (a) and (b) show the
maximum-energy solution ('—07) for two different a; (c)
shows an intermediate negative-temperature solution; (d) com-
pares point vortices, Eq. (6.8) (dotted curve), and bounded vorti-
city at a negative temperature slightly above point-vortex col-
lapse (B,/8m=—1); (e) shows the structureless infinite-
temperature solution; (f) shows an intermediate positive temper-
ature solution; (g) shows the ground-state (minimum-energy)
solution (T'—0%).
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not impose an angular-momentum constraint, and have
studied only axisymmetric solutions. The problem with
fixed angular momentum may well involve nonaxisym-
metric solutions [7], and it would be interesting to com-
pare point-vortex and hard-core results in this case, too.)
Axisymmetric solutions of (6.6) for point vortices may be
obtained analytically (Ref. [57])

(1+B)
= =Q——= 6.8
wo(r)=qpo(r) Q(1+Br2)2 (6.8)
with
= — B\ .
81r+ﬁ

Notice that the solution is defined only for > —8m: At
B= — 8 there is a collapse to a point and for smaller B
the solution is not defined for point vortices. Clearly for
B < —8m and a0 the hard cores will be very important
in determining the solution and the point-vortex model
will not give a good approximation to Euler’s equation.

Other “point-vortex” limits have been discussed in the
literature. We might, for example, consider a limit with
both a and @ vanishing simultaneously, in which case we
have the appropriately rescaled temperature

T=T/a%q . (6.9)

We might envision maintaining a’g, the total vorticity
per a cell, fixed as a—0, yielding a finite number
N=0Q /a%q of point vortices in this limit, with 7 «T.
This scaling was treated rigorously by Frohlich and
Ruelle [46], in the limit V— o, with n=N/V fixed.
They obtain a fluctuating thermodynamics with positive-
temperature equilibria only. It thus emerges that in or-
der for mean-field theory to hold, we must allow a’g—0
and N — o at fixed 7T, yielding an infinite density of vor-
tices, each with infinitesimal charge. We then obtain the
“point-charge” limit described by (6.6).

B. Doubly charged fluid

A slightly more complicated situation is with two finite
charges (i.e., three vorticity levels 0 =0,q,,q,). Then
Eqgs. (5.6)-(5.8) become

— V(1) =g,p,(r)+g,p,(r) (6.10)
with
—B iYolr)—u,;
pi(r)= e);p{ Blgivo(r)—p; 1} 6.11)

14+ 3 exp{ —Blgi¥o(r)—p;1}
i=1

(the generalization to an arbitrary number n of charge
species is now obvious). Here there are Lagrange multi-
pliers B,u,, 14, fixed by demanding the correct energy and
charge fractions

1

—V—fdzrpi(r)=ai : 6.12)
This three-vorticity-level equation can be used as a crude

model for more interesting physical situations such as
shown in Fig. 2. Initial conditions as in Fig. 2(a) have
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(a)

FIG. 2. Schematic plots of initial conditions using only a
finite number of vorticity levels: (a) a typical three-level
(0=—1, 0, and +1) initial condition used in Red Spot simula-
tions, and (b) a three-level (0 =0 and two different positive
values) initial condition that might be used to model the diocot-
ron instability in cylindrically bound guiding-center plasmas.

been used in dynamical simulations to demonstrate the
formation of coherent spots in planetary atmospheres.
The configuration shown in Fig. 2(b) with a nonmonoton-
ic radial vorticity profile can be used to study the diocot-
ron instability in one-component plasmas in strong mag-
netic fields [58], which, for suitable parameters, can be
mapped onto the Euler equation.

C. Models of Jupiter’s Red Spot

We turn now to the Red Spot, which for our purposes
coincides with the persistent spot of cyclonic vorticity in
Marcus’s dynamical simulations [6]. Marcus carries out
his calculation on a flat annulus with rigid boundaries.
The effect of planetary curvature and rotation is incor-
porated by the SB-plane approximation [14]. On the S
plane we may define a potential vorticity w,,

w,(r)=a(r)+pr .

The Euler dynamics on the 8 plane advectively conserves
the potential vorticity »,, and not ». For our purposes,
we may account for the 8 plane by adding to the Hamil-
tonian an external potential —pBr3, and by replacing
with @, in our statistical mechanics. A very thorough
discussion of the various terms contributing to the p-
plane Hamiltonian may be found in Ref. [6], and we feel
no need to reproduce them here (see also Ref. [59]). We
merely remark that the rotation contributes a term with
no dependence on the spatial configuration of the poten-
tial vorticity, and the numerical values for the energy
given below omit this contribution.

All parameters (i.e., values for all conserved quantities)
for the statistical-equilibrium calculations described
below are determined by discretizing the given initial
conditions on the lattice [for details see Ref. [9(b)]]. The
runs described below consisted of 3.5X 10> Monte Carlo
sweeps (see Appendix B) with an acceptance ratio of
1/18, and the maximum standard deviation was 0.026.
Due to the broken azimuthal symmetry, it was necessary
to rotate each configuration to the center-of-vorticity
frame before including it in the configuration average.
The center of vorticity for these parameter values turns
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out to correspond to the center of the single large spot
appearing in the stationary state. In the figures, the vor-
ticity profile is drawn in gray scale. Figure 3(a) shows ini-
tial conditions corresponding to a ring of potential vorti-
city. In Fig. 3(b) we show the results of the statistical-
equilibrium calculation and in Fig. 3(c) we show the cor-
responding long-time dynamical result of Marcus [6]. In
Fig. 4(a) the initial conditions are made up of two spots of
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potential vorticity, each with opposite sign. Figure 4(b)
demonstrates that in statistical equilibrium, only the cy-
clonic vortex (the vortex whose potential vorticity has the
same orientation as the rotation determined by the Br3
potential) persists as a single condensed object; the anti-
cyclonic vorticity is pushed to the boundaries.
4(c) shows the corresponding result of Marcus [6].

Figure

FIG. 3. Comparison of our Monte Carlo simulations with the
long-time dynamics of Marcus (Ref. [6]): (a) the initial condi-
tion consisting of a ring of vorticity; (b) the Monte Carlo equi-
librium state arising from (a); (c) the long-time dynamical state
arising from (a). The zero of vorticity is at the midpoint of the
gray scale.

FIG. 4. Comparison of our Monte Carlo simulations with the
long-time dynamics of Marcus (Ref. [6]): (a) the initial condi-
tion consisting of two oppositely charged symmetrically placed
blobs; (b) the Monte Carlo equilibrium state arising from (a); (c)
the long-time dynamical state arising from (a). The zero of vor-
ticity is at the midpoint of the gray scale.
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Clearly the comparisons in Figs. 3 and 4 yield strong
qualitative similarities between the results of the two
methods. A quantitative comparison remains to be done.

We would like to comment on the relation of the work
of Smith and O’Neill [7] to our own simulations. Particu-
larly noteworthy in their calculations was the emergence
of a negative heat capacity, and differences between the
results of canonical and microcanonical Monte Carlo cal-
culations.

In contrast to the simulations described here, Smith
and O’Neill confined themselves to the point-vortex limit.
The situations shown above are far from that limit, and
indeed in them we have encountered neither negative
heat capacities nor differences between canonical and mi-
crocanonical ensembles. However, when we have at-
tempted calculations in the point-vortex limit, we have
found anomalous properties very similar to those seen by
Smith and O’Neill. We have not yet studied them in
sufficient detail to understand their origin, but we make
the following two remarks: First, in higher dimensions,
pertinent to gravitational systems, these phenomena have
been observed both numerically and analytically (for a re-
view, see Ref. [66]), and indeed play a central role in
some theories of stellar systems. Whereas this kind of be-
havior is ruled out in most thermodynamic systems, the
long-range attractive interaction makes it possible here.
On the other hand, it has been argued (at least in the ab-
sence of the angular-momentum constraint) that this be-
havior ought to be absent in two dimensions [25].
Second, in the point-vortex limit it would seem to us un-
certain whether one would expect to be able to sample
the configuration space adequately by a Monte Carlo cal-
culation without very careful attention to the phase space
occupied by arbitrarily closely spaced vortices. We feel
that a consistent explanation of the results of Smith and
O’Neill [7] could be that they have obtained metastable
states, and we believe that additional work would be
necessary to rule out metastability.

D. Kraichnan energy-enstrophy theory

Another example worth discussing, because it arises so
often in the literature, is the energy-enstrophy theory
[20]. To make contact with these results we make the ar-
bitrary choice

/J,(cr)=%y,202 . (6.13)

The integrals over o in Eq. (5.52) may be done explicitly:
we find (for Bu, <0),

2 _
W(r)=—"+Lin(—27/8u,) (6.14)
2u, 28 Brrz
and hence
9’[¢]————fd2 V(o) ——[¢<r>— (N
(6.15)

where we had dropped the trivial constant in (6.14). Let
us restrict ourselves to 4 =0 for simplicity. For >0 and
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1, <0, we find =0 as the only consistent minimum (re-
call that in this case ¥ ought to be replaced by iy). For
B <0 and u, >0, we seek the maximum, and the problem
is well defined only if 1/u, < Ao, where Ag~1/L? (L being
the linear system size) is the smallest eigenvalue of the
negative Laplacian consistent with the boundary condi-
tions. The mean-field equation for 1y,
V2¢0(r)+—1—¢0(r)=0 (6.16)
K
is basically an eigenvalue problem for u,, which is evi-
dently not a free variable: It can take on only the degen-
erate value u,=1/A,, and consequently ¥y(r)= A‘/’AO(I')’
the normalized eigenfunction associated with A, multi-
plied by an arbitrary amplitude. The order parameter is
then wy(r)=(Ay4)Yy(r), and the energy is E,=Aiy4*
which is determined by the single free parameter 4,

¢0(r)=1/E0/7Lo¢/xo(r) ,

—_— (6.17)
wo(r)=\/E07L0¢ko(r) .

For a square box of side L, with 3, vanishing on the
boundary, we have

¥, "(2/L)s1n sin , 0=x ,y<L

Ty
L

(6.18)

with Aog=27%/L?% This stream function yields a bloblike
shape centered on (L /2,L /2). The constraint function
g(o) is given by

eXP{lﬁﬂz[U_wo(f)]z}
V27 /(—Bu,)

a nontrivial distribution of vorticity (observe that
f do g(o)=1, as we expect). By introducing the dressed
distribution g,(o ), this expression can be rewritten in the
form

g<a>=ind2r (6.19)

exp[ 1Buy(0 —0')*]

glo)=[" do'g,0") Vichs (6.20)
which may be inverted to yield
8alo)=; [ d’rd(o —ogr))

expl—3Balo—o'F) o)

=% do'gla")
f_°° '\/277/( Bﬂz

Note that g (o) has compact support while g(o) does
not.

E. Lynden-Bell and Debye-Hiickel theories

To conclude this section, we connect our work to that
of Lynden-Bell [19] and to the Debye-Hiickel theory [54]
of electron systems. We must first agree to give up our
interpretation of the theory as describing Euler’s equa-
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tion, which does not simply reduce to Coulomb form in
higher dimensions d. The derivation of the mean-field
equations is valid in any dimension, so long as $(r,r’) is
replaced by the appropriate higher-dimensional Coulomb
interaction between point vortices, and the temperature is
scaled as B=Baad [see (5.30)]. The mean-field equations
derived here may then be used to describe equilibria of
three-dimensional Coulomb systems with continuous
charge density, characterized by g(o). In particular, the
point-vortex limit, described by (6.6), turns out to corre-
spond to the Debye-Hiickel theory for electrolytes [54].
In its quantum generalization, Thomas-Fermi theory,
Boltzmann factors are replaced by free-electron Fermi
functions [60].

The derivation is very simple. The local charge density
n(r) is assumed to be governed by the local electric po-
tential ¢(r) via the Boltzmann distribution

n(r)=exp{ —pBled(r)—p]} (6.22)
with the self-consistent relation
n(r)=—v(r) (6.23)

(e denotes the electron charge). Here ¢(r) includes both
externally applied fields, such as charged impurities, and
those fields originating from the induced electron density.
The chemical potential p is eliminated in favor of the
average density

n0=—ll;fd2rn(r)
which yields

exp(B,u)=n0/—Il7 fdzr exp[ —Bed(r)], (6.24)
and, upon substitution, the analog of (6.6). The validity
of this self-consistent theory requires that ¢(r) vary slow-
ly on the scale of the average separation between charges,
and becomes exact in the limit of infinite density [com-
pare with the discussion below (6.9)].

The theory developed by Lynden-Bell [19] is based on
the collisionless Boltzmann equation for a gravitating
mass distribution. He examines the distribution function
f(r,p,t), which denotes the probability density at time ¢
for finding a particle at r with momentum p. The time
evolution of f is assumed to be given by the Boltzmann
equation
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where now the convective derivative is with respect to a
2d-dimensional space. We have the relations

i=p,
p=—V¢(r,t),
(r,0)=— [d*r 9,0 )f (r',p',1)

(6.26)

where d%7' =d'd’, ¢(r,t) is the gravitational poten-
tial at r due to the mass distribution f, and G(r,r’) is the
appropriate d-dimensional Coulomb interaction (like
charges attract at positive temperatures in gravitational
systems). The total energy (kinetic plus potential) is
given by

E= fdzf%pzf(r,p)

— 1 [ d¥rd7 f(1,p)8(r,r')f (r',p")  (6.27)
with the constraint function
glo)= [d¥r8(c—f(r,p)) . (6.28)

Since p is an unbounded variable f g(o)do is unbounded
(the divergence is at small o); however, we do have the
normalization

fda Ug(a)=fd2d‘rf(r,p)=1 .

We are therefore led to consider the Boltzmann factor
exp(—B%f) with, in an obvious shorthand,

H=—1[d¥rd*r fGf — [d¥rhf— [d*rpu(f],
(6.30)

(6.29)

where A (p,r) contains the 1p? term in (6.27), and any
other “external fields” we might wish to add. The Kac-
Hubbard-Stratanovitch transformation to the new field
Y(r,p) is now straightforward. Since the Coulomb in-
teraction § does not depend on momentum, we use the

identity (5.49) with o(r)= [d f(r,p). With the
definitions B=Ba?? and
exp[EW('r)]=f_w do exp{—BloT—ula)]} (6.31)

as before, the functional to be minimized becomes

Fl0) =1 [ d%|V, ()]

—1[d¥rw —h(r,p)] . 6.32
Df . 3f .. 8f .of _ L [d¥r Wy(n)—h(r,p)] (6.32)
= =t-—-+p-——+-=0, (6.25)
Dt or dp Ot | We may define
T — exp( —-B{o[—:/}(r,p)-h(r,p)]—u(O)}) , ’ (6.33)
[ do'exp(—=Blo’[¥(r,p)—h(x,p)]—p(0")})
I
which we interpret as the coarse-grained equilibrium dis- and the full equilibrium distribution is given by
tribution function for charge species o at the coarse- _
grained phase space point (r,p). The resulting mean-field folr,p)= fdo ono(r,p,0) (6.35)
equations can be written with constraint function
—Vn)=— [d% [do on,(r,p,0) (6.34) glo)= [ d*rn,(r,p,0) . (6.36)
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These expressions correspond to the mean-field equations
of Lynden-Bell [19].

VII. SUMMARY AND CONCLUSIONS

We now turn to a discussion of the physical content of
the theories we have derived in the last few sections. It is
instructive to start with an account of the physics of the
Lynden-Bell model [19]. As we have remarked earlier,
the origin of the connection between Lynden-Bell’s sta-
tistical mechanics and our own is the fundamental equa-
tion of motion (6.25). Obviously, we recover the Euler
equations if we throw out the explicit dependence on the
momentum in (6.25) and set d =2. An additional feature
common to both the Euler fluid and stellar clusters is the
existence of a scalar field, the evolution of which is de-
scribed by the equation of motion, and which interacts
through a long-range potential. The Coulomb potential
governs the interaction of the vorticity in the fluid, and
the mass density in the gravitational system. In both
cases, the equation of the motion says that the covariant
derivative of the scalar field vanishes, giving rise to the
infinite family of conserved quantities, or Casimirs.

The collisionless Boltzmann equation describes the
motion of point masses interacting by a gravitational po-
tential, provided we do not permit the masses to collide.
This motion is Hamiltonian: r and p constitute canonical
coordinates; the introduction of collisions destroys the
Hamiltonian character unless details of the interaction of
nearby particles are added. Collisions, by permitting the
merger of particles and inelastic scattering, further intro-
duce source and sink terms into the Boltzmann equation,
giving rise to a covariant derivative that no longer van-
ishes: the evolution of the mass density becomes dissipa-
tive. The collisionless Boltzmann equation represents an
idealization of the motion of stars in which we view the
discrete collection as a continuous medium, described by
a continuous mass density f(r,p,#). This idealization is
only consistent to the extent that we may neglect col-
lisions for the time scales in which we are interested.

In fact, the collisionless regime is of considerable in-
terest to astrophysicists [61,62]. In studying the forma-
tion of, say, an elliptical galaxy from some ancient distri-
bution of stars, they estimate the “collision time,” which
sets the time scales for which we may view the dynamics
as described by a collisionless Boltzmann equation.
Lynden-Bell asked the question: can statistical equilibri-
um theory for the collisionless dynamics yield the ob-
served structure of stellar clusters? That is, (1) is it possi-
ble that the dynamics determining the mass and velocity
distribution in a galaxy occur within the time for which
collisions between stars can be neglected, and (2) if so,
then do the collisionless degrees of freedom of the system
equilibrate in this process. Antonov [63] had already ar-
gued that, in a physically significant regime, an iso-
thermal system of gravitating point masses within an iso-
lating spherical shell has a negative specific heat, and col-
lapses catastrophically. If statistical mechanics was to
have any bearing on the problem, equilibration of all de-
grees of freedom had to be excluded.

Lynden-Bell {19] tried to answer his question by con-

structing a statistical mechanics for the collisionless
Boltzmann equation, obtaining generalizations of our
mean-field equations; however, a lengthy and convoluted
chain of results has lead many workers, including
Lynden-Bell, to conclude that the simple answer is no.
(Less simple answers also exist: See Ref. [64]). It
emerges that in an infinite volume, which most people
seem to believe constitutes an appropriate physical
boundary condition for galactic evolution, the mean-field
equations have no solution. The star cluster can always
achieve greater entropy by expelling a negligible mass to
large distances, and increasing its density in a hot central
core. Conservation of the mass distribution g (o) cannot
prevent this “violent relaxation,” since the density can in-
crease in the spatial dimensions, accompanied by a com-
pensating decrease in the velocity dimensions. Astrophy-
sicists must then explain how features of purely dynami-
cal origin prevent complete equilibration, since observed
galaxies evolve well into the collisional regime, and have
evidently not collapsed.

Within a finite volume, it turns out that, at least for
points, one encounters negative heat capacities and col-
lapse under what are considered appropriate physical
boundary conditions. Lynden-Bell and Wood [65] have
claimed that finite cores rescue the system from these
pathologies. We know of no effort to determine the ex-
tent to which equilibrium statistical mechanics is useful
under these circumstances, which, in any event, may not
be physically significant. For a partial review, see Ref.
[66].

Our reason for discussing the Lynden-Bell theory in
such detail is that we wish to contrast the Euler fluid with
stellar mechanics. As Katz and Lynden-Bell [25] have
demonstrated (without reference to the inviscid fluid), in
a finite volume, the two-dimensional, attractive, single-
charge-species point-vortex gas does not display the nega-
tive specific heat that is characteristic of the stellar ther-
modynamics. Nor is the single-species finite-core gas
subject to collapse in infinite volume, since here we have
only spatial, and not velocity, degrees of freedom. In
fact, in two dimensions, we see no reason why solutions
to the mean-field equations should not exist for any con-
sistent set of values of the conserved quantities.

But the differences run even deeper. In fluid mechan-
ics, it has long been observed that in certain physical re-
gimes the Euler equations, equations of nondissipative
motion for a continuous medium, yield a (perhaps
surprisingly) correct description of the long-time behav-
ior of real, viscous fluids. Marcus [6], for example, has
successfully modeled a variety of nontrivial long-time lab-
oratory flows [67,68] by means of inviscid dynamics. On-
sager [1] proposed that statistical mechanics of inviscid
flow could explain turbulent phenomena. Aref and Siggia
[33] show that inviscid statistical mechanics models the
turbulent shear layer.

In the case of fluids, it seems that the collisionless ap-
proximation can be extraordinarily effective, for reasons
that we do not entirely understand. However, we should
like to propose informally a mechanism that explains
how inviscid statistical mechanics could usefully describe
the long-time behavior of certain stationary viscous flows.
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Our notions rely on a separation of time scales. Without
wishing to assign any blame, we attribute some part of
our thinking to Aref and Siggia [33].

We emphasize first that our statistical mechanics is
meant only to be a macroscopic description of fluid prop-
erties. That is, we have nothing to say about correlations
on scales small compared with the finite system size. We
do not concede, for example, any but the most qualitative
connection between the equilibrium properties that we
hope to predict, and turbulence. The turbulent cascade,
which we expect to dominate the small scales, is a sta-
tionary state which spans a set of equilibrium range wave
numbers, forced at the low end, dissipated at the high
end, and there is simply no reason to expect the turbulent
scales to be in detailed balance. In an infinite volume, we
would expect any forcing and dissipation to lead to the
Kolomogorov cascade to large wave number and the in-
verse cascade to small wave number, as suggested by
Kraichnan [3), or to the trivial long-wavelength proper-
ties suggested by Forster, Nelson, and Stephen [69].

We maintain that the finite size of the fluid container
introduces a new scale into the problem. It allows us to
envision a situation in which wave numbers of the order
of inverse system size are in equilibrium with each other,
while much larger wave numbers are out of equilibrium,
their behavior being dominated by the energy cascades.
Whereas small-scale correlations would be determined by
properties of the forcing, correlations on larger scales
might not be affected by small-scale forcing. Central to
this picture is the notion that the time scale for equilibra-
tion of long-wavelength modes be small compared with
the characteristic time scale for the forcing and dissipa-
tion of these modes by communication with the short
wavelengths. The self-consistency of our picture at long
wavelengths is supported by the dressed-vorticity corol-
lary, which shows that, in equilibrium, we may ignore
short-wavelength properties and focus on averages of the
vorticity field over some scale determined by the system
size. Any localized turbulence or viscosity-mediated
diffusion that acts to smear the vorticity on this scale has
no effect on the macroscopic flow.

A small-scale forcing of the kind we envision here may
be a feature of some geophysical flows, where small-scale
atmospheric storms drive the large-scale dynamics. In
addition, it may be appropriate for certain laboratory
flows, such as Swinney’s spots [67,70].

As the above remarks no doubt convey, we do not have
an adequate understanding of the applicability of a
statistical-mechanical theory such as ours to fluid flows in
general. In particular, the entire theory is based upon a
presumption of ergodicity. We expect that there are
many situations, such as steady laminar flow, for which
this presumption is most certainly wrong. On the other
hand, even small amounts of turbulence or externally in-
duced noise could serve to open up all significant parts of
phase space, so that flow becomes, effectively, ergodic.
For example, Marcus [6] finds that an axisymmetric ring
of vorticity is a steady flow in his dynamical simulation;
however, when subject to an asymmetric perturbation
that is ten orders of magnitude lower in relative vorticity,
the flow destabilizes and evolves to a single blob. In oth-
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er simulations, he finds that steady flows consisting of a
number of separated blobs can be further mixed if he
throws in filaments of vorticity, causing the blobs to
merge and shed vorticity. Presumably, noise introduced
by small-scale turbulence or other processes could play
an analogous role in paring down the class of stable flows.

We have emphasized earlier that a number of authors
have numerically demonstrated ergodic behavior for
point vortices. An intrinsic property of point-vortex
methods is that they preserve their (singular) values for
the area integrals exactly. Their behavior may suggest
that for a continuous vorticity field, a simulation faithful
to the ideal Euler fluid would also be ergodic. On the
other hand, it could be that the smoothing effects of dissi-
pation stabilize flows that are not true long-time station-
ary states of the Euler equations. We have seen via the
dressed-vorticity corollary that when we take the coarse-
grained average of a finite-temperature equilibrium flow,
we obtain a zero-temperature flow. Thus, viscosity might
act locally to reduce the temperature, creating by its local
smoothing effect stationary flows that are not in global
equilibrium. Finally, Marcus [6] draws a distinction be-
tween “filamentous” and ‘“‘nonfilamentous’ flows, defined
by the presence or absence of small-scale filaments of vor-
ticity. He finds that nonfilamentous flows remember their
initial conditions, in contrast to filamentous flows, in
which only conserved quantities seem to matter. Perhaps
any truly dissipationless flow ought to be filamentous and
consequently ergodic, since viscosity would not be
present to remove the small-scale filamentation. We
would hope that our remarks apply also to high-
Reynolds-number flows, where filamentation could occur
on many more length scales than can be accommodated
in any present-day numerical simulation. (These small-
scale filaments should be distinguished from the micro-
scopic filamentation discussed below.)

The objection might be raised that, even in the truly
inviscid limit, the fluid never achieves a stationary state.
For any finite time, the fluid is still evolving at some
nonzero length scale that vanishes only at infinite time.
In essence the turbulent equilibrium range steadily shifts
to higher and higher wave numbers. Consequently, the
fluid motion cannot be ergodic. We believe that this ob-
jection is of a formal nature. We would characterize the
nonstationary behavior in a different manner: at any
finite time, the fluid is still relaxing to an asymptotic equi-
librium that will have structure at all length scales, i.e.,
the asymptotic state that maximizes the entropy and
represents the long-time vorticity configuration con-
sistent with ergodicity. Thus we would hope that as the
equilibrium range moves to higher wave numbers it
leaves behind an equilibrium state at smaller wave num-
bers which closely approximates the predictions of sta-
tistical mechanics.

The consistency of this characterization depends upon
the irrelevance of short length-scale structures to the
macroscopic vorticity configuration at long times. We
would argue that Marcus [6] has observed just this ir-
relevance in his dynamical simulations. By careful con-
trol of the short-wavelength cutoff, he demonstrates that
the long-time macroscopic vorticity configuration is
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achieved before the enstrophy has reached the smallest
scales of his numerics. If he increases his numerical reso-
lution, Marcus obtains the same long-wavelength vortici-
ty configuration, even though the simulation may now be
continued to longer times in which structure at still
smaller scales has emerged.

The long-range potential governing the interaction of
vorticity is an additional factor suggesting that small-
scale structures ought not to affect the macroscopic dy-
namics of a fluid near macroscopic equilibrium. Because
of the long range, we may calculate the dynamics contrib-
uted by a small-scale structure to other structures at long
distances by using the average of the vorticity over some
small area. A similar feature emerges in the statistical
mechanics: in equilibrium it is only the average of the
vorticity field over small length scales that affects the
macroscopic structures. Indeed, this is precisely what
leads to the dressed-vorticity corollary.

These remarks also pertain to the divergence of in-
tegrals of the gradient of the vorticity in our statistical
equilibria. In any statistical-mechanical system, one can
define quantities that are finite for some class of initial
conditions, but that diverge in statistical equilibrium.
The defect lies not in statistical mechanics, but rather in
the choice of quantities at which to look. For the Euler
fluid, we would argue that the diverging integral vorticity
gradients, which may be viewed as reflecting the width of
the boundary between regions on which the microscopic
vorticity field takes different values, are completely ir-
relevant to the macroscopic long-time flow. Our statisti-
cal formulation is consistent with many possible micro-
scopic shapes for the vorticity field. It provides no useful
information about them, and in turn, they do not matter
to the macroscopic equilibrium at all.

Further difficulties arise in trying to test the theory by
current numerical methods. Dynamical simulation of
inviscid fluids is by no means a well-understood subject.
In fact, appreciation of the constraining properties of the
conservation laws has been sorely missing in this field.
Even the very best studies seem to assume that the mac-
roscopic enstrophy ought to be conserved at long times,
whereas we have argued that it should not be conserved.
Nor has anyone checked his or her simulation to ensure
that he or she has controlled the vorticity distribution at
the microscopic level. For example, let us suppose our in-
itial conditions involve both positive and negative vortici-
ty, and that the predicted equilibrium based on the mi-
croscopic vorticity distribution consists of spatially
separated regions of positive and negative vorticity. We
expect that, in evolving from the initial to long-time
state, regions of positive and negative vorticity might be
at times well mixed, with some of the vorticity again
separating out asymptotically. Yet because of finite reso-
lution, the numerical method could easily cancel the posi-
tive with negative vorticity in the well-mixed intermedi-
ate stages, yielding a long-time vorticity distribution con-
sistent with the initial conditions, but incorrect neverthe-
less. We would be unable to distinguish the failure of sta-
tistical mechanics from the failure of the simulation.
(Notice that point-vortex methods are not subject to this
objection, since the methods explicitly conserve particle
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number and charge). In spite of these realities, our recent
preliminary comparison of predicted equilibrium flows
with Marcus’ dynamical simulations yields remarkable
agreement (see Appendix B).

Certainly, possibilities exist for a numerical method
that correctly incorporates the conservation laws. String
theorists have uncovered a truncated dynamics that
seems to converge, as the number of Fourier modes in-
creases, to Euler dynamics [71,72] (see Appendix A). As
the number of modes increases, so does the number of
conservation laws. (This literature was related to us by
A. Rouhi, who independently discovered the truncated
dynamics.) Efforts are underway to design a computa-
tional method based on the truncated dynamics [73].
Perhaps this method will eventually confirm our equilib-
rium predictions.

We close by pointing out that there exist a variety of
dynamical systems sharing the essential features of the
Euler fluid that allowed us to construct a statistical
mechanics. We refer the reader to Ref. [13] for a partial
listing of systems with an infinite family of Casimir in-
variants. One particularly interesting example might be
the “meteorological primitive equations,” describing
three-dimensional rotating, stratified, compressible flow
of an ideal gas [74].

Note added. After this work was completed, we
learned of parallel results using maximum entropy
reasoning by R. Robert and J. Sommeria, J. Fluid Mech.
229, 291 (1991). See also J. Sommeria, C. Staquet, and R.
Robert (unpublished).
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APPENDIX A: SU(n — o) AND EULER’S EQUATION

A natural question to ask is whether or not there exists
a finite dimensional (i.e., lattice) approximation to Euler’s
equation with a finite number of conserved quantities.
That is, can one define a set of lattice degrees of freedom
whose dynamics conserve some large, but finite, number
of quantities, and which, in some sense, converge to the
continuum Euler equation as the lattice size vanishes?

The answer to the question is yes [75], and the deriva-
tion is based on the Poisson-bracket formulation of
Euler’s equation. As usual the vorticity field plays a fun-
damental role. We begin with the continuum formula-
tion. As usual the Hamiltonian is given by

H=1[d% [d* o(t)o(r)9(r,1), (A1)
where & is the appropriate Green function for the two-
dimensional Laplacian. For any functionals F[w],G[w]
we define the Poisson bracket [reproduced from Eq. (4.2)]
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SF 6G
Flw],G = [d? — = ,
{Flo],Glo]}= [d* o(r) Bole)” Bol) |, (A2)
where {, },, is the usual Poisson bracket
~0f0% dfd _
{f(r),g(r)},, ax 3y dy ax where r=(x,y) .
(A3)
The time development of any quantity F is then given by
oF _
at—{F,H} ) (A4)
and one indeed finds
do _
EYR (vVe,
(AS)
o=V Xv .

Crucial properties of any Poisson bracket are (i) Distribu-
tive law

(FG,H}=F{G,H}+{F,H|G , (A6a)
(ii) Jacobi identity
{F,{G,H}}+{G,{H,F}}+{H,{F,G}}=0, (A6b)

as well as the obvious properties of linearity,
{aF+bG,H}=a{F,H}+b{G,H}, where a and b are
constants; and antisymmetry, {F,G}=—{G,F}. All of
these are satisfied by (A2).

Let us now assume periodic boundary conditions, and
to simplify notation, we take the fluid region to be the
unit square. We may then define the Fourier coefficients
Q(n) via

w“-):zﬂ(n)e}m'nvr ,

) (A7)
Q(n)zfdzre~:2m~rw(r) ,

where n=(n,,n,) is an integer vector. For periodic
boundary conditions &(r,r’) is defined only for neutral
systems: Thus Q(0)=0. In terms of the £2(n) we have

H=1S —ama(-n) (A8)
n (#0) n|
and
aQ(n) _
“ar {Q(n),H}
=4 3 PBomn-m), (A9
m#0) 'm|
where we have used (here n Xm=n,m,—n,m,)
{Q(m),Qn)} =47 (nXm)Q(m+n) . (A10)

The structure of (A10) is that of a Lie algebra. The ((m)
may be considered the generators of the full algebra via
multiplication and addition. From (A10) one may then
derive the Poisson bracket for any two elements generat-
ed in this manner.
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We next consider the conserved quantities
¢, = [d* o)
= 3 8, + -+ +m,,0(m;) - - Qmy) , 1z2.

my,..., m,
(A11)

One may check that
{C;,2(n)}=0 Vi,n, (A12)

so that the C; commute will all elements of the algebra, in
particular with H. Such quantities are known as Casimir
operators or symplectic invariants. Note that the C; will
be conserved for any Hamiltonian, not just the one we
use.

We now view (A 10) as the fundamental set of relations,
and ask whether or not there exists a finite-dimensional
approximation to them, i.e., can we truncate them, keep-
ing only a finite set of n? One cannot do this arbitrarily
since (A6) must be satisfied. For example, simply keeping
only those Q(n) for which 0=<|n,|, |n,| <M does not
work since (A10) will generate ’s outside this range.
The algebra must therefore be truncated as well. The fol-
lowing prescription works: In order to close the algebra
we define addition modulo N =2M +1 via

(m~+n)modN =((m, +n,) modN,(my-I—ny) modN )
(A13)

for 0<|m,|, In,[<M, 0<|m,|, |n,| <M. We may as-
sume that the results of the mod operation lie in this
same domain by subtracting N if necessary, though this is
only a convenience to fix the notation. We now periodi-
cize (A10) by defining

{Q(m),Q(n)}=27N sin %TnXm Q((m+n)modN) .

(A14)

Henceforth we will drop the explicit modN in sums, the
periodicity being implicity understood. One may check
that (A14) satisfies the conditions (A6). More obvious
candidates for the right-hand side of (A 14), such as

2mm

2mn, y
N

N

N? |sin sin

2mn

) 2mm,
N

N

—sin sin

|

fail to satisfy at least one of the two conditions (A6).
Clearly for fixed n,m (A 14) converges to (A10) as N — oo.
Since all Lie groups were classified long ago, it is not
surprising that (A14) corresponds to something well
known, namely the group SU() (note that here N must
be odd). If one represents SU(N) by unitary N XN ma-
trices, the Poisson bracket is precisely the usual commu-
tator. The dimension of SU(N) is N2—1 and the basis
Q(n) spans the group. Explicit matrix representations
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for the ((n) may be written down [76] [these are different
from the usual Cartan-Weyl basis which generalize the
Pauli matrices for SU(2) and the Gell-Mann matrices for
SU@M)].

Now what about Casimir operators? It turns out that
the following operators commute with all others [77]

C[= 2 Q(ml)ﬂ(mz)ﬂ(ml)S(ml+ +ml)

Xexp —zﬁﬂ—lEmaXmB , 1=2,...,N
aLs

(A15)

where 8(n) is 1 if n mod N =0, and is zero otherwise.
The main difference between (A15) and (A11) is the pres-
ence of the exponential factor. For fixed {m,} this factor
converges to unity. However, for fixed N only for a small
subset of the {m,} values (1/N)m,Xmg will be small
(roughly speaking, only for |m,|<SV'N). The same is
true in (A14). Thus the convergence of (A14) and (A15)
to (A10) and (A11) is highly nonuniform, and to what ex-
tent they truly approximate Euler’s equation is not clear.
As mentioned above, more rapidly convergent obvious
choices do not yield a consistent group structure, so one
may not be able to do any better. In real space we may
define

o(r;)=3e

n

;=i /N,j,/N),

i2m-r;

‘Qn) ,
(A16)

where j=(j,j,) is an integer vector with 0=|j,|<M,
and correspondingly

Qn)=-LFe ™ ur)) . (A17)
N°75
Equation (A15) may be Fourier transformed to yield
1
C] TVE 2 co(rl)"'a)(rl)f,(rl,‘..,rﬂ, (A18)
r

where, as above, Nr,, are integer vectors, and

filey,...,r)=N'exp [2miN 3, (=1 B, X1y
1fa<B=!
N7', 1 odd
X {_ !
8N (—1Prg|, Ieven.
B=1

(A19)

One may check that f, is indeed translation invariant:
Sfiley+r, .o r+10)=fi(r,,...,1;). The 8 function for
even [ is essential. The obvious question is whether or
not f(ry,...,r;) converges to the continuum result
8(r,—r)X -+ X8(r;—r,), and, if so, how. To gain in-
tuition consider

N2e2m'N(r2—r1)X(r3—rl) )

[3(r,15,1)= (A20a)
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We would like to know if the left-hand side of (A20) con-
verges to

o(r,—r)8(r;—r;) as N—> o . (A20b)

Equivalently, we consider convergence of N2e?™NrT to
8(r)8(r’). Let ¢(r,r') be a continuous Fourier transform-
able function, and look at

]\}Enw f d2r f d27'¢( I, rl )NZe 2wiNrr'

= lim N? [ d% g(r,27NT1)

N>

(A21)

where the tilde denotes Fourier transform in the second
argument. Since @(r,q) is continuous in r, and is as-
sumed to decay to zero with large Iql, (A21) converges to

1 ~
o [ d%49(0,9)=¢(0,0)
so that, at least in this integral sense, we have the re-
quisite § function. Extending this intuition to higher / is
straightforward. For sufficiently smooth w(r), then, it is
clear that (A18) converges to the continuum results
(A1l). If w(r) loses smoothness (as we certainly see that
it must, if thermodynamics holds at long times) the C,
will clearly differ greatly from their continuum counter-
parts. However, this is very reasonable since we know
that for any fixed-length scale resolution, the conserva-
tion laws are indeed violated for the continuum problem.
Finally, we may write down the discrete lattice dynam-
ics. One finds the equation of motion for the Q(n)

(A22)

3Q(n) 2aN . | 2w
—_— = _ ~—nX Q(m)Q(n— ,
o ,,,(Z;&O)A(m)sm Nn m [ Q(m)Q(n—m)
(A23)
where
) 21rmy
47°A(m)=4—2cos —2cos N
is the discrete Laplacian in Fourier space, so that
1
Hy=1 % ——Q(m)Q(—m) . (A24)
? o) Alm)

In real space this yields

do(r) _

at # > gn(r—r,r,—r)o(r)o(r,) , (A25)

I,r,

where

gylr,r')=— -]\;—Zzg(r3,0)21rN3sin[21rNr’X(r+r3)]

3
=2#N3sin(2rNr Xr')/A(NT') . (A26)
The continuum result is
84, (r,r')=[VX8(r,0)]-V&(r') . (A27)

Using the result
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—27N3sin(2nNr 1’ )N_> Va(r')-Vé(r) , (A28)

which may be derived by differentiating the obvious rela-
tion

N2cos(2mNr-r') — 8(r)8(r’)

— 0

(A29)

with respect to r-r’, it is easy to see that (A26) indeed
converges to (A27) as N— . Once again we see that
convergence is rather slow and requires that w(r) be
reasonably smooth.

It would obviously be very nice if one could derive our
statistical mechanics from this method of discretizing
Euler’s equation. Unfortunately we see no obvious way
of doing this. Both methods in Sec. V relied heavily on
the single-site character of the conserved quantities (i.e.,
products of @’s on the same site only). The combinatoric
argument took advantage of the obvious implementation
of the conservation laws as a hard-core lattice gas—no
longer the case for the SU(N) realization. The Kac-
Hubbard-Stratanovitch transformation method used the
single-site character in the definition of the function
W(r), Eq. (5.52), which would otherwise require far more
than a single argument, and be far more difficult to calcu-
late.

APPENDIX B: NUMERICAL METHODS

The mean-field equations that we derived in Sec. V de-
pend in a complicated way upon a large number of pa-
rameters. We do not know of a practical way to solve
them directly, except in very simple cases. For a single
species of point vortex in a disc with Dirichlet boundary
conditions, an analytic solution is well known [57]. For a
small number of nonzero charge species, a relaxational al-
gorithm seems straightforward, and we have implement-
ed this for axisymmetric equilibria (effectively a one-
dimensional problem). In the single-species point-vortex
limit, Smith [7] has employed a Newton continuation
method that applies to (asymmetric) two-dimensional
vorticity distributions. When required to deal with a
large or infinite number of charge species, which is ordi-
narily the case under physical conditions, we have resort-
ed to Monte Carlo methods.

We have used a simple relaxational numerical scheme
to investigate the equilibria of the one- or two-charge
case [Eq. (6.5) or (6.10)]. We will describe the procedure
for the one-charge case: the generalization to more
charges is clear.

We relax to the solutions of Eq. (6.5) by introducing a
fictitious time variable 7 and solving

o _ , 8F

=+ —= 2 +—+‘ ,
ar 8, Vo L4 Pavong)

where F[,] is the free energy introduced in Eq. (5.55),

(B1)

o)== [ dr (Lo + TIn(1+¢ H7%7))],

(B2)

and the boundary conditions for no fluid flow through the
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boundary at r, are

1,[’(1'1, ):¢b .

For fixed ¥, Eq. (Bl) is relaxational, approaching the
maximum of F. For the axially symmetric case we have
implemented the dynamics using a discrete mesh in the
radial coordinate, and a semi-implicit, second-order accu-
rate time evolution. In practice, during the relaxation,
we have found it useful to take advantage of the fact that
a constant added to y(r) can be absorbed into a
redefinition of the chemical potential p1,, and to relax the
value of v, so that the field at the origin remains fixed at
zero: Y(r=0)=0. We believe this will give a smoother
dependence of the solutions on p,.

The scheme may be readily generalized to include a
finite number of vorticity levels, and also the conserva-
tion of angular momentum, at the cost simply of intro-
ducing more chemical potentials Hq, and pu;. The nonax-

(B3)

isymmetric case, although more complicated numerical-
ly, is also an obvious extension.

For the special case of axisymmetric solutions of the
one charge case we may eliminate the chemical potential
by working directly with the density of charge p,(r) and
relaxing according to the equation

9p; T |o» Pi

——=—|= |Vl |—/—— |+ B4

or q Viin 1—p, P B4)
with the boundary condition

d P1 = 2

= =Bq* 7, BS

ar " l=py | |, =4 Ba 2 B3
which imposes a fixed total vorticity Eq. (6.7). This

scheme is very useful to investigate the behavior in the
(a,B) plane as in Fig. 1, without having to evaluate the
dependence p,(a,f3).

For the multilevel calculation we have relied on the
Monte Carlo computation method, which we review here
since readers with a fluid-mechanics background might
not be familiar with this standard technique. By Monte
Carlo, we refer to a class of rejection sampling methods
related to the Metropolis algorithm [78]. These methods
are based upon a stochastic dynamics that evolves the
system toward a statistically stationary equilibrium state.
The artificial dynamics is designed to sample the
Boltzmann distribution exp(—fB%), with statistics im-
proving in time (or number of steps for a discrete dynam-
ics). The stochastic dynamics needs to be chosen so that
(1) it is ergodic; and (2) it satisfies detailed balance.

WX, Yexp[ —BH(X)]|=W(Y,X )exp[ —BFH(Y)], (B6)

where W(X,Y) is the probability that the system moves
to state Y at the next step, given that it is currently in
state X [79]. We may divide W(X,Y) into two indepen-
dent parts: the conditional probability P(X,Y) that a
transition (or “move”) from X to Y is proposed, given
that the system is in state X, and the conditional proba-
bility that a proposed transition is accepted, A(X,Y). If,
as is customary, we choose P(X, Y) constant for a set of Y



45 STATISTICAL MECHANICS, EULER’S EQUATION, AND ...

related to X by an elementary move, and zero otherwise,
then W(X,Y)=A(X,Y). A variety of choices for
W(X,Y) are possible; the canonical Monte Carlo
(Metropolis) method stipulates

W(X,Y)=max{1,exp[ —BH(Y)]/exp[ —BH(X)]} .
(B7)

Once our Monte Carlo dynamics has relaxed the sys-
tem to equilibrium, we may calculate sought-after quanti-
ties by averaging over the configurations given by the dy-
namics, provided we are careful to average only over
configurations separated by sufficiently many time steps
that the correlations between them are small.

A closely related ‘“microcanonical” Monte Carlo
method has been suggested by Creutz [80]. He partitions
the energy between the system of interest and an addi-
tional degree of freedom, the ‘“demon.” Moves are re-
stricted to the phase space determined by conservation of
the sum of the energies of system and demon.

We have made use of both canonical and microcanoni-
cal methods. We treat the energy and angular momen-
tum separately; we have found it convenient to calculate
with either (1) microcanonical moves separately in both
energy and angular momentum; or (2) canonical moves in
the energy but microcanonical moves in the angular
momentum. For the regimes in which we are interested,
both methods yield identical results.

Our configuration space is made up of the square lat-
tice of sites enclosed by a disc or annulus. A move con-
sists of the exchange of the value of the vorticity field on
a specified site, with the value of the vorticity on a dis-
tinct site, chosen randomly on the lattice. We may view
a move as the exchange of a pair of lattice sites. In prac-
tice, we achieve more rapid relaxation by the exchange of
two independently chosen pairs of lattice sites on each
move [7]. We find that this two-pair exchange yields the
same equilibrium average as one-pair exchange. Note
that a pair exchange can involve any two lattice sites, not
merely nearby ones.

We have used both Green’s functions and relaxational
methods to calculate the energy difference between a
given state and a proposed move. The Green’s function
of the Laplacian is convenient to compute for a disc,
where the Dirichlet boundary conditions can be satisfied
by means of image charges. In this case, we can confirm
that both ways of calculating the energy yield identical
results. On the annulus, we have calculated energies by
using a relaxational method to solve the Poisson equation
on the lattice, by means of a standard five-point first-
order discretization.

Our calculations have been done with a 32X 32 square
lattice. The outer boundary of the disc or annulus is al-
ways a circle of radius 16 lattice units; only squares
within the boundaries play a role in the computation. A
single Monte-Carlo sweep (MCS) is defined as n /2 accept-
ed moves, where n is the number of squares on which the
vorticity achieves an absolute value greater that 0.0001
times the maximum absolute value of the vorticity,
|@|max- Before collecting statistics, we allowed our lat-
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FIG. 5. Comparison of the numerical solution of the mean-
field equations with a two-level initial condition,
g(0)=0.7356(0)+0.2656(0 —1) (dashed curve), with the cor-
responding Monte Carlo equilibrium state (solid line).

tices to equilibrate for several hundred MCS, by which
time a stationary state is achieved, and further equilibra-
tion appears to be unnecessary. In the parameter ranges
chosen below, we obtain identical results whether we an-
neal our lattices from higher temperatures, or quench
them directly from the prescribed vorticity configuration.
In parameter ranges similar to those used below, we have
found that equilibration is rapid and longer runs yield
quantitatively indistinguishable long-time configurations.

In Fig. 5 we show the equilibrium vorticity profile on a
disc of radius 1 for a simple set of parameter values. We
have chosen energy E=0.034 and angular momentum
[redefined for convenience by removing the part
with no configuration dependence—see Eq. (5.3)]
L= [d’rwr*=0.212. The (bare) vorticity distribution
g, was chosen to be 0.2658(0 —1)+0.7358(c). The
smooth curve shows the equilibrium vorticity profile as
calculated by numerically solving the radial ordinary
differential equation for a particular choice of B and u.
The jagged curve shows the equilibrium vorticity profile
as calculated by the Monte Carlo computation described
above, with the relaxational Poisson algorithm. For the
Monte Carlo calculation, the energy and angular momen-
tum were determined by discretizing on the square lattice
the equilibrium vorticity profile calculated from the ordi-
nary differential equation and were found to be E =0.036
and L =0.204. The bare vorticity distribution was, of
course, the g, specified above. We ran a microcanonical
Monte Carlo calculation for 5X 10> MCS, with an accep-
tance ratio of 1/6. The vorticity was averaged in the az-
imuthal direction, and has a maximum standard devia-
tion of 0.026. Evidently, the Monte Carlo calculation can
yield an excellent approximation to the exact solution of
the mean-field equations.
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FIG. 3. Comparison of our Monte Carlo simulations with the
long-time dynamics of Marcus (Ref. [6]): (a) the initial condi-
tion consisting of a ring of vorticity; (b) the Monte Carlo equi-
librium state arising from (a); (c) the long-time dynamical state
arising from (a). The zero of vorticity is at the midpoint of the
gray scale.



FIG. 4. Comparison of our Monte Carlo simulations with the
long-time dynamics of Marcus (Ref. [6]): (a) the initial condi-
tion consisting of two oppositely charged symmetrically placed
blobs; (b) the Monte Carlo equilibrium state arising from (a); (c)
the long-time dynamical state arising from (a). The zero of vor-
ticity is at the midpoint of the gray scale.



