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The quantum kinetic equation of a Bose gas is derived by means of the Bogoliubov approach and the
Wigner distribution function from the Liouville —von Neumann equation. It is an improved Boltzmann-
Uehling-Uhlenbeck equation including the correctional binary collision with many-body effects.
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I. INTRODUCTION

In previous works, the kinetic equations of Fermi gases
were derived in various cases; the nucleon gas and the
plasma [1]. It is common knowledge that microscopic
particles may be classified into one of two types: fermion
and boson. Bose systems exist in many cases. For exam-
ple, when the nuclear temperature is raised over 100
MeV/u, the nucleon gas returns to meson and nucleon
mixed gases [2], and the meson is a boson. In another
case, when the plasma is formed from deuterium, the
deuteron is a boson. Besides these cases, helium 4 is also
a boson in the investigation of superAuidity of liquid He.
Hence the kinetic equation of Bose is applied in many
practical cases.

In this paper we derive the quantum kinetic equation
of a Bose gas by means of the Wigner distribution
function and the Bogoliubov approach from
the Liou ville —von Neumann equation. In Sec. II,
the Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy of the Wigner distribution function is derived.
The Bogoliubov approach is described in Sec. III. In the
final section we derive the kinetic equation of a Bose gas
in the quasihomogeneous case.

II. BBGKY HIERARCHY OF THE WIGNER
DISTRIBUTION FUNCTION

Let us suppose there are N particles in the Bose sys-
tem. q are all of the coordinates. The time evolution of
density matrix p~ is determined by the Liouville —von
Neumann equation as follows:

~pe
t A =Hp~ piv H = [H)ptt ] .—

at

Bp
if& + g [K, ,p, ]++ [V...p, ]

17J l, J

+ Tr g [VJ,+i,p, +i] .
5+1 =1

(3)

Equation (3) is equivalent to Eq. (1). It is convenient to
introduce directly the symmetry requirement on the den-

sity matrix p, by means of

p, =B,F, ,

where B, is a symmetrization operator defined by

(4)

B,= g 1+ g Pjk
k=1

Here P k denotes the permutation operator. Since 8,
satisfies the relation

F s

i fi = g [K, ,F, ]+g [ V...F, ]
Bt

+Tr, +1 g [V, , +»F.+i]
j=1

+Tr, +i y V, , +, y P, „A'+,

B,+,=B, 1+ g P , +, .

j=1

and commutes with the operators K and V;, one may
substitute Eq. (4) into Eq. (3) to obtain the equation

H is the Hamiltonian of total system as

N

H=gK, +g V,, (2)

It is convenient to introduce the s-body Wigner distri-
bution function

By taking the trace on Eq. (1), the equation of the s parti-
cle density matrix p, can be obtained as [3]

f, (q'p't)= fF,(q "q'"t)exp
(2M) '

and
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SrS
F,(q "q'"t)= Jf,(q'p't)exp . dp',

t'ai
(9)

where q' is brief expression for q1, q2, . . . , q, . The rela-
tions between coordinates q,

'. ,q,
"and q, , r,. are

One may substitute Eq. (9) into Eq. (7) to obtain the
quantum BBGKY hierarchy of the Wigner distribution
functions f, for the Bose system as

fs pj fs i (it)I2)8,"—e

i(j

(i—l/2)8, )' (iR/2)8j, +) (ih/2)8j, +)

j=l

S

J,s+1
j=1

a
Bpj.

~I'j„+)(qj—q, +) ) a8j,s+)
BpJ J

When s =1 and 2, one finds

f) p) df i i (iA'/2)8) 2 (iRI2—)8( 2 t (it)/2)8( 2
(it)/2—)8( 2

Bt m Bq, fi 2 2

f2 pj f2 t (ii)/2)8)2 —(ih/2)8)& ) (i8/2)8 3
—(iA/2)8 3

where x, +1 are all of the variables q, +1 and p, +1, and the operators 8; and Hj, +1 are represented by

BVj(q; —q )

Bq; Bp;

(12)

2

j=1
(13)

Since f, depends on f2, and f2 depends on f3, solving
accurately is impossible for the BBGKY hierarchy. It is
necessary that the approximated approach will be applied
for the solution. The Bogoliubov approach will be ap-
plied as follows.

+1((x'), . . . , x,') =q(xi, . . . , x, ),
where x1, . . . , x, are the values of each x at t =0, and

x1, . . . , x, are the values at t. The noncorrelative condi-
tion at the initial stage indicates

III. BOGOLIUBOV APPROACH

f,(x„.. . , x, ) —g f)(x, ) ~0 .
i (j(S

(15)

There are two hypotheses in the Bogoliubov approach
[4]. With the first hypothesis, provided that the average
time between two continuous collisions is much longer
than the collision time, it is possible to find a kinetic state
for any nonequilibration system. In this state

Starting from the two Bogoliubov hypotheses, we
derive the kinetic equation of a Bose gas. Suppose the in-
teraction radius of the boson is a, and the average separa-
tion between two continuous time collisions is d. When
the length is measured in d, the mean occupied volume of
every boson v =a is a small quantity. One can write

f, (x) . . . , , ', x)=tf, ( ),x, lfx) ),
(14)

=A (xf))+vA'(xf))+. . . (16)

=A(xf)) .
at

Another hypothesis is that there are not correlations in
the initial stage of a system. We set the displacement
operator

I

and

f,=f, +vf,'+v f, + . (17)

In a first-order approximation we set f2
=f2=f, (x, )f, (x2) and find from Eq. (12)

af (x) af (x)) ) + pl f1 ) + ) 1 d (
(ih/2)8i

&
—(ih/2)8i 2)f

a t m q1a Xg e ' e '
1 X1

(18)
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This is a self-consistent equation called the quantum
Vlasov equation. In the second-order approximation we
write a formal solution

f,'(xl, , x, lfl)= g g(x;, x, ) g f, (x;) . (19)
i(j(s yAiAj

g(x„x2) is the two-body correlative function, whose
boundary condition is

lim 4' ',g(x, ,x. ) —+0 .
f —+ oo

Equation (19) means that the many-body effect is ac-
counted for by the two-body correlation. We may write

Bf2 gfO nfl
at ~fl ~fl

X[A (xfl)+vA'(xf, )]

~f2 ~fl
Bfl dt

=2)ofz+ v [2)og(x„x2)+2),f2] . (21)

We use Eq. (19) and Eq. (13) to obtain

—(iA/2)g.
')g(x], x2) =H(xl, x2),

I ~ I I

Bog(xl, x2)+ g ~ g(xl, x2)+ —g (e ' —e
Pj i} i (iil/2)g.

, m aq,

( i'/2) 8'l
2H(x x )= ——(e "—e1& 2

(22)

I I I I——f dx&(e " e — ")f,(x2)g(xl, x3)——fdx3(e " e — ")f,(xl)f, (x2)fl(x&)
I I

(23)

where 1, 18'= —t9 8' =—012 12& 1,3 1, 3& 1

BU(ql } (}

aplaq1

1
Ul(ql) =— Vl2(ql —q2)f l(xl)fl(x2}dx2

(24}

In the next section it is shown that Eq. (22) may be solved
in a quasihomogeneous system.

IV. KINETIC EQUATION OF A BOSE GAS

The condition of a quasihomogeneous system is

g(xl x2} g('ql 'q2 Pl P2}

Ul(q, ) is the mean-field potential. Once one knows
g(x„x2), the second-order approximated equation of
f, (x) will be obtained from Eq. (12). It is very difficult to
solve the simultaneous equations (12) and (22) accurately.

I

This states that the correlative function depends only on
the relative coordinate. In this case one may obtain the
formal solution of g(q, pl, p2) by means of the displace-
ment technique as follows:

(iA/2)8)~ —(iA/2) 8i2
g(q, p„p, )=f dt (e ' —e— ' )fl(xl)fl(x2)

0

l (ih/2)8& 3
—(iA/2)8& 3+ X3 e "—e " g X2, X3 1 X1 + 1 X1 1 X2 1 X3

1 (Ih/2)8$ 3
—(iA/2)82 3+ X3 e e g X1 x3 1 x2 + 1 x1 1 x3 1 X3 (25)

It is convenient to introduce the Fourier transform in order to solve Eqs. (12}and (25). We set

g(k pl p2}=—fdqg(q pl p2}e

V(k)—:f dqV(q}e
(26)

We may substitute Eq. (26) into Eq. (12) to obtain

~fl Pl ~fl ~fl
at m Bq, Bp,

—i kfi adk exp„.).f"' 2 a„
Ak a—exp

apl
Vl2h(k, p, ), (27)
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where

h(k, p, )=fdpg(k, p, p, ),
f i t (it(I2)q& (i—sl2)q& t f (i'/2)8I &

—(is/2)
(&)f (28)

Performing the Fourier transform of Eq. (25) and making some manipulations one may find

n V(2(k) + — — +Imh(k, p, )=f [f,+(x, )f, (x2)—f, (x, )f,+(x2)]5 k.
trik 1 —( I /A') V, 3t((i m

P2
P2 ~

(29)

where

f*=f p+
2

A'k 1+f p+
(30)

f pk =exp k . f(p),Ak Ak 8
2 2 Bp

P2

m

t

dp3

pj
[f,+(xs) —f, (xs)] . (31)

Substituting Eq. (29) into Eq. (27), one finds

t)f, (xi) p, t)f, (x() &fi(xi) n. ()Ik t)+ ~ +P dk exp
r)t m Bq, &p( (2n) A' 2 Bp)

X f dp25 k.

Rk 8—exp
~p 1

V(2(k)

~1
—(I/R) v, t/i~2

X [fi+(xi)f, (x2)—f i+(x2)f i (xi)] . (32)

()'t(2ir )
, fdp2dp(dp21 & pip21 V(21pip2& I'5(pi+p2 —pi —p2)

X [f, (x', )f, (x2)[1+f, (x, )][1+f, (x2)]
—fi(xi)f2(x2)[1+fi(xi)][1+f((x2)]J .

Since Eq. (32) includes the influence of many-body effects, a greater improvement will be produced for the systems that
have a higher particle density or a larger force range of particle interaction.

Equation (32) is the kinetic equation of a Bose gas in the quasihomogeneous case. This is an improved BUU equation.
It is reduced to the usual BUU equation provided that many-body effects are neglected and that the first approximation
for the term P [5] is taken:

Bf((x,) p, Bf,(x, )+ ~

Bt m t)q,
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