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Nucleation and growth in systems with many stable phases
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We study the kinetics of nucleation and growth in systems with an arbitrary number of distinct stable
phases for both homogeneous and heterogeneous nucleation. Exact solutions for the phase transforma-
tion kinetics in one dimension are obtained and compared with the mean-field results. We have observed
anomalous power-law asymptotics for both homogeneous and heterogeneous nucleation in one dimen-

sion, while the mean-field theory predicts exponential asymptotic behavior for large times. Numerical
simulations for 2d systems show that the mean-field theory is surprisingly accurate. Some properties of
the spatial patterns at the final stage of nucleation and growth are elucidated.
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I. INTRODUCTION

An interesting class of spatial pattern formation phe-
nomena involves the transformation of one phase into
another through a nucleation and growth process. Ex-
amples of such phase transformations are numerous and
include metallurgical, polymeric, ceramic, crystalline,
chemical, and biological systems [1—3]. Consequently, it
is of great practical and theoretical interest to possess
mathematical predictions concerning the phase transfor-
mation kinetics. While many aspects of these transfor-
mations have been thoroughly investigated, a number of
features are poorly understood, especially those related to
inhomogeneities in the material [4].

The Kolmogorov or Johnson-Mehl-Avrami model
[5—7] has been widely employed as a model of phase
transformation kinetics (see, e.g., [8—12] and references
therein). In the model, vanishingly small spherical grains
nucleate at a constant rate I per unit volume in the meta-
stable phase and grow at constant velocity Vo once
formed. As was shown by Kolmogorov [5], the volume
fraction of untransformed material at time t is

Q~4(t)=exp — 1 V td+1
where d is the dimension of space and 0& is the volume
of a d-dimensional unit sphere.

The nucleation process in the Kolmogorov model is re-
ferred to as homogeneous because it occurs uniformly
throughout the metastable phase. In many cases, howev-
er, the nucleation is heterogeneous, i.e., the nucleation in
the metastable phase is initiated by some "external'*
reasons such as defects or impurities which are present
before the phase transformation began [1]. In biological
systems, sites that initiate nucleation may be regions from
which some biological species start their expansion. A
simple model of heterogeneous nucleation is obtained by
randomly placing nuclei with density y throughout the

material. When the phase transformation is initiated at
time t =0, the volume fraction of untransformed material
at time tis

4(t)=exp( —QqyVot ) . (2)

A very thorough discussion of the Kolmogorov model
and analytical expressions for more complex correlation
functions may be found in Ref. [9].

There is a single stable phase in both these models.
However, in a variety of systems more than one qualita-
tively different stable (or nearly stable) phase exists. In
the simplest case, the metastable system M can transform
into one of two different stable phases, A and 8 [11]. Nu-
cleation rates and growth velocities of the conversion
processes M~A and M ~8 are generally different.

In the present paper, we focus on a natural generaliza-
tion of the one-phase model, namely on a model with an
arbitrary, possibly infinite, number of different stable
phases. We shall specify a particular phase by its growth
velocity V. We shall assume that velocities are distribut-
ed on some interval ( V&, V2 ) with a density p( V),

V2f z'p( V)d V = 1. Observe that the simplest choice
1

p( V)=5( V —Vo) corresponds to the Kolmogorov model.
To the best of our knowledge, only the two-phase gen-
eralization of the Kolmogorov model corresponding to
p( V)=I „5(V —V„)+I&5( V —Vs) has been studied
[11].

An interface between any two phases will fluctuate if
both phases are stable, and drift slowly, if the free-energy
difference between phases is small. In many systems, e.g.,
for soap fronts, this defines the long-time behavior
[13,14]. Nevertheless, in the present study we will ignore
interface fiuctpations and drift, i.e., we treat these inter-
faces as stationary. A more realistic treatment should
consider these effects. However, the present model can
be solved analytically in one dimension and readily inves-
tigated numerically in other dimensions.

A variety of applications of the model can envisioned.
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For example, we mention the growth of colonies of seden-
tary organisms on a nutrient surface. In this problem,
the disk-shaped colonies spread over the surface at con-
stant velocities as the organisms reproduce. Many-phase
nucleation and growth occurs if colonies of different
species compete for the same nutriment. Among other
possible applications one can imagine a spread of mutual-

ly excluding infections, ethnic groups expansion, etc.
The rest of this paper is organized as follows. In Sec.

II, we develop a mean-field theory for both homogeneous
and heterogeneous many-phase nucleation and growth in
d dimensions. The models are solved exactly in one di-
rnension in Sec. III. In Sec. IV, we discuss the results of
numerical simulation in two dimensions. The con-
clusions are summarized in Sec. V.

II. MEAN-FIELD APPROACH

First, we develop a mean-field theory (MFT) for
heterogeneous many-phase nucleation. Namely, we as-
sume that growth of uniformly and randomly distributed
nuclei over the volume begins at time t =0. Hereafter,
we use the units for which V0=1, y=1, and I =1. Let

P, (t)dV be the fraction of material which has been
transformed at time t by phases having the velocities be-
tween V and V+dV. If we ignore overlap of growing
spheres, wefind g„(t)dV=Q&(Vt) p(V)dV. Therefore

dg„
dt d=p(V)Q dV t (3)

This is of course an overestimate of g, (t), since a materi-
al which has already been transformed cannot be
transformed again. Following the spirit of the MFT we
neglect spatial correlations and take into account an
overestimate of P, (t) by reducing df„ldt by a factor
4(t), where 4(t) is the fraction of untransformed materi-
al at time t. Equation (3) then becomes

dP„
=p( V)dQ~ V~r' '4(r) . (4)

Using the obvious relation

4(t) =1—f d V g„(r),
0

we recast (5) into the following equation:

(5)

= —dQ (V")t '4(t)
dt d (6)

4(t)=exp( —Qz(V )t ) . (8)

Substituting (8) into (4) and performing the integration,
one finds

V V"
P, (r)= [1—C(r)] . (9)

where the averaging over the distribution p( V) is denoted
by angular brackets:

( V ) = f dVp(V)V (7)
0

Solving (6) yields

In particular, when the phase transformation is complete
the final density P, ( oo ) is given by

p( V) V"

( V') (10)

The mean-field equations for homogeneous nucleation
are obtained in a manner which is completely analogous
to that presented before. Therefore, we only write the
final result for the volume fraction of untransformed ma-
terial at time t:

Qd
4(t)=exp — (V )t"+'

d+1
Note that the function P, (t) is still described by the for-
mula (9) with 4(t) given by (11).

As will be discussed below, the MFT for both homo-
geneous and heterogeneous many-phase nucleation is not
exact. It does provide a good approximation in dimen-
sions d 2, but it becomes invalid in one dimension. This
will be tested in the following sections by comparing
analytical and numerical results.

III. EXACT SOLUTIONS IN ONE DIMENSION

X J "d8'p( W)

X f dx (x —Vt —Wt)exp( —x)
Vt+ 8't

= [(exp( —Vt) ) ]

Using the well-known relation

(exp( —Vt)) ~exp[ —(( V)t)],

(12)

(13)

which is valid for an arbitrary positively distributed ran-
dom variable, we see that true asymptotic decay (12) is
slower than predicted by the MFT, except the special
case of one-phase nucleation, p( V) =5( V —

Vo ).
Now we turn to systems with a continuum number of

stable phases. First, we consider a flat distribution

(2e) ' at 1 —e& V&1+a
0 otherwise .

V=' (14)

We find

It is useful to study phase transformation kinetics in
one dimension, since exact solutions are possible to ob-
tain in this case. At first, we consider the simpler case of
heterogeneous nucleation. We assume that nucleation
centers are distributed uniformly and independently
throughout the system. Therefore, the probability that
the neighboring nucleus lies in the interval (x,x +dx) is
equal to exp( —x)dx.

Let us consider the process of phase transformation of
the interval of length x by the neighboring nuclei growing
with velocities in the intervals ( V, V+d V) and
( W, W+dS'), respectively. Averaging over lengths and
velocities yields the volume fraction of untransformed
material at time t:

4(t)= f dVp(V)
0
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@(t)=exp[ —2(1 E—)t]
1 —exp( —2et)

2et

2

(15)
p(t, V)dt dV= f dx dt dVp(V)f (t —x/V)

0

while the MFT predicts 4(t)=exp( —2t). We see that
the leading-order asymptotic behavior of 4(t) in the
model (14) is the same as the one-phase (or MFT) result
with the smallest velocity, V=1—e in our model. The
power-law correction to the leading exponential decay is
a feature that does not appear in the MFT. Moreover,
this feature is an intrinsic property relevant to a continu-
um distribution and does not occur in systems with a
finite number of distinct phases.

In the limit a~1, we arrive at the quite unexpected re-
sult

XXexp —x t—
2V

(19)

Here dx dt d V p( V) is the probability of nucleation of a
grain in the space interval (x,x +dx), the time interval
(t —x /V, t —x /V +dr), and velocity interval ( V, V
+d V). This can occur only if the interval (x,x +dx }was
not previously transformed —hence the factor
(f (t —x/V). The exponential factor in (19) ensures that
other grains do not prevent our grain [in (x,x +dx} with
velocity between Vand V+d V] from reaching the origin.
This exponential factor is easily derived if we observe
that it is equal to

C(r)= 1 —exp( —2t)
2t

~t at t~00, (16) X x/V
exp —x t —— exp — (x —Vr)dr

V . o

i.e., the material is transformed much more slowly than
in the usual one-phase model. Anomalous kinetics of this
kind are not expected in higher dimensions, since a slow-
ly growing nucleus stops the growth of usual grains only
in one dimension due to the "trolleybus efFect" (no trol-
leybus can pass the front one).

A slowing down of phase transformation kinetics may
become more significant if p( V) tends to infinity as V
tends to zero. For a model with power-law behavior
p(V) 0-1/V as V—0 [a(1 due to the normalization
condition Ip( V)d V = 1],one can derive that the fraction
of untransformed material decays as a power law,

(17a)

One can also consider the limiting case a=1 by treat-
ing somewhat more special distribution, namely p(V)
~ V '[ln(1/V)] ~ (P) 1 due to the normalization con-
dition). Evaluating (12), we obtain

(17b)

Thus we see that the true asymptotic decay of 4(t) may
be significantly slower than that predicted by the MFT.

Let us now turn to homogeneous many-phase nu-
cleation and growth in one dimension. Proceeding with a
solution we first study an auxiliary "one-sided*' problem
in which no nuclei are placed to the left of the origin.
Nuclei are scattered to the right of the origin as in the
original problem. We define p(t, V)dV as the probability
that the origin is transformed before time t by a grain
with velocity in the interval ( V, V+dV). The probability
that the origin is in the metastable phase at time t is

where the former factor is the probability that no nu-
cleation has occurred in the interval (O, x) during the
time interval (O, t —x/V) while the latter factor is the
probability of the same during the time interval
(t x/V, t) in —the untransformed part of the interval
(O, x).

Changing variables from x to s =r —x/V in Eq. (19)
and using (18) we find

f'(t)= —f ds f (s)f "dVp(V)Vexp — (t s—)—
0 0 2

(20)

which is a closed integrodiff'erential equation for f (r).
For the particular case of a two-phase system this equa-
tion reduces to the simpler one, derived in Ref. [11].

We now return to the original problem, which may be
regarded as a two-sided analog of the previous one. The
origin may be transformed by the growth of a nucleus
that has been nucleated to the right provided that the ori-
gin has not been previously transformed by the grains nu-
cleated to the left; the opposite situation is also possible.
Introducing the probability P(t, V) that the origin is
transformed before time t by a grain with velocity in the
interval ( V, V+ d V), we therefore obtain

(21)

Combining (18), (21), and a two-sided analog of (18),

f (t)=1—f dVp(t, V) .
4(r)=1—f dVP(t, V),

0
(22)

By definition, p(t, V)dt d V is the probability that the ori-
gin is transformed between time t and t+dt by a grain
with velocity between V and V+dV. Such a grain could
be nucleated at any point x in the interval 0 x ~ Vt be-
tween times t —x /V and t —x /V +dt. Hence

we arrive at the final result

(23)

For the one-phase system p( V) =5( V —1) and Eq. (20)
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is readily solved to give f(t)=exp( t—l2). Using (23)
we then arrive at the expected result, Eq. (1) for d =1.
We now discuss a system with the flat distribution of ve-
locities. As for heterogeneous nucleation the leading-
order asymptotic behavior of the model (14) coincides
with the mean-field exponential behavior corresponding
to velocity 1 —e, the smallest velocity in the distribution

f (t) =exp — t y(t),1 —e 2

2
(24)

we derive from (20)

(14). For a correction y(t) to the leading exponential de-

cay,

1+(1—e)A, —I I+(1+a)A, ]exp( —2@A, )gr 1 EQ t=ds+s
0 2E'k

(25)

where A, =(t —s )/2. An analysis of this equation shows
that at t —~, the main contribution to the integral on the
right-hand side of (25) is accumulated near the lower lim-
it, i.e., at s((t. Hence the integral in (25) tends to
(1 e)(e—t )

' f o"ds y(s) and we finally obtain the
power-law correction to the leading exponential decay.

y(t)~t e 'C, C= f dsy(s) at t~ae . (26)
0

As it follows from Eqs. (23), (24), and (26), we get a
power-law asymptotic for a= 1, i.e., 4(t) o- r . It is in-

teresting to note that power-law decay is again exhibited
when nucleation sites with zero-growth velocity are
present.

It is also possible to describe an asymptotic behavior of
one-dimensional homogeneous nucleation with an arbi-
trary velocity distribution p(U). First, we consider sys-
tems with no zero-growth velocity nucleation sites. This
means that growth velocity distribution has a lower
cutoff V;„. We obtain for such distributions

For the fiat distribution (14) one can compute the in-

P(U& - - ENACT

(a)

2'

phases with velocities in the interval (V, V+dV). It is
not difficult to show that for heterogeneous nucleation
P„(t) may be expressed in terms off (t),

g„(t)=2Vp( V)f dr f (r)exp( —Vr),
0

where f (t) is again the probability that the origin is in
the metastable phase at time t in an auxiliary "one-sided"
problem. Combining (30) and the general relation (23),
which is also valid for the heterogeneous nucleation and
the exact solution (12), we finally obtain

Q„(t)=2Vp( V)f dWp(IV) . (31)

f (r) =exp( ,' V,„r')y(r—)—,

where at long times y(t) behaves as

(27a)

y(t)~ —f du p( V;„+u)exp( —
—,'t u) f ds y(s)

(27b) 0

When the zero-growth velocity nucleation sites are
present in the system, i.e., when V;„=0,we obtain much
slower asymptotic decay,

f(t)~ f du p(u)ex—p( —
—,'t u) f ds y(s)

t . 0 0

(28)

P(U) (b)

If the velocity distribution has a power-law form at
V~0, p( V)~CV (a ( 1), we obtain a power-law
asymptotic decay

@(r)=f'(r)~r " ' ' at r~~ . (29)

As expected, the fraction of untransformed material for
homogeneous nucleation decays always faster than for
heterogeneous nucleation.

In closing this section, we give the exact results for the
fraction of material P„(t) which has been transformed by

D
0

FIG. 1. The function P(V)=2eg„(t = m), where 1(,(ao) is a
fraction of material at the final state, transformed by phases
with growth velocity V, vs velocity for a 1D system for (a)
heterogeneous nucleation and (b) homogeneous nucleation. The
results of the mean-field approximation ( ), exact result

( ———), and simulational results (o ) for the flat growth ve-

locity distribution (14) at e= 1 are presented.
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tegral (31) and find

V 1+e+V„t= ln
1 e—+ V

1+a+v
GfQ

1—e+u Q
(32)

We evaluated the function 4(t), which is the fraction
of untransformed area at time t, and compared it with
predictions of the MFT. The later gives for Wt) in the
case of flat distribution

This exact result for the heterogeneous nucleation should
be compared with the mean-field predictions (8) and (9).
Figure 1(a) plots the final density i(, ( 00 ).

It is not difficult to define f„(t) for the homogeneous
nucleation:

where

(t)=exp[ —(t/, ) ], (34)

1(„(t)=2 Vp( V)f ds, f(s, ) r, 2=m(1+@'/3) . (35)

S
1 1 2X f dsif(s2)exp —V

0

(33)

We have not been able to define f„(t) analytically. In-
stead of the numerical evaluation of the double integral in
the right-hand side of Eq. (33), we study the homogene-
ous nucleation by a direct computer simulation.

Performing a computer simulation of one-dimensional
homogeneous nucleation is straightforward. First we
generate the time until the next possible nucleation event.
This quantity follows a simple exponentially decreasing
probability distribution. The space coordinate for the
event is taken from a uniform distribution over the size of
the system. This coordinate is then checked to see
whether it falls into an untransformed region. If so, a
new grain is formed. The growth velocity of the grain is
chosen randomly, based on the distribution p( V).

The size of the system was varied to provide about 10
nucleation events. This was found to make the finite-size
effects negligible relative to the statistical errors. Nu-
merical simulations, performed up to the minimum
value 4( t)=10, confirm the power-law dependence
4(t) ~t for e=l. The results for f„(00) for the flat
distribution (14) are presented in Fig. 1(b). Predictions of
the MFT are also shown in this figure. As expected, the
numerical results differ significantly from the values pre-
dicted by the mean-field theory.

The numerical and MFT results for 4(t) are given in Fig.
2(a). We also calculate the function i(t„( ~ ), which gives
the final (at t = 00 ) fraction of material transformed by
the phase growing with velocity V. The numerical results
for P„(~ ) are compared with the MFT' prediction

V [2e(1+@/3)] ' at 1 e& V&1+—e
0 otherwise

in Fig. 3. One can see that the discrepancy between nu-
merical data and MFT is very slight. The deviations are
not more than the statistical errors in our simulations.
This contrasts with the 1D system, for which the multi-
phase growth model gives qualitatively different behav-
iors in MFT and exact considerations.

IV. NUMERICAL SIMULATION
IN TWO DIMENSIONS

Numerical simulations of the growth kinetics for the
2D systems with many stable phases were performed for
both heterogeneous and homogeneous nucleation. We
have used the flat distribution of velocities (14) with vari-
ous values of parameter e, specifying the width of the dis-
tribution. The influence of the distribution width on the
growth kinetics as well as on the properties of the final
patterns were investigated. The simulations were per-
formed for the following set: @=0(Kolomogorov model),
0.1, 0.25, 0.5, 0.875, and 1.0.

To simulate heterogeneous nucleation in 2D, about 10
nucleation sites were distributed randomly over the plane
and the growth velocities were taken from the flat distri-
bution. Periodic boundary conditions were imposed.
The simulations were then repeated 10-15 times for each
value of e.

(b)

0
a

FIG. 2. The fraction of untransformed material 4(t) vs t for
a 20 system for (a) heterogeneous nucleation and (b) homogene-
ous nucleation. The results of the mean-field approximation
( ) and simulational results (o ) for the flat growth velocity
distribution (14) at e=O (the Kolmogorov model) and a=1 are
shown.
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P(V) gCs)
1-

FIG. 3. The function P ( V) =2eg„( t = ~ ), where g, ( ~ ) is a
fraction of material at the final state, transformed by phases
with growth velocity V, vs velocity for a 2D system for hetero-
geneous nucleation. The results of the mean-field approxima-
tion ( ) and simulational results for the flat growth velocity
distribution (14) at @=1(C) ) and a=0. 125 (~) are presented.

0

FIG. 5. Smoothed grains area distribution function

g (s) =dn (s)/ds, vs grains area s, for heterogeneous nucleation
for the flat growth velocity distribution (14) at various e.

The analogous simulations were performed for homo-
geneous nucleation. The function 4(t) and the MFT pre-
diction

where

(t) =exp[ —

(tlat,

)3],

=n(1+a /3)/3,

(37)

(38)

FIG. 4. The typical grain geometry of the final patterns for
heterogeneous nucleation and growth model for the flat growth
velocity distribution (14) at (a) e=O, (b) a=0.5, and (c) m=1.
Slight overlaps of the grains and fluctuations of border lines are
artifacts of the numerical technique.

are shown in Fig. 2(b). Once again we see that MFT
yields quite satisfactory results.

We believe that our findings are qualitatively general
and do not depend on the particular form of the growth
velocities distribution. Therefore, one may suppose that
the upper critical dimension for the many-phase-growth
model is d, =2. In the limiting case of e=O (one-phase-
growth model), however, the critical dimension is d, = 1.

Now let us discuss the properties of the final patterns
for the heterogeneous nucleation (for homogeneous nu-
cleation our results do not difFer significantly). Figures
4(a) —4(c) plot typical grain geometry at t~ oo for e=O,
0.5, and 1.0. Observe that the increase in the parameter
e, specifying the velocity distribution width, leads to the
appearance of "freakish, " nonconvex grains and of small
grains fully incorporated into another. It is of interest
that for large e the final patterns remind one of geograph-
ical maps. For large e one can also notice "growth
suppression" effect: The grains with very high velocities
suppress the growth of their neighbors. As a result, the
final patterns consist of a few big grains, surrounded by a
number of smaller (suppressed) grains.

The growth suppression effect may be illustrated by
some properties of the distribution functions

g (s) =dn (s)/ds, with n (s) being the number (fraction) of
grains with area smaller than s. An increase in e from 0
to 1 leads to the following transformation of the distribu-
tion g (s) (see Fig. 5): its peak narrows (at the level 0.5 of
its maximum) and drifts to the smaller s, while the stan-
dard deviation of this distribution increases more than
twice. One can expect that if the growth velocity distri-
bution has a high-velocity "tail" [e.g. , p( V) ~ V
V »1, P & 1], the eff'ect of growth suppression should be
more pronounced.
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V. CONCLUSIONS AND DISCUSSION

The growth kinetics for the many-phase-growth model
was investigated analytically for 1D systems and numeri-
cally for 2D systems. In this model the growth of nu-
cleating sites of different phases occurs with different
growth velocities. Both homogeneous and heterogeneous
nucleation have been considered.

For one-dimensional systems we have found an anoma-
lous power-law correction to the leading-order exponen-
tial decay of the untransformed fraction of the material.
We have established that for both types of nucleation the
untransformed fraction decays as a power law, if the sys-
tem has a continuum number of stable phases with non-
vanishing density of the phases with vanishingly small ve-

locities. Noting of this kind appears in the mean-field
theory.

We have also carried out numerical simulations for 2D
systems. We observed that the mean-field theory de-
scribed surprisingly well the nucleation kinetics for
growth velocities distributions of a "Hat" type. Some
properties of the final patterns for models with various
widths of the growth velocities distribution were also in-
vestigated.

ACKNOWLEDGMENTS

It is a pleasure to thank R. M. Bradley for providing us
with a copy of Ref. [11].

[1]J. W. Christian, The Theory of Transformations in Metals
and Alloys (Pergamon, Oxford, 1975).

[2] Nucleation and Crystallization in Glasses Advan-ces in

Ceramics, edited by J. H. Simmons, D. R. Uhlmann, and

E. H. Beall (American Ceramic Society, Columbus, OH,
1982).

[3] Oscillations and Travelling Waves in Chemical Systems,
edited by R. J. Field and M. Burger (Wiley, New York,
1985).

[4] A. Kolb-Telieps and Tan Shu-Song, J. Non-Cryst. Solids
107, 122 (1988).

[5] A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Fiz. 3,
355 (1937).

[6] W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min.
Metall. Pet. Eng. 135, 416 (1939).

[7] M. Avrami, J. Chem. Phys. 7, 1103 (1939);8, 212 (1940); 9,

177 (1941).
[8]J. D. Axe and Y. Yamada, Phys. Rev. B 34, 1599 (1986).
[9] K. Sekimoto, Physica A 135, 328 (1986).

[10]S. Ohta, T. Ohta, and K. Kawasaki, Physica A 140, 478
(1987).

[ll] R. M. Bradley and P. N. Strenski, Phys. Rev. B 40, 8967
(1989).

[12]M. Weinberg and R. Kapral, J. Chem. Phys. 91, 7146
(1989).

[13]J. A. Glazier, S. P. Gross, and J. Stavans, Phys. Rev. A 36,
306 (1987); M. Marder, ibid. 36, 438 (1987); C. W. J.
Beenaker, ibid. 37, 1697 (1988); J. Stavans, ibid. 42, 5049
(1990).

[14] K. Kawasaki, T. Nagai, and K. Nakashima, Philos. Mag.
B 60, 399 (1989); K. Nakashima, T. Nagai, and K.
Kawasaki, J. Stat. Phys. 57, 759 (1989).


