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Molecular-dynamics investigation of tracer difFusion in a simple liquid

Fouzia Ould-Kaddour' and Jean-Louis Barrat
Laboratoire de Physique, Ecole Normale Superieure de Lyon, 69364 Lyon CEDEX 07, France

(Received 17 April 1991)

Extensive molecular-dynamics simulations have been carried out for a model tracer-solvent system
made up of 100 solvent molecules and 8 tracer molecules interacting through truncated Lennard-Jones
potentials. The influence of the size ratio between solute and solvent, of their mass ratio, and of the sol-
vent viscosity on the diffusivity of a small tracer was investigated. Positive deviations from a Stokes-
Einstein behavior are observed, in qualitative agreement with experimental observations. It was also ob-
served that as tracer and solvent become increasingly dissimilar, their respective dynamics become
decoupled. We suggest that such decouplings can be interpreted by writing the mobility of the tracer as
the sum of two terms, the first one arising from a coupling between tracer dynamics and hydrodynamic
modes of the solvent, and the second one describing jump motion in a locally nearly frozen environment.

PACS number(s): 66.10.Cb, 02.60.+y

I. INTRODUCTION

D-g (2)

where the exponent a is smaller than 1. For example, the
diffusion coelcient of xenon in a series of n-alkanes was
found to obey (2) with a=0.686 [6]. The interpretation
of such experiments, however, is complicated by the fact
that changing one of the two elements of the tracer-
solvent combination implies that one simultaneously
modifies all the microscopic parameters characterizing
this combination; for example, the size ratio of the two
rnolecules, their mass ratio, and their van der %'aals in-
teractions are changed at the same time. Each of these
parameters can be expected to affect the tracer diffusivity
in its own way, and experiments do not have the ability to

It is well known that the diffusion coeScient D of a
large and massive particle or molecule (tracer} immersed
in a solvent of much smaller and lighter molecules is re-
lated to the solvent viscosity g by the Stokes-Einstein
(SE) equation

k~TD=
6mgo.

where T is the absolute temperature, kz the Boltzmann
constant, and 0. the radius of the diffusing particle. This
relation has been verified experimentally in great detail
[1]and is theoretically well understood [2].

If, however, the size of the diffusing particle is not
large compared to that of the solvent molecule, the
Stokes-Einstein relation is not expected to remain valid.
Surprisingly, it turns out that the borderline case of self-
diffusion in simple liquids (i.e., the case of a tracer parti-
cle identical to the solvent molecules) is still well de-
scribed by Eq. (1) [3]. When, on the other hand, the
tracer becomes smaller than the solvent molecules, a
large body of experimental evidence shows that (1) is
violated [4—7]. Experimental data were often fitted to the
modified Stokes-Einstein form:

sort out these different contributions.
Molecular-dynamics (MD) simulations, on the other

hand, allow a continuous variation of the parameters
characterizing the solute-solvent system and thus a sys-
tematic investigation of the way each of them affects the
diffusivity of the tracer. In this paper we present such a
systematic investigation of a model system, in which both
solvent and solute interact through truncated Lennard-
Jones (LJ) potentials. A rather large number of parame-
ters is required to describe even such a simple system,
and a systematic exploration of this multidimensional pa-
rameter space is clearly out of the question. Therefore,
we have chosen to focus on several "cuts" in this parame-
ter space, in order to assess the separate influence of the
mass ratio m2/m i (the indices 1 and 2 refer, respectively,
to the solvent and solute molecules}, of the size ratio
o 2/0 „and of the solvent viscosity, all other parameters
being kept constant. In particular, when investigating
the mass or size ratio dependence of the solute diffusivity,
the thermodynamic parameters (temperature T and pres-
sure P) were chosen such that the solvent is a dense
liquid, close to its triple point.

Several investigations of diffusion in binary mixtures
have been reported in the past. Their objectives, howev-
er, differed from ours. Bearman and Jolly [8] studied the
mass dependence of the diffusion constant in equimolar
mixtures of argon and krypton. Alder and co-workers [9]
investigated mass and size dependence of diffusion con-
stants in moderately dense hard-sphere mixtures, their in-

terest being mostly in studying the deviations from En-
skog theory due to the appearance of correlated motions
in the quid. A similar study was performed by Toukubo
et al. [10] on a Lennard-Jones system, but was limited to
mass and size ratios of —,

' and 2. Finally, the diffusion of
an isotope heavier than the solvent molecule was studied

by Toxvaerd [11]. In this paper we present a systematic
study of small-tracer diffusion in dense fluids using MD
simulations.

The paper is organized as follows. Section II describes
our model and numerical procedure. The results on the
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mass, size, and viscosity dependence of the tracer
diffusion coefficient are presented in Sec. III. The paper
ends with a brief discussion.

II. MODEL AND NUMERICAL PROCEDURE

Our model "solvent-solute" system was made up to 100
"solvent" (index 1) molecules with 8 "tracer" (index 2)
molecules. The interparticle potentials were taken to be a
truncated Lennard-Jones interaction:

U,~(r)=s;1f (r/o;1 ), (3)

67 —48
f (x)—. 610009 x,

5 —24
x
x

0 for x)x
for x, (x &x (4)

where x, is the inflection point of the LJ potential and
x =

—,",x, . The units of energy, length, and mass were

chosen to be, respectively, c,2, o &, and m &. The corre-
sponding microscopic time scale is r=(m&crf/s&z)'~ .
Moreover, we always set the solute-solute interaction en-

ergy s2z (which in principle would be an irrelevant pa-
rameter for an infinitely dilute system) equal to s,2.
Therefore, the state of our system is fully specified by the
choice of five parameters, namely, the mass ratio m2/m, ,
the size ratio cr2/cr „the solvent-solvent interaction ener-

gy s»/s&2, and two thermodynamic parameters, e.g. , the
reduced temperature T'=ks T/s, 2 and the reduced den-

sity p* =pa i.
The simulations were carried out at constant volume

and temperature using the standard Verlet algorithm and
Hoover's thermostatting method [13]. The time step was
h =0.005~, except in the runs involving very light tracer
molecules (m2~0. 1m, ) where a reduction of the time
step proved necessary in order to obtain a proper descrip-
tion of the tracer dynamics. Each run consisted typically
of 10 equilibration steps (starting from a configuration
obtained in a previous run) followed by 2X10 produc-
tion steps, during which positions and velocities were
recorded for subsequent analysis.

The diffusion constants D, and D2 of the tracer and
solvent molecules can be obtained from the mean-square
displacement of a tagged particle (Einstein formula),

D, = lim —([r,.(t)—r, (0)] ),1

6t

or equivalently from the integral of its velocity autocorre-
lation function (Kubo formula),

D; =
3 J (v;(r) v;(0))dr . (6)

Both formulas were used to compute the diffusion

with additive diameters o; =(o;+o )/2. The truncated
Lennard-Jones function f (x) is taken from Ref. [12] and
reads

T

4(x ' —x ) for x (x,

N,

V, (r) = g U, 2(r —R, ) . (8)

This potential has a matrix of second derivatives evalu-
ated at the tracer position R„

(9)

(the Greek indices refer to Cartesian components, and the
m 2

' factor has been introduced so that A has the dimen-
sion of a squared frequency), that characterizes the cur-
vature of the potential instantaneously experienced by the
tracer particle. If all the three eigenvalues w„w2, and
w 3 of A are positive, the tracer can be described as being
in a "potential well" created by the neighboring solvent
molecules. Negative eigenvalues, on the other hand, indi-
cate that the tracer is on a "potential hill. " Thus by sim-

ply calculating the distribution function of the eigenval-
ues w, p (m) (which in practice is done by calculating the
matrix A and diagonalizing it at each time step, and
building a histogram of the resulting eigenvalues), we can
easily obtain, e.g., the fraction of time spent by the tracer
in the "well" or "hill" configurations, information that is
obviously of interest in understanding its diffusion. The

coefficients. From the difference between the estimates
obtained using Eqs. (5) and (6) and from the scatter be-
tween the statistically independent values obtained for
the diffusion along the three directions x, y, and z, we es-
timate the error in our values for D2 to be about 10%.
This unusually large error for a diffusion coefficient is due
to the fact that only a small number of tracer molecules
contribute to the statistics. In view of this relatively large
uncertainty, we did not consider other possible sources of
error such as the relatively small system size. Although
we are mainly interested in the dynamics of the tracer,
the simultaneous calculation of D& provides us with a
useful reference value. In particular, the solvent viscosity
is unknown, so that we cannot directly compare our re-
sults for D2 with Eq. (1}. A calculation of the viscosity
using either nonequilibrium molecular dynamics or a
Green-Kubo formula is, of course, feasible, but would
considerably increase the computational effort. We can,
however, bypass this difficulty by using Eq. (1) for D, [as
mentioned in the Introduction, (1} is known to be rather
accurate for self-diffusion in simple liquids] to define a
"Stokes-Einstein behavior" for D2 by

D2 oi
D& o2

As usual, the MD simulation allows one to compute
various static quantities such as pair-correlation func-
tions or thermodynamic functions. A static quantity that
might be particularly relevant for the understanding of
the tracer diffusion (which is a time-dependent process) is
the "Einstein frequency distribution" or a tracer mole-
cule defined as follows. For any configuration of the sys-
tem (characterized by solvent positions R, i =1, „N,
and a tracer position R, ), we can define the potential
V, (r) created by the solvent molecules on the tracer:
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denomination "Einstein frequency distribution" for the
normalized distribution p(w) is motivated by the proper-
ty that its first moment is the square of the Einstein fre-
quency of a tracer particle, defined as usual by

1
E2 drPlg12(r)~ Uj2(r)3' 2

(10)

where p, is the solvent density and g &2 the solvent-tracer
pair-correlation function. This property stems from the
fact that the first moment of p (w) is the average value of
the trace of the matrix A, i.e., of m2 'V U, 2(R, —R;).
Note that the formulas above refer to the special case of
an isolated tracer molecule. When, as is the case in our
simulation, the tracer concentration is not vanishingly
small, it must be understood that the summation in Eq.
(8) also includes the other tracer rnolecules, and Eq. (10)
has to be modified accordingly to include the contribu-
tion from the pair-correlation function g22. Finally, we
remark that the distribution p(w) is (except for a trivial
variable change w~w' ) the equivalent at the one-
particle level of the normal-mode frequency distribution
recently studied in a Lennard-Jones liquid by Seeley and
Keyes [14].

As we just mentioned, it is clear that our system, with
a tracer concentration of almost 10%, is far from being a
dilute solution. The tracer molecules, however, interact
in general more weakly with each other and with the sol-
vent than the solvent molecules between themselves.
This was indeed the case of the hard-sphere simulations
of Easteal and Woolf [15],in which the diffusion constant
for a tracer concentration of 12% was found to approach
the infinite-dilution value. It is, therefore, reasonable to
hope that our results will be close to the ideal, infinite-
dilution results. A sensitive check of this expectation is
that the solvent and dynamical properties (i.e., its pair-
correlation function g» and its diffusion constant D

&
)

should remain unaffected, and equal to those of the pure
solvent at a density n, when some solvent molecules are
replaced by tracers. In order to meet this requirements
we had in particular to increase slightly the total density
as the tracer size was decreased. Tracer-mass variations,
which do not affect g», were also found to have very lit-
tle effect on D, . We also checked that the tracer mole-
cules did not have any tendency to cluster, a behavior
that would be indicative of immiscibility between pure
tracer and solvent Quids, and can be expected to occur as
the mismatch between the two molecules is increased.
The formation of clusters was checked for by calculating
systematically the number n, 22 of tracer molecules coor-
dinating another tracer molecule. Except in one case
where clustering was observed (see Sec. III C), n, z2 turned
out to be always smaller than l.

Section III describes the results obtained in three series
of runs: in the first series, we vary the tracer size, keep-
ing its mass equal to the solvent mass and all interaction
energies equal. Two thermodynamic states of the solvent
were studied: a supercritical fiuid (T'=2.75, p'=0.7)
and a state close to the triple point (T =0.75, p =0.85).
As mentioned above, the total density had to be increased
as the tracer size was reduced in order to keep g» and D,

constant. In the second series of runs, we vary the
tracer's mass for several fixed size ratios, the interaction
energies being still identical. Here only the state of the
solvent close to the triple point was considered. Finally,
a third series of runs explores, for several tracer sizes, the
dependence of D& on the solvent's viscosity, for equal
masses, a fixed temperature T'=T/e, &=0 75,. and a
fixed density p'=0.85. The solvent viscosity was in-
creased by increasing the solvent-solvent interaction en-
ergy c.», so that the solvent effectively becomes a super-
cooled Lennard-Jones liquid with a "solvent reduced
temperature, "T', = T/e», smaller than 0.75.

III. RESULTS

A. Size dependence

TABLE I. Diffusion coeScient D2 of the tracer molecules for
various size ratios 0.2/cr &. The thermodynamic state of the pure
solvent is T =0.75, p =0.85. The total density is increased as
the tracer size is reduced.

m2/m,

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0
0.90
0.70
0.50
0.35
0.20
0.15
0.10
0.075
0.06
0.05

0.850
0.868
0.890
0.900
0.900
0.910
0.910
0.920
0.920
0.920
0.920

D2

0.027
0.029
0.046
0.079
0.13
0.21
0.25
0.33
0.36
0.355
0.39

D,

0.024
0.025
0.025
0.026
0.026
0.028
0.027
0.025
0.027
0.028
0.024

Our findings for the size dependence of the tracer
diffusion for a mass ratio of 1 are summarized in Figs.
l(a) and 1(b) and Tables I and II. In order to facilitate
the comparison with the Stokes-Einstein relation [Eq.
(7)], we have plotted in these figures the ratio D2/D,
versus a, /o2 Th.e behavior of D2 is rather similar for
the two temperatures investigated: in both cases, D2 first
increases as the tracer size decreases, then levels off at a
size-independent value. This leveling off takes place for
size ratios o, /o2 between 5 and 10. For o 2 &0. lo „the
tracer behaves. essentially as a pointlike particle in the
external potential created by the solvent molecules, and
its size becomes irrelevant. The most noticeable
difference between the two temperatures is in the initial
increase of D2. While for T'=2.75, this initial increase
can be described by Eq. (7), a strong positive deviation
from this Stokes-Einstein behavior occurs at T'=0.75.
Such a positive deviation is compatible with the experi-
mental observations that the Stokes-Einstein relation un-
derestimates the tracer diffusion coeScient when solvent
viscosity is high (note that a, / rois usually smaller than
10 in the experiments). This effect can be described using
Eq. (2) or equivalently and ad hoc "viscosity-dependent
radius" which increases with solvent viscosity [16].

Figure 2 presents the Einstein frequency distributions
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TABLE II. Diffusion coefficient D2 of the tracer molecules

for various size ratios a2/cr&. The thermodynamic state of the

pure solvent is T =2.75, p*=0.7.

m2/m &

1.0
1.0
1.0
1.0
1.0
1.0
1.0

Cr2/O. l

1.00
0.70
0.30
0.15
0.10
0.08
0.05

0.700
0.740
0.765
0.768
0.770
0.771
0.775

D2

0.27
0.38
0.63
1.01
1.32
1.28
1.45

D&

0.25
0.24
0.24
0.24
0.24
0.24
0.24

0.6—

C4

0.4—

0.2—

Q
-100 0 100 200 300

for a small tracer ( o 2
=0. 1o, ) and a larger one

(o &=0.9o, ). A trivial difference between the two curves

is, of course, the typical magnitude of the eigenvalues w,
which is much smaller for the small tracer, this difference
being obviously due to the weaker interaction potential.
A more interesting feature is the fact that while for the
bigger tracer only l%%uo of the eigenvalues are negative,
this proportion reaches 31%%uo for the smaller one. The big
tracer is therefore almost always in the bottom of a po-
tential well created by its neighbors, so that its motion
necessarily involves a collective motion of these neigh-

FIG. 2. Einstein frequency distribution of the solute mole-

cules. Solid curve, 0.2=0.9~~', dashed curve, 02=0. 1'&. The
thermodynamic state of the solvent is T =0.75, p =0.85; the
mass ratio is 1.

bors. On the contrary, the small particle spends a large
fraction of time hopping over potential barriers, a behav-
ior that is consistent with the "point-particle" picture we
inferred from the size dependence of D2.
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B. Mass dependence

The dependence of D2 on m2 has been investigated for
diameter ratios of 1, 0.5, and 0.1, for a solvent close to its
triple point (T'=0.75, 0.85 p 0.92), all interaction
energies being kept equal. The prediction from the
Stokes-Einstein equation (1) is that D2 should be indepen-
dent of m2/m, . This prediction is borne out for
o z/cr t

= 1 (isotope diffusion): in this case, we found that
D2 is essentially independent of mz/m, in the range
0.05m, &m2&m, . The situation is quite different for
the two other diameter ratios, as illustrated in Figs. 3(a)
and 3(b) and Tables III and IV. In both case, D2 starts to
increase rapidly with decreasing m 2 when m 2/m, be-
comes smaller than about 0.5. Once again, we observe
that using the Stokes-Einstein relation would yield an un-
derestimate of D2.

Ax 4—
A

T*=2.75

C. Solvent-viscosity dependence

In order to simulate an increase in solvent viscosity at
fixed temperature, we increased the solvent-solvent in-

p*=0.7—0.9

ma= 1.0

0 '
i i i & I i & i & I i i i I t t & i & I s

5 10 15 20

TABLE III. Diffusion coefficient D2 as a function of mass ra-
tio m2/m& for a size ratio 0&/a. 1=0.5. The thermodynamic
state is T*=0.75, p*=0.9.

FIG. 1. (a) The ratio of tracer over solvent diffusion
coefficients D2/D& as a function of the inverse size ratio, for
equal masses. The thermodynamic state of the pure solvent is
T*=0.75, p*=0.85; the density is increased from 0.85 to 0.92
as the tracer size is decreased. The dashed line corresponds to
the Stokes-Einstein behavior [Eq. (7)]. (b) Same as (a), but for a
supercritical solvent ( T*=2.75, p =0.7).

0 2/CT I

0.5
0.5
0.5
0.5
0.5
0.5
0.5

m2/m &

1.00
0.70
0.50
0.40
0.30
0.10
0.05

D2

0.08
0.08
0.09
0.10
0.09
0.13
0.14

Dl

0.026
0.026
0.026
0.026
0.026
0.026
0.026
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TABLE IV. Diffusion coefficient D& as a function of mass ra-
tio m2/m& for a size ratio o.2/o. &=0.1. The thermodynamic
state is T*=0.75, p =0.92. The number density is slightly
higher then that in Table III because the tracer size is smaller.

TABLE V. Diffusion coefficients D
&

and D2 at various
solvent-solvent interaction energies c.». The temperature and
density are T =0.75, p*=0.9 and the size ratio is 0.5.

T*/Cl l Dlm2/rn & D20.2/O. l

mz/m & Dl 0.033
0.031
0.026
0.021
0.018
0.014
0.011

0.100
0.093
0.079
0.083
0.069
0.071
0.070

1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.95
0.85
0.75
0.65
0.55
0.50
0.45

0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1.00
0.70
0.50
0.40
0.25
0.10
0.05

0.33
0.37
0.35
0.44
0.54
0.70
0.78

0.025
0.025
0.025
0.025
0.025
0.025
0.025

teraction energy, all other parameters being kept fixed.
This was done for diameter ratios of 0.5 and 0.1, at
T'=0.75. Before commenting on the results, we briefly
point out some diSculties associated with the use of a su-
percooled solvent: It is well known that a one-
component supercooled Lennard-Jones liquid will crys-
tallize unless a high quenching rate is applied [17]. The
use of a high quenching rate on the sluggish supercooled
solvent implies that the system cannot be well equilibrat-
ed. Moreover, crystalline nucleation is always possible,
and we had in fact to discard several runs because of its

occurrence. Another worrisome aspect is the possibility
of phase separation between tracer and solvent, which is
expected to be enhanced for large e»/e12 ratios. This
phase separation results in a clustering of the tracer mol-
ecules, and runs where such a clustering was detected had
to be discarded.

As a consequence of these diSculties, only a limited
range of e» (0.4( T'/e» (0.95) values was investigat-
ed. This corresponds to a decrease in D, (and therefore,
if we assume that the SE relation is valid for self-
diffusion, an increase in solvent viscosity) by a factor of

0+12
i

I I I I
i

I I I I
[

I
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'o 0.08

tL)

o 0.06

0
'tf) 0.04
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T =0.75
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trq/0 i= 05.(a)1.8

Da
g

1.6

~1.44

8
1.2

0
0

o Dl 0'1/tTI
0

T =0.75
p =0.9

(rl/(r, 0 5=.
I0 I

s i I s & i I g & i I i i i I s i i I g

4/ ~ LJ 2.51.5
0 0.2 0.4 0.6 0.8 1
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~ 0.3
0
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0 0.2
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0
& 0.1

A

Dq

(b)
T =0.75

p =0.92

o',/n, =0.1

1
c7

g1.5
A

D i'~i/traT =0.75

p =0.92
0'g/(7g =0.1

I I I I I I I I I I i I I I I I I I I

2 2.5
1/T,

1.5
I I I I I i I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 1

mg xxl|
FIG. 3. (a) Tracer diffusion coefficient as a function of mass

ratio for a size ratio o.2/o. i =0.5. The temperature and density
are T*=0.75, p*=0.90. The dashed line corresponds to the
Stokes-Einstein behavior [Eq. (7)]. (b) Same as (a), but for a
smaller size ratio 0.2/o. l =0.1. The temperature and density are
T*=0.75, p* =0.92.

FIG. 4. (a) Solute (triangles) and solvent (circles) diffusion

coefficient vs inverse "reduced solvent temperature" c»/T*, for
a size ratio o&/o&=0. 5. The system temperature is fixed at
T =0.75 and the total density is 0.9; the masses are equal. Dl
has been multiplied by 0.&/o. & in order to facilitate the compar-
ison with Eq. (7). (b) Same as (a), but for a smaller size ratio
0.2/o. l =0.1. The density is therefore slightly higher: p =0.92.
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TABLE VI. Same as Table V but for a size ratio of 0.1. The
temperature and density are T*=0.75, p* =0.92.

m2/m &

1.0
1.0
1.0
1.0
1.0
1.0

O2/Cr
&

0.1

0.1

0.1

0.1

0.1

0.1

0.85
0.75
0.65
0.60
0.45
0.40

D&

0.028
0.025
0.021
0.015
0.007
0.003

0.31
0.33
0.30
0.30
0.26
0.26

about 10. The density was kept constant, p*=0.9 for
cr2/cr&=0. 5 and p'=0.92 for crz/o, =0.1. The results
are presented in Figs. 4(a) and 4(b) and Tables V and VI.
For o2/cr, =0.5, D2 first decreases as s»/T' increases,
then seems to level off for e»/T" ~1.5, indicating a
decoupling between solvent and tracer motions. For
oz/o &=0.1, the dependence of D2 on »e/T' is ap-
parently very weak, showing the tracer dynamics is com-
pletely independent of the solvent dynamics in the range
of viscosities we considered.

IV. DISCUSSION AND CONCLUSIONS

The results presented in Sec. III all display some kind
of decoupling phenomenon occurring when the solvent
and the tracer become increasingly dissimilar. This
decoupling results in strong positive deviations from the
SE behavior, in qualitative agreement with experimental
observations. An obvious theoretical framework for the
interpretation of our results is the Mori-Zwanzig
projection-operator formalism combined with mode-
coupling approximations for the memory functions [3].
A simplified version was recently proposed by Gaskell
and co-workers [18] and seems to account well for self-
diffusion in simple liquids. In this type of theory the in-
verse of the diffusion coefficient of a tagged particle is
usually written as a sum of two terms,
D2 ' =D~ '+DMc. The first term accounts for decorre-
lated binary collisions between the tagged particle and
the other particles in the fluid that occur on short time
scales. The second one is a "mode-coupling" term, which
describes the coupling of the tagged particle motion to
the slow hydrodynamic modes of the fluid. We expect

that the various decouplings we observe correspond to
the fact that as the tracer becomes much smaller or much
lighter than the solvent, the mode-coupling term becomes
small compared to the binary collision term. The tracer
can escape the cage created by its neighbors by hopping
over potential barriers, without needing a global rear-
rangement of its environment, and the mode-coupling
term becomes unimportant. Since only the binary term
depends on the mass of the tracer, while only the mode-
coupling term depends on the solvent viscosity, this inter-
pretation is obviously consistent with the results of Secs.
III B and III C. A more quantitative analysis, however,
will obviously be necessary and is presently in progress.

In this paper we have presented a detailed investigation
of the diffusion of a small Lennard-Jones tracer in a sol-
vent of similar molecules. This work was motivated by
the existence of numerous experimental results on tracer
diffusion exhibiting strong deviations from Stokes-
Einstein behavior. We did not, however, attempt a com-
parison with any specific experiment, but rather chose to
study a simple model in order to assess the separate
influence of the different parameters characterizing the
solvent-tracer diffusion couple. We expect that theories
capable of reproducing our results for such a model sys-
tem could be usefully extended to experimental situa-
tions. In the simulations we observed deviations similar
to those found in experiments when the tracer size, the
tracer mass, and the solvent viscosity were varied. The
dependence of the tracer diffusivity on these various pa-
rameters is quite complex, with crossovers between re-
gions in which the solvent dynamics strongly influences
the tracer diffusion and regions in which the tracer
behaves as a particle diffusing in a static external poten-
tial. In view of this complexity, it seems theoretically
difficult to justify the use of a simple empirical formula
relating tracer diffusivity and solvent viscosity, such as
Eq. (2).
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