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Transport coefficients of hard-sphere mixtures. II. Diameter ratio 0.4
and mass ratio 0.03 at low density
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The transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutual
diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4
and a mass ratio of 0.03 at volumes of 5VD, 10Vo, and 20VO (where Vo= '&2N—g, x,o'„x, are mole

fractions, a, are diameters, and N is the number of particles) through Monte Carlo, molecular-dynamics
calculations using the Green-Kubo formulas. Calculations are reported for as few as 108 and as many as
4000 particles, but not for each value of the volume. Both Anite-system and long-time-tail corrections
are applied to obtain estimates of the transport coefficients in the thermodynamic limit; corrections of
both types are found to be small. The results are compared with the predictions of the revised Enskog
theory and the linear density corrections to that theory are reported. The mean free time is also comput-
ed as a function of density and the linear and quadratic corrections to the Boltzmann theory are estimat-
ed. The mean free time is also compared with the expression from the Mansoori-Carnahan-Starling-
Leland equation of state.

PACS number(s): 51.10.+y, 05.60.+w, 66.10.—x, 66.20.+d

I. INTRODUCTION

The Enskog theory remains the only molecular-level
theory of transport properties in liquids and gases. Al-
though the theory was formulated for hard spheres, it has
been extended to soft potentials in a number of distinct
ways, with some measure of success. Thus the theory po-
tentially provides a unifying description of transport in a
wide range of fluids.

In view of this role, it is clearly important that the ac-
curacy of the theory in describing the hard-sphere fluid
itself be well understood. Thus, from the very earliest
days of computer simulation of fluid transport properties,
the question of the adequacy of the Enskog theory has
been addressed. Alder, Gass, and Wainwright (AGW)
used molecular-dynamics (MD) calculations based on the
Green-Kubo formulas to compute the self-diffusion
coefficient, the bulk and shear viscosity, and the thermal
conductivity of hard spheres over much of the fluid re-
gime [1]. In the case of self-diffusion, they discovered a
large positive deviation in the dense-Quid regime, having
its origin in the slow, algebraic decay of the Green-Kubo
time-correlation function for self-diffusion, the velocity
autocorrelation function (VACF), which was later stud-
ied extensively by means of molecular dynamics calcula-
tions by Erpenbeck and Wood both for hard disks [2] and
hard spheres [3]. While the self-diffusion coefficient ap-
pears to be infinite for hard disks, for hard spheres it
shows strong deviations from the Enskog theory, both
positive and negative depending on density [4].

In the case of shear viscosity, AGW reported excellent
agreement with the Enskog theory for hard spheres at
densities appreciably below the fluid-solid phase transi-
tion and strong positive deviations near that transition
which have been investigated in greater detail by Erpen-
beck and Wood [5], who found these deviations to arise

from the so-called cross and potential parts of the
Green-Kubo time-correlation function, rather than the
kinetic term which appears, both from theory [6—9] and
computer simulation [5] to have an algebraic time decay,
similar in form to that of the VACF but of inconsequen-
tial magnitude. Some progress in understanding the
dominant deviations from the Enskog theory has been
made by Kirkpatrick [10] and van Beijeren [11,12]. For
thermal conductivity and bulk viscosity, the AGW calcu-
lations showed good agreement with the Enskog theory
over the entire fluid regime.

From the practical point of view, the reliability of the
Enskog theory for mixtures is perhaps more important
than for single-component systems, in view of the indus-
trial, biological, and technological applications. The ini-
tial application of the Enskog theory to mixtures by
Thorne [13] was not entirely satisfactory in that the On-
sager reciprocity relations were violated. However, a
general reformulation by van Beijeren and Ernst [14]
yielded a theory in which the reciprocity relations hold in
all cases examined, including mixtures [15]. The resul-
tant theory has been evaluated by Kincaid, Cohen, and
Lopez de Haro [16—19] for binary mixtures.

While hard-sphere mixtures have been the subject of a
number of Monte Carlo and molecular-dynamics studies
relating to their equation of state, few such studies of
their transport properties have been made. Except for
studies by Alder, Alley, and Dymond [20], Herman and
Alder [21], and Subramanian, Levitt, and Davis [22] of
the diffusion of a single hard sphere in a hard-sphere fluid
having different particle mass and diameter and two stud-
ies of self-diffusion at a number of diameter ratios, by
Jackson, Rowlinson, and van Swol [23] for the case of
equal masses and by Easteal and Woolf [24] for several
mass ratios, molecular-dynamics calculations of the
transport properties of hard-sphere mixtures have been
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limited to a single "iostopic" mixture, namely an equimo-
lar mixture having equal diameters and a mass ratio of
0.1 at a volume of three times the close-packed volume.
The mutual diffusion coefficient for this case was evalu-
ated by Kincaid and Erpenbeck [25] using both none-
quilibrium and Green-Kubo methods, yielding values in
good agreement with each other but some 15% greater
than the Enskog value. In a more extensive calculation
for the same system using the Green-Kubo method [26],
referred to hereafter as I, we found the shear viscosity to
agree rather well with the Enskog theory, but the thermal
conductivity, thermal-diffusion coefficient, and the
mutual-diffusion coefficient were significantly larger than
the theory by 22%, 27%, and 12%, respectively.

In the present paper we extend these calculations to an
equimolar mixture which resembles helium-xenon mix-
tures in having a mass ratio of 0.03 and a diameter ratio
of 0.4. Within the limitation of relatively low density, we
treat, then, a case in which effects from the dissimilarity
of the species should be more important.

In Sec. II we describe the system briefly, while in Sec.
III we review the methods for obtaining the transport
coefficients, relying on I for a full description of both the
Green-Kubo and Enskog-theory methods. In Sec. IV we
describe our results, particularly with respect to finite-
system and long-time-tail effects. We close in Sec. V with
a discussion.

II. SYSTEM

The system consists of N particles at temperature T,
contained in a cubic volume V=L, subject to periodic
boundary conditions. The particles are of n, types, with

N, having mass m1, %2 having mass m2, . . . , and N„
having mass m„, subject to

S

n,

N= gN, ,
a=1

where we introduce subscripts, a, b, . . . for the species
indices which run from 1 to n, . The particles interact
through a pairwise-additive, central potential, u,b(r), be-
tween particles of species a and b, separated by a distance
r, so that the total potential energy of the system for
periodic boundary conditions is

N N

U(r )=—,
' g g g' u, , (~r,, +vL~),

v I —1J=1

in which r =[r, , i =1, . . . , N J denotes a point in
configuration space, r,. is the position of particle i,
r,-. =r,- —r, the v sum ranges over all 3-vectors of signed
integers, the s,- denote the species of particle i, and the
prime on the i,j sum indicates the exclusion of the i =j
terms for +=0. In the present study, we limit our atten-
tion to the case of hard spheres with "additive" diame-
ters; if o., denotes the diameter of particles of species a,
then

u,B(r)=P'" '(r/o. b ),
0 ifx ~1

f (2)

Oab
CTg +0 b

III. METHODS

A. Green-Kubo formulation

Our Monte Carlo, molecular-dynamics (MCMD) cal-
culations of the transport coefficients have been described
in considerable detail in I; we recapitulate that discussion
very briefly here, with several minor notational changes.
Transport coefficient L is evaluated from the Green-
Kubo formula, as the sum of kinetic, cross, and potential
terms,

a a a a a (4)

in which

L ' " ' = lim tlimL ' " '( t;N),

L( AB)(t .N) —f d ( AB)( .N)
0

with A, BE IE,P I, for transport effect a=a)a2
E I ab, ua, uu, gr) ] representing the mutual-diffusion
coefficient, the thermal-diffusion coeScient, the thermal
conductivity, and the shear viscosity, respectively. Here
tlim denotes the thermodynamic limit of large system size
and the p'" '(t;N) are time-correlation functions of the
form,

( AB)( t .N) P ( y( A)(0)y(B)( t) )a 9
V a2 7 (6)

in which p= 1/(kB T), kB is the Boltzmann constant, and
' and o'~' are the kinetic and potential parts of the to-

The state of the system is specified by the temperature,
density, and the composition. Inasmuch as the thermo-
dynamic and transport properties have their usual trivial
dependence on temperature for hard spheres, we need
specify only the composition, through n, —1 mole frac-
tions x„x2, . . . , x„„and the density, through the re-

S

duced volume,

V

V.
'

Il

Vp= N g x, (r3 .
a=1

We note that V0 reduces to the close-packed volume in
the case of a single-component system.

In the present paper we consider only binary mixtures,
with the two species characterized by m2=0. 03m1 and
(T2 =0.40

1 ~ Our calculations are restricted to the
equimolar mixture (x) =x2= —,') at rather low densities,
viz. , ~=5, 10, and 20; calculations for higher densities are
currently in progress.
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L'"B'(t N)= —(8'"'(0)Q' '(t)),a ~

V a& ap

in which

g(A)(i) — ds y( )(~)
0

Moreover, the related correlation function,

a ~ y a] ap

can be shown using the Liouville theorem, the time-

reversal invariance of trajectories, and the detailed form

of the various microscopic currents, to satisfy

~( AB) (t .N) L( AB) (t;N) (10)

in both the canonical and the microcanonical ensembles.
Finally, we note the importance of the Einstein-type

functions,

S'" '(t;N)= ——"(&"'(t)&' '( )),R

2t V

in the evaluation of transport coefficients, for one easily
sees from Eq. (10) that

tal microscopic currents,

a. =a(. )+a.(~'.
I l

The angular brackets denote an average over an equilibri-
urn, statistical mechanical ensemble.

As was emphasized in I, the thermal-transport process
can be described in a number of different ways, depending
on the choice of macroscopic driving forces for the trans-
port of heat and composition. For each such choice, one
obtains different expressions for the macroscopic
currents, all consistent with the Onsager reciprocity rela-
tions. Each choice leads to different, but related, trans-
port coefficients. At the microscopic level, these choices
are reflected in different expressions for the microscopic
currents 8 appearing in the Green-Kubo expressions.

t

In I, the three sets of choices detailed originally by de
Groot [27] were explored. It was found that the so-called
"mainstream" choice of forces, viz. (VT) /—T and
—TV(p, IT), in which p, is the specific chemical poten-
tial of species a, is advantageous for molecular-dynamics
calculations in the sense that neither the thermal wave-

length of the atoms nor the partial specific enthalpies are
needed to obtain the transport coefficients. Moreover, if
the thermal wavelengths and the partial enthalpies are
known, then one can readily obtain the so-called "prime"
and "double-prime" coefficients from the mainstream
coefficients. In the present paper, then, we also compute
these mainstream coefficients.

While it is common to emphasize the role of the time-

correlation functions p'" '(t;N) in discussing the Green-

Kubo method, the integrated "time-dependent transport
coefficients" L(" '(t;N), Eq. (5), are directly related to
the transport coefficients and can be directly calculated

by interchanging the order of the time integration in Eq.
(5) and the ensemble average in Eq. (6) to obtain

d—[iS'.""(t;N)]= '[I-. '""(t;N)+L.""'(i;N)] .

The Einstein-type functions are widely used in the calcu-
lation of self-diffusion because the microscopic current
8D is the velocity of a single particle, which can be in-

tegrated explicitly to yield QD(t)=b, R, (t), the displace-
ment of the particle in the infinite-checkerboard represen-
tation, whence SD(t) is the mean-square displacement di-
vided by 2t, in this case. For other transport processes,
the integral, Eq. (8), cannot generally be evaluated in
closed form, so that one expects to evaluate the 9 (t) in

l

a molecular-dynamics calculation by numerical integra-
tion.

For the case of hard spheres, however, the Einstein-
type correlation functions take on particular importance
in that the potential parts of the heat current 8„and the
momentum current (t(„reduce to sums of terms contain-
ing 5 functions in the time, 5(t —t ), where t& is the time
of the yth collision, so that only the 9'~'(t) are useful for

i

numerical averaging in this case. As a result, L'„~ ',

L '„~&~), L„'t' ', L„'t'~', and L„')' ' [as well as the correspond-
ing M'" '(t)] cannot be computed directly through
molecular-dynamics calculations.

B. Numerical determination

In order to estimate the time-correlation functions dis-
cussed above, we use a combination of Monte Carlo and
molecular-dynamics averaging. For a two-point function
of the time such as we have before us, F(x (t, ),x (t2)),
in which x =(r,p ) denotes a point in phase space and

p a point in momentum space, we evaluate the time-
correlation function

through the phase and time averages,

tr
1

M —1

f(t)= g g F(x (mht), x (t+mbt)), (13)
tr p=1 m =0

in which Ix (0),p=1,2, . . . , N«] is a set of points in

phase space generated by a Monte Carlo procedure, each
of which forms the starting point for a dynamical trajec-
tory x~(t), observed at time O, h, 2h, . . . , N„~h, with h

the observational time step. In the present calculations
the Monte Carlo procedure selects a sequence of initial
phases from the so-called molecular-dynamics ensemble,
the submicrocanonical ensemble having 0 linear momen-
tum in addition to specified N, V, and energy E, the latter
defining the temperature through

3(N —1)
2E

in which 3(N —1) is the number of degrees of freedom of
the system under the conservation of momentum. The
inner sum in Eq. (13) represents a time-average on the pth
trajectory, taken over equispaced time origins,
0, At, 2ht, . . . , with At =XToh. The number of such
time origins, M, varies with t.
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C. Long-time contributions

It is important in evaluating transport coefficients
through any molecular-dynamics technique to take ac-
count adequately of the effects of the finite size of the sys-
tems which are aeeessible numerically. It has long been
recognized that these effects are particularly important in
the calculation of transport coefficien in that the time-
correlation functions are distorted for values of the time
beyond those which characterize the crossing of the finite
system by hydrodynamic waves. While there was some
expectation that these effects might be less important for
the more direct calculation of transport coefficients by
nonequilibrium molecular-dynamics methods (so-called
NEMD); it now seems clear that finite-size effects are im-
portant in both NEMD and Green-Kubo methods [28].

An important element in taking account of finite-N
effects for Green-Kubo calculations is the fact that the
long-time decay of the time-correlation functions can be
determined theoretically through mode-coupling theory.
While the simple mode-coupling contributions may not
always dominate at the longest times accessible in MD
calculations (as in the case of the shear viscosity at high
density [5,29]), it does provide a useful framework for

making these corrections, as shown, for example, by the
recent combination of Green-Kubo molecular dynamics
and the mode-coupling theory in determining the self-
diffusion coefficient of hard spheres over the entire Quid
regime [4]. For the transport coefficients of mixtures,
Wood [30] has recently applied the mode-coupling
method to determine the long-time tails for the various
time-correlation functions which we study here, extend-
ing and correcting an earlier calculation by Pomeau [31].

In order to take into account the interrelated effects of
finite-system size and the finite time for which the time-
correlation functions can be evaluated, we decompose the
transport coefficients into short- and long-time contribu-
tions,

L ['](t, ) =tlimL ' (t„'N),
(14)

L[ ](t„N)=f IA'p (r';N), (16)

which we assume to approach the theoretical, mode-
coupling result in the thermodynamic limit,

L[2](r ) f dr p(Mc)(r)
C

k

t 3~2
(Mc)( r)

(17)

The coefficients I(: are given by Wood [30] and rewritten
in I, but not repeated here. They depend on both the
equation of state and the transport coefficients of the sys-
tem. For the former we use the Mansoori-Carnahan-

where t, is a "crossover" time between the short-time
contribution,

L[(](t„'N)=L (r, ;N),
and the long-time contribution,

Starling-Leland [32,33] (MCSL) approximation. The
transport coefficients are, of course, the objectives of our
investigation and it is not entirely clear from the mode-
coupling theory which values should be used in the k
[34]. Here we follow the usual practice (at least at low
density) of using the Enskog-theory predictions of Lopez
de Haro, Cohen, and Kincaid [16,17,19] as further de-
tailed in I. The evaluation of the transport coefficients in
this way also depends on the same approximate equation
of state. [We note that here we report only the complete
transport coefficients, the sum of the appropriate kinetic,
cross, and potential terms, whence we have not continued
to notate these distinct components in Eqs. (14)—(17).]

Our justification for using the mode-coupling tail for
the large-system, long-time correction to our data de-
pends on the comparison of our observed time-
correlation functions, p (t;N), with the second of Eq.
(17). Such a comparison was shown previously for the
isotopic mixture of I. We do not show here the compar-
isons for the present systems but simply observe that they
are qualitatively similar to those of I, displaying a general
consistency between the theory and MCMD calculations
for times greater than roughly 15 mean free times, but
with some (not unexpected) apparently significant devia-
tions for times greater than the acoustic-wave-traversal
time,

t, =L/c, (18)

c being the isentropic sound speed. Moreover, we note
that even in the case of self-diffusion of hard-spheres for
which the calculations are far more accurate and where
rather extensive comparisons have been made, the agree-
ment is not definitive [2,3], as emphasized recently in a
determination of the hard-sphere self-diffusion coefficient
[4]

D. Short-time contributions

Finally for the thermal-diffusion coefficient, we have
averaged four estimates for the kinetic part and two for
the cross part

The major component of the transport coefficients is
the short-time contribution L ['](t, ). As we noted above,
the potential contributions, L„'~~', L '„~~', M„'~~', and
M'„~~', cannot be calculated directly because of the singu-
larity of the interaction potential. Thus, our route in the
evaluation of the thermal conductivity and the shear-
viscosity coefficient is through Eq. (12) and numerical
differentiation of the Einstein functions. Our numerical
differentiation uses centered first differences, which has
the effect of yielding the time-dependent transport
coefficients at values of the time intermediate to those for
which the directly calculated time-correlation functions
are computed. To obtain the cross and kinetic parts of
the viscosity and thermal conductivity at the same values
of the time, we have computed these from the Einstein
functions as well. For the mutual-diffusion eoefficient,
there are only kinetic contributions and we use the aver-
age of the two available estimates,

L I((](t,;N) =—,
' [L (((t„N)+M„(t„N)] .
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L[I](t,;N)= i [L',x '(t, ;N)+L( )(r, ;N)

+M', „'(r,;N)+M' '(r, ;N)]

+ ,'[L—',„~'(r,;N)+M', „&'(r,;N)] .

There remain the choice of the crossover time t, and the
extrapolation of the L ' to the thermodynamic limit.

The results are evaluated relative to the Enskog-theory
predictions L, according to the following definitions:

oa( o)
LE

L(AB)(sr )

LEa
M( ABI(sr )

LEa
g( AB) (sr )

LEa

p (s)=

L (AB)( )—

g ( B)(s)—a

in which tp is the mean free time, a quantity having the
known Boltzmann, low-density limit,

N(N —1)

g g N, (Nb —5,b)8', b[(m, +mb)/2m, mb]' '
a b

(20)
V

, Qm, P/n,
N(2o i)

m,
m, =

m&

a
CT)

in which tpp' is the Boltzmann mean free time for pure
component 1 at the number density N/V of the mixture,
and

(We note the Boltzmann mean free time was given in-
correctly in Eq. (70) of I.) The mean free time can also be
evaluated in the MCSL approximation, based on the
pair-correlation function at contact [33], which we
denote t p ~ The evaluation of the Enskog transport
coefficients in the so-called ninth Enskog approximation
was discussed in I.

IV. RESULTS

The Monte Carlo, molecular-dynamics calculations
outlined above were made for equimolar binary hard-
sphere mixtures having a mass ratio of 0.03 and a diame-
ter ratio of 0.4 for volumes of 5 Vp 10Vp 20Vp for several
different values of N, from 108 to 4000. Several parame-
ters for these calculations, including the number NMc of
attempted Monte Carlo moves per particle between ini-
tial configurations for the molecular-dynamics calcula-
tion, the number N„of trajectories, the trajectory length,
the time-origin spacing, and the total number N, of col-
lisions, are given in Table I. The values of NMc are
sufficiently large that successive trajectories can be ex-
pected to be virtually independent and statistical tests for
correlations of functions of the phase support that con-
clusion. The table also gives the values of the acoustic-
wave-traversal time, Eq. (18), for each system, computed
from the MCSL equation of state.

Our observations for these systems include the mean
free time and the various time-correlation functions dis-
cussed above. The latter were evaluated at a sequence
of times, k&h, 2k|h, . . . , n k|&h, (n tk& +k)zh, ( nktt
+2k&)h, . . . , with h =0.05too and k& =1, k&=5,
k3 15, n, =30, nz = 14, n3 =60, except for the V =5Vp,
N =500 realization for which n3 =40. The latter realiza-
tion was also different from the others in that the therma1
diffusion time-correlation functions were not calculated.
The maximum times for which the time-correlation func-
tions were evaluated was, then, typically 50tpp but 35tpp
for V =5 Vp, N =500. We note that for V =10Vp only a

TABLE I. Parameters for the Monte Carlo, molecular-dynamics calculations in the molecular-
dynamics ensemble for the transport properties of equimolar mixtures of hard spheres having a diame-
ter ratio of 0.4 and a mass ratio of 0.03. V is the volume and Vp a reference volume, Eq. (3), N is the
number of particles, N« is the number of Monte Carlo attempted moves per particle between initial
states for the trajectories, N„ is the number of distinct trajectories, N, is the total number of collisions,
in millions, N„~ is the number of time steps, in thousands, for each trajectory, each step of length
0.05tpp with tpp the Boltzmann mean free time, NTo is the number of steps between time origins, over
which the time-correlation functions are averaged. The time-correlation functions are calculated to
times as long as tf, and the once-differenced time-correlation functions extend to times

tf tf 0.375tpp. The values of the acoustic-wave-traversal time t, relative to the mean free time tp are
from the Mansoori-Carnahan-Starling-Leland equation of state [32,33].

V/Vp

10
20

108
500

1372
1372
500

1372
4000

NMc

300
200
300
300
300
300
300

66
53
27
50
29
30
30

N,

29.8
36.9

154.4
240.7
47.0

133.3
97.2

N„p

120
40

120
120
120
120
30

NTo tf /tPP

50
35
50
50
50
50
50

t, /tp

14.7
24.6
34.4
24. 1

11.5
16.1
23.0
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TABLE II. Results for the Monte Carlo, molecular-dynamics calculations of the mean free time to(N) (relative to the Boltzmann

value too i and the time-dependent transport coefficients (relative to the Enskog-theory values), f, (sf,X), at the longest reduced times

sf or sf' calculated in the molecular-dynamics ensemble for equimolar mixtures of hard spheres having a diameter ratio of 0.4 and a
mass ratio of 0.03, as a function of volume V, relative to a reference volume Vo, and the number of particles N. The infinite-system

values are linear least-squares extrapolations in 1/¹The infinite-system extrapolations for V =5 Vo, however, are taken at the final

time of the N =500 calculations, except for a=u1 which is taken at t =50too. The numbers in parentheses are the standard devia-

tions in the low-order digit.

V/Vo

10
20

108
500

1372

1372
500

1372
4000

to(N) /too

0.71783(27)
0.71893(16)
0.71995(6)
0.72007(7)
0.85512(7)
0.92566(18)
0.92640(9)
0.92622(12)
0.92650(11)

L„„(sf','N)

0.979(11)
1.012{20)
0.998(22)
1.010(14)
0.986(15)
1.004(20)
0.964(19)
1.025(36)
0.973(26)

f.„„(sf',N)

0.909(12)
0.948{17)
0.962(13)
0.967(11)
0.987(16)
1.005(21)
0.970(20)
1.031(42)
0.978(28)

L„,(sf,'N)

0.924(13)

0.951(19)
0.953(21)
0.993(17)
1.015(23)
0.975(21)
1.034(45)
0.979(30)

L l l (Sf,N)

0.934(11)
0.917(16)
0.927(17)
0.929(13)
0.984(14)
1.007(19)
0.978(15)
1.013(36)
0.976(22)

single run, albeit a long one, was made, namely, for a
1372-particle system.

A. Mean free time

The observed values of the mean free time to(N) are
given in Table II for each system, with statistical uncer-
tainties obtained from the variance among the N„ trajec-
tories. The linear (in 1/N) least-squares extrapolation of

1.05

1.00

0.95

0.85

to(N)/too to the thermodynamic limit is also given in
Table II for volumes of 5 Vo and 20Vo. It is of some in-
terest as a test of our calculations to examine the con-
sistency of the mean free times with the exact low-density
limit, viz. , the Boltzmann result too, Eq. (20), as well as
the MCSL approximation to, which reduces to too at van-
ishing density. In Fig. 1 we plot the mean free time, re-
duced by the Boltzmann expression and, in the inset, by
the MCSL approximation, for the infinite-system results
of Table II for V=SVo and 20Vo, along with the 1372-
particle value for V=10Vo, against the density Vo/V.
We note that the infinite-system V=10Vo value is ex-
pected to lie at roughly 10 too above the plotted value
on the basis of differences between the 1372 particle and
the N= ~ values at 5Vo and 20Vo given in Table II.
Thus, significant deviations from linearity of to/too with
density can be detected, leading us to the quadratic fit,

2
Vo

(21)
too

to

with coeScients given in Table III and shown by the
solid curve in Fig. 1. Evidently the observed values of

0.80

0.75

0.70
0.00 0.05 0.10 0.15 0.20 0.25

FIG. 1. The mean free time to relative to the Boltzmann
value too as a function of density Vo/V for an equimolar mix-
ture of hard spheres having diameter ratio 0.4 and mass ratio
0.03. Statistical uncertainties are smaller than the plotting sym-
bols. The solid curve is a weighted least-squares fit to Eq. (21).
The inset shows the deviation, y =to/tp 1, from the
Mansoori-Carnahan-Starling-Leland value t o, the line is a
weighted least-squares fit through the origin, and the error bars
are at + one standard deviation.

'gal

u1
11

Qa

—1.497(1)
0.073(46)

—0.194(44)
—0.185(57)
—0.263(45)

b

0.487(7)

TABLE III. The linear coefficients a and the quadratic
coefficients b for the density dependence, Eqs. (21) and (24), of
the mean free time (relative to the Boltzmann value) (u= t) and
the transport coefficients (relative to the Enskog values), viz. ,
shear viscosity (a=gg), thermal conductivity (a =uu ), thermal
difFusion (a=u1), and mutual diffusion (+=11),for equimolar
hard-sphere mixtures having diameter ratios of 0.4 and mass ra-
tios of 0.03, at three values of the volume V relative to the refer-
ence volume Vo. The numbers in parentheses are the standard
deviations in the low-order digit.
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L E

TABLE IV. Enskog-theory predictions L for the transport coefficients in the ninth Enskog approxi-
mation, reduced as in Eq. (22), for equimolar hard-sphere mixtures having diameter ratios of 0.4 and
mass ratios of 0.03 at three values of the volume V relative to the reference volume Vo.

V/Vo L„„ L E L„,
5

10
20

0.283 077 9
0.214 468 8

0.198 633 2

9.165 902
10.173 899
10.774 361

—0.081 293 48
—0.095 977 17
—0.103626 09

0.001 213 527
0.001 431 648
0.001 545 728

the mean free time are consistent with the Boltzmann
limit but additional results for V) 10V0 would help to
demonstrate better the approach.

From the inset in Fig. 1, we note that the deviations of
t0 from MCSL theory appear to be significant, even at
these low densities. Indeed, the deviations from the
MCSL result appear to be at least marginally significant
in the linear term in the density. Again, additional data
for V ) 10V0 would be helpful in this regard.

B. Transport coefBcients

(m, p)'"~2,
L„„,

mi

(m p)3/2 2

L„„= Luu ~

(m, p)' 0 i
L„i= L„i,

mi

(22)

2

m, (m, p)'~

then we list the values of the Enskog coefficients L in
Table IV.

As we have seen in Sec. III, the long-time, large-system
correction to the transport coefficients are based on the
mode-coupling theory, Eq. (17), which yields upon reduc-
tion as in Eq. (19), the long-time contribution,

The observed time-dependent transport coefficients at
the longest times calculated for each of the systems of
Table I are also given in Table II, reduced by the Enskog
transport coefficients, as in Eq. (19). The latter were eval-
uated in the ninth Enskog approximation, as discussed in
I; if we define a further reduction of the transport
coefficients, L through the relations

2k
L (s, )=

s

k
k a

0

~c
sc

0

(23)

with values of the reduced coefficients k given in Table
V.

Perhaps the most straightforward treatment of our
data would be to set the crossover time t, to tf (or tf'), ex-
trapolating the E (sf,N) to the thermodynamic limit to
obtain E (')(s, ). For the volume 20Vo this has been done
to obtain the infinite-system results for that volume given
in Table II; the extrapolation was based on a weighted
least-squares fit of the E (sf,'N) linear in 1/N, shown in
Fig. 2. We note that at least at the current level of pre-
cision and for our present system sizes, the N dependence
of the L (sf ', N) is not statistically significant.

For the volume 5V0, the tf for the 500-particle system
is smaller than that for 108 and 1372 particles. As a re-
sult, we chose t, equal to tf for N =500, viz. , 35t00, and
perform the same extrapolation to obtain the infinite-
system results for 5V0 given in Table II and shown in
Fig. 3. Since the N =500 calculation did not include the
thermal-diffusion coefficient, for this coefficient we chose
t, =50t00, the extrapolation is also shown in Fig. 3.
Again we find that the N dependence is at most marginal-
ly significant.

For the 10V0 case, we have results for the single value
N =1372. Nonetheless, because the 1/N corrections to
L (sf ', N) are found to statistically insignificant for
N =1372 for the 5V0 and 20V0 cases, we ignore the 1 fN
extrapolation in this case, using L (sf, 1372) as E (sf ).
When we combine the L '~ for each volume with the
mode-coupling correction, Eq. (23), we obtain the esti-
mates of the transport in Table VI labeled "t,= tf."

If we consider the acoustic-wave-traversal times t„
given in Table I, relative to the tf also given in Table I,

TABLE V. The reduced mode-coupling coefficients, Eq. (23), for equimolar hard-sphere mixtures
having diameter ratios of 0.4 and mass ratios of 0.03 at three values of the volume V relative to the
reference volume Vo.

V/ Vo

5
10
20

3.5 157 X 10
1.6068 x 10-'
4.6704 x 10

k„„

8.0470 X 10
1.3783 X 10-'
2.8748 X 10

k„,

6.3509x 10-'
1.1328x 10-'
2.4794 x 10-'

5.0779x10-'
1.0472 x 10-'
2.4598 x 10
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FIG. 2. The time-dependent transport coefficients relative to
the Enskog values, E (s, ;N), for equimolar mixtures of hard

spheres having a mass ratio of 0.03 and a diameter ratio of 0.4,
at a volume of 20Vp as a function of 1/N, where N is the num-

ber of particles, for a crossover time s, =tf/tp=50tpp/tp (with

tp the mean free time) for the mutual diffusion (a=11) and the
thermal diffusion (u1) and tf/tp=49. 625tpp/tp for the shear
viscosity (gg) and the thermal conductivity (uu). To display
the various error bars, which extend + one standard deviation,
the points are displaced slightly from the 1/N abscissa value.

we might question this procedure for correcting the data
in that the time interval (t„tf ) is quite appreciable, even
for the largest systems for which we have data. More-
over, it seems unlikely the finite-system effects in this in-
terval would actually decay simple as 1/N but rather
have oscillatory components, as shown for example in the
case of the self-diffusion coefficient of hard spheres [4].
This suggests assigning a value to the crossover t„ that is
somewhat smaller than t„at least for the largest of the
systems studied for a particular reduced volume ~, but
large enough that there appears to be agreement between
the mode-coupling theory and the data for the largest N.
On this basis we choose intermediate crossover times,
t t t viz. , t, =23tpp for 5 Vp 20.75tpp for 10Vp, and
15.5tco for 20VO. The values of L (s;„„'N) and their
least-squares extrapolations to the thermodynamic limit
are shown in Table VII. The latter are then combined

FIG. 3. The time-dependent transport coefficients relative to
the Enskog values, X (s„'N) as in Fig. 2, at a volume of 5 Vo for
a crossover time s, =35tpp /tp for thermal diffusion, and
34.625tpp /tp for shear viscosity and thermal conductivity.

=1+a Vp

V
(24)

to obtain the coeScients shown in Table III; the linear
fits are shown graphically in Fig. 4. We note that for the
transport coefBcients we cannot obtain the quadratic
correction to Eq. (24), as we did for the mean free time,

with mode-coupling corrections, Eq. (17), to yield the
column labeled "t,=t;„," of Table VI. We see that the
two sets of values are in statistical agreement in all cases,
but we refer the t, =t;„, set because of the larger values
of the for 20Vp. These differences arise not from the
slightly larger E contributions but from the statistical-
ly insignificant, but overall negative, contributions from
the p (s;N) in the (t;„„tf) interval; because the long-time
tails are, in fact, positive for the present values of the
volume, these negative contributions are almost certainly
inappropriate in the large-X limit.

It is of interest to consider the nature of the deviations
from the Enskog theory at low density. We therefore fit
the t, = t;„, results of Table VI to the form

TABLE VI. Transport coefficients in the thermodynamic limit relative to the Enskog values L for equimolar mixtures of hard
spheres having a diameter ratio of 0.4 and a mass ratio of 0.03, based on two different choices for the crossover time t„as explained
in the text. Vis the volume and Vp a reference volume.

20

L„l

tc =tf
1.020(14)
0.967(11)
0.953(21)
0.929(13)

tc tint

1.022(11)
0.962(10)
0.956(14)
0.941(11)

tc =tf
0.990(15)
0.987(16)
0.994(17)
0.984(14)

tc tint

1.000(9)
0.983(9)
0.987(10)
0.980(9)

tc =tf
0.974(26)
0.978(28)
0.979(30)
0.976(22)

tc tint

0.998(11)
0.975(13)
0.989(15)
0.990(12)
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TABLE VII. Time-dependent transport coefficients from the Monte Carlo, molecular-dynamics cal-
culations as in Table II, but for intermediate reduced times, s;„,=t,„tltp and t „t/to. For V=5Vp,

23tpp, t,'„,=22. 625t(x). For v = 10Vo, t;„,=20.75top, t;'„, =20.375t«. For V =20 Vp, t;„,= 1 5.5top,
t „,=15.125tpp.

V/Vp

10
20

108
500

1372

1372
500

1372
4000

L»(~,'„, )

0.978(8)
1.007(17)
1.005(12)
1.009(11)
0.994(9)
0.987(7}
0.986(8}
1.015(17)
0.996(11)

L„(stnt )

0.926(9)
0.957(15)
0.955(11)
0.959(10)
0.982(9)
0.987(10)
0.980(10)
0.972(21)
0.974(13)

L„l(~,„,)

0.941(10)

0.955(13)
0.956(14)
0.986(10)
0.991(12}
0.995(10)
0.970(25)
0.989(15)

0.945(8)
0.927(15)
0.949(12)
0.941(11)
0.979(9)
0.986(11)
0.997(8)
0.960(19)
0.990(12)
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FIG. 4. The transport coefficients relative to the Enskog
values L as a function of density Vo/V for an equimolar mix-

ture of hard spheres having diameter ratio 0.4 and mass ratio
0.03. The error bars extend + one standard deviation. In each
case, the line is a weighted least-squares fit to Eq. (24).

principally because of the two-orders-of-magnitude in-
crease in the uncertainty in the transport coefficients over
that for the mean free time. In addition, the coefficients
in Table III measure deviations from the Boltzmann ex-
pression for the to but from the Enskog theory for the
L . This circumstance is indicated in Table III by plac-
ing "?"in the b column for the transport coefficients. In
assessing these deviations from the Enskog theory, we
note that the statistical uncertainties given in Table III
(for the transport coeScients) are similar in magnitude to
the linear coefficients, a, and reflect only two degrees of
freedom in the least-squares fit. Therefore the 95%
confidence interval includes a =0 when the large uncer-
tainty in the true variance of these distributions is taken
into account. Substantial improvement in these estimates
will require calculations at additional values of the
volume.

V. DISCUSSION

The most striking feature of the present results is
perhaps the smallness of the deviations from the Enskog
theory. While the collisional transfer and two-particle
correlation effects which the theory addresses are them-
selves small at low density, they do become appreciable at
moderate density for the single-component hard-sphere
fluid. One might easily suppose these effects to be of
similar magnitude here so that the present agreement in-
dicates the correctness of the Enskog treatment of these
effects.

Secondly, we find (rather weak) evidence that the low-
density deviations from the Enskog theory are negatiUe,
at least for the thermal conductivity, the thermal-
diffusion coefficient, and the mutual-diffusion coefficient.
If these corrections are indeed negative, they would not
appear to be of a hydrodynamic origin as are the long-
time tails, for the tail contributions are positive in each
case, as seen from the sign of the coefficients in Table V.
Moreover, additional caution in interpreting the sign of
these density dependences must be recognized in that the
deviations are small and at the same time the present
evaluation of the Enskog theory is based on the MCSL
equation of state, the accuracy of which has not been
very thoroughly tested; our observed deviations could
simply reflect the inaccuracy of the Enskog calculation, a
question which we hope to address in the future.

The importance of additional study of the equation of
state of the hard-sphere mixture is also emphasized by
our results for the mean free time. The latter appear to
deviate rather rapidly from the MCSL theory with in-

creasing density, suggesting the need for additional
refinement of the theory.

Finally, we observe that the 2% level of accuracy at-
tained in the present calculations reflects the extensive
Monte Carlo and time averaging used. (Roughly 500 h of
Cray-l and Cray-YMP CPU time were required. ) This
level of accuracy is to be contrasted with 0.2% achieved
in the calculation of the self-diffusion coefficient of
single-component hard spheres at low density, based on
calculations which were an order of magnitude shorter
(as measured by the total number of collisions). At
higher densities we can expect to require more extensive
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averaging to continue the 2%%uo accuracy, particularly if
long-time-tail e8'ects become important.
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