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Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscillator
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A modified set of equations is given for the simulation of a canonical ensemble based on the method
introduced by Nose. The equations produce trajectories that are sufficiently chaotic to calculate average
properties of a canonical ensemble, even for a small number of degrees of freedom. This important fact
is demonstrated by presenting results for a single one-dimensional harmonic oscillator. It is shown that
the extended system is chaotic and that the trajectories cover the whole energy surface in phase space.

PACS number(s): 02.50.+s, 05.20.—y, 64.10.+h, 05.45.+b

I. INTRODUCTION

During the last decade remarkable progress has been
achieved in molecular-dynamics simulations of others
than the traditional constant energy constant volume en-
semble. Alternative simulation methods allow for the
control of temperature or pressure rather than energy
and volume, and represent canonical ensembles. Ander-
sen [1] originally proposed a method that allows the
simulation of an isothermal-isobaric ensemble, where the
temperature is maintained constant by a stochastic pro-
cess. Nose [2,3] introduced a purely deterministic way of
simulating a canonical ensemble in phase space. It is
based on an extension of the phase space by one variable
(in the case of an isothermal-isobaric ensemble by two)
and its conjugated momentum. The additional degree of
freedom mimics a heat bath for the physical system.
Another formulation of Nose's method for a constant
temperature ensemble was given by Hoover [4]. His
equations of motion are closely related to equations pre-
viously obtained on the basis of Gauss's principle of least
constraint [5,6].

Recently these methods were applied to the one-
dimensional harmonic oscillator [4,7,8]. The detailed in-
vestigation of the dynamics in the extended phase space
shows that Nose's and Hoover's methods do not generate
canonical time averages. Poincare surfaces of section
show regular behavior indicating nonergodicity of the
system. However, ergodicity in the extended system is a
necessary condition for a canonical ensemble, i.e., the sys-
tem has to be chaotic. In order to obtain a canonical en-

semble Hamilton [8] enforced the virial theorem by ex-

tending the Nose-Hoover equations. This extension in-

troduces a new degree of freedom in the system with an
additional undefined parameter. Other extensions of
Hoover's non-Hamiltonian method by two degrees of
freedom are discussed in [9,10]. In these references also
an extension to systems is given, which cannot be de-
scribed by a set of canonical variables (e.g. , systems with
classical spins).

In this paper we extend Nose s original idea and intro-
duce a different coupling to the heat bath. This coupling
yields equations of motion which are more nonlinear than
in the case of the Nose-Hoover coupling. As a conse-

quence, the numerical solutions of the equations of
motion show chaos in the whole accessible phase space.
Averages of time-dependent quantities for such a trajec-
tory correspond to canonical ensemble averages. We also
observe mixed regular and stochastic behavior, depend-
ing on the initial condition and on a mass parameter.
Compared to the method introduced by Hamilton [8], the
proposed one involves only one parameter and the phase
space is extended by only one degree of freedom. More
general extensions of Nose's method are discussed in de-
tail by Jellinek and Berry [11—13].

In Sec. II we define the Hamiltonian in the scaled vari-
ables with the coupling to the heat bath. Furthermore,
the equations of motion in scaled and unscaled variables
are derived. The implications of the different representa-
tions for the virial theorem as well as the effect of
different time scalings are discussed. In Sec. III we in-

vestigate the harmonic oscillator and present our numeri-
cal results in the form of Poincare surfaces of section. Fi-
nally, Sec. IV summarizes our findings.

II. EXTENDED ISOTHERMAL DYNAMICS

A. Virtual variable formulation

Following the idea of Nose [2] we consider a physical
system of N particles with primed coordinates q,

' and
masses m;. Additionally, unprimed variables q; are used
for a virtual system. We also introduce the extension of
the two systems by one variable s. This extension acts as
a heat bath for the N-particle system. The dynamics of
the system is considered in the extended phase space of
the physical system [q,', p,', s',p,'] and the virtual system

[q, , p;, s,p, ]. The connection between the two phase
spaces is established by the relations

q,
' =q, , p,

' =p, /u(s),
s'=s, p,'=p, /u(s) .

Nose used in his calculations u (s) =s. We will use

u(s)=s' .

The equations of motion in the virtual system are ob-
tained from the postulated Hamiltonian
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0= g + V(q, )+ +gkT Ins,
p(. p5

2m s' '
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(4)

dpi

dt

PI.

m, s4
(5)

where we used the new scaling variable u (s}=s . The
potential energy of the particles is denoted by V. The
other variables have the usual meaning: Q is the mass as-
sociated with the motion of the variable $, k the
Boltzmann constant, T the temperature, and g a parame-
ter depending on the number of degrees of freedom of the
system which will be calculated exactly later on. Due to
the introduced Hamiltonian q, and p; as well as s and p,
are canonical conjugated variables.

The equations of motion for the extended system in the
virtual phase space are given by Hamilton's equations:

where f is the number of degrees of freedom of the N
particle system. (In the case of a three-dimensional sys-
tem f =3N. ) Since Eq. (13) includes the average of the
square of the momentum p„the time average of the ki-
netic energy of the particles is not necessarily equivalent
to the ensemble average, if the extended system is noner-
godic on the energy hypersurface. However, the virial
theorem is satisfied regardless of whether the system is er-
godic or not. This might not be important for systems
with a large number of degrees of freedom, however, it is
very important for systems with a small number of de-
grees of freedom.

Similar to the extended system of Nose, for any func-
tion A([q,'], [p,'])=A ([q, ], [p, /s ]) we find that mi-
crocanonical ensemble averages (index m) in the extended
virtual system are equal to canonical ensemble averages
(index c) in the physical system

d pr. =F;, ( A ( [ q,' },[ p,' ] ) ),= ( A ( [ q ], [ p/s '] ) ) (14)

ds 5's

dt

dps

dt
1 2Pi gkT—$; m;s

Gq;
77l($ =F;

dt ' dt
(9)

d ds 1 2p
Q =—g ' gkT—

dt dt s,. m $4
(10)

Multiplication of Eq. (9) by q; and summation over all
particles i yields

where F; denotes the force on particle i derived from the
potential V. These equations are different from the ones
originally obtained by Nose in the coupling term s

The second-order equations of motion for q, and s are
given by

if the factor g is appropriately chosen. As we showed in
Eq. (13), with the scaling function (3) the relation (14)
holds for g =2f +1.Since the calculations are complete-
ly similar to the original ones by Nose, we will not
present them here in detail. They can be found in [2,11].
If the equations of motion (5)—(8) generate an ergodic dy-
namics in the extended phase space, the time average
of any physical quantity A([q,'(t}],[p,'(t)] )

=A([q;(t)], [p;(t)/s ] ) will be equal to the canonical
ensemble average of this quantity.

B. Physical variable formulation

The equations of motion (5)—(8) can be transformed
into equations of motion for the physical variables

[q,', p,']. As shown by Nose [2] and Jellinek [11]this can
be done not only by the scaling transformation of Eqs.
(1) and (2); additionally a scaling of time is possible. If we
use the scaling of time suggested by Nose:

(15)

d 4
d dq

=pm, s"
dt

2

+ QF, q; . (11) we obtain the following equations of motion for the phys-
ical variables:

The time average of the left-hand side of this equation
vanishes for bounded systems. Thus we obtain for the
physical variables

Pl.

dt' ms '

, + F,',', =0, (12)
dpi
dt'

F,' 2s p,'p

s Q
(17)

i.e., the virial theorem is satisfied in the phase space of
the virtua1 variables. This is no longer the case in the
space of the physical variables, as we will show later.
The multiplication of Eq. (10) by s and averaging over
time yields

I
ds 3 Ps
dt' Q

dp, 1 2(p;) 2(p,') sgkT—
I

(18)

(19)

,+,=gkT, (13)

if s is bounded. When the time averages can be replaced
by canonical ensemble averages, g is given by g =2f + 1,

In order to obtain time averages that are equal to canoni-
cal ensemble averages the factor g of the scaled equations
has to be replaced by another factor (g ) [2,11]. Although
these equations are no longer canonical equations, the en-
ergy
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')'

H'= g + V(q,')+ +gkT lns
2m,
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(20}
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dt' ' dt'

d Qds
dt' s dt'

ds
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gkT —.
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(21)
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Multiplication of Eq. (21) by q,', summation over all par-
ticles, and averaging over time (t') yields for a bounded

system

is still conserved. Compared to the equations derived by
Nose [Eqs. (2.19)—(2.22) of Ref. [2]], the new equations
of motion are more nonlinear. The heat bath variable s is
coupled to all other variables.

The Lagrangian forms of the equations of motion are r'= I dr —.
s 2

The equations of motion are then given by
Gqi pi
dt' m,

~pi 2s ps pi=F'—
dt'

I

ds 4$'s
, =S

dt'

(26)

(27)

(28)

(29)

motion. Nevertheless, the virial theorem is not exactly
fulfilled by nonergodic trajectories.

In the previous calculations we used the time scaling of
Eq. (15). As discussed by Jellinek [11] many other scal-
ings are possible. In order to obtain a set of equations
more similar to the Nose-Hoover equations, we use the
time scaling

dp. 1 2(p }

dt' s,. m,

2(p,') s'—gkT (30)

Averaging of Eq. (22) over time gives

1=—kT .
(p,' )'

g (24)

, + s gF,'q,', .=0 . (25}

If the fluctuations of s are small, the deviation from the
virial will be small. In this case, it is difficult to distin-
guish ergodic from nonergodic trajectories by the virial
theorem in a numerical solution of the equations of

From Eq. (24) we find that the average of the kinetic en-

ergy is always equal to the desired value in this formula-
tion as long as g is chosen to be g =2f. However, this
does not show that the principle of equipartition of ener-

gy holds. The system is not necessarily ergodic, even if
the mean of the kinetic energy assumes the given value.
The virial theorem in the physical variable formulation is
only satisfied if the right-hand side of Eq. (23) vanishes.
In general, that happens if the system is mixing. Simple
ergodicity might not be sufficient. For example, in a
physical system with one degree of freedom the time
average of the right-hand side of Eq. (23) is usually
different from zero even in a nonmixing ergodic system, if
there is a defined phase relation between the space coor-
dinate and s. Thus the validity of the virial theorem is an
indication of global chaotic motion in the system and the
principle of equipartition of energy holds. On the other
hand, in the virtual variable system a chaotic motion
leads to a correct thermalization of all degrees of free-
dom, and the virial is equal to the thermal average of the
kinetic energy ((g;F,'q,'. ),= fkT). As a con—sequence,
this relation is a test for ergodic behavior of a system in
both the virtual and physical variable description.

Since the virial theorem holds in the virtual phase
space [Eq. (12)], we obtain a similar relation for the equa-
tions (16)—(19) by transforming the time in Eq. (12) ac-
cording to Eq. (15):

Now the original value of g has changed to g =2f —l.
This is a consequence of weighting the distribution func-
tion in phase space by time scaling [11]. Again, a com-
parison with Nose's original equations shows that our
equations are more nonlinear. In this formulation of the
equations of motion neither the virial theorem nor the
mean of the kinetic energy are automatically fulfilled.
Here we find conditions similar to Eqs. (13) and (23).

The introduction of a variable g=(1/s)(ds/dt') in

Nose s original formulation leads to the Nose-Hoover
equations [2,4,7, 11]. For our scaling [Eq. (3)] we find

Gqi

dt'
pr.

7

m;
(31}

8pi
, =F,' —2(p,', (32)

ds
dr'

s 2(p,
'

)

dr=Q & —gkT +g

(33)

(34)

Aside from the factor 2, Eqs. (31) and (32) are equal to
Hoover's original equations [Eqs. (6) or Ref. [4] ]. In con-
trast to the Nose case, in our set of equations of motion
the variable s is not decoupled from the other variables.
The equation of motion for g contains s and g itself in

nonlinear form.
The two sets of equations of motion, (16)—(19} and

(27)—(30), yield trajectories in the phase space of the
physical variables Iq,', p,']. However, the generated dy-

namics is different because of the different values of g and

g. Aside from these factors, the latter set of equations is

obtained from the former by a time scaling. Thus for

g =g the same trajectory in phase space is obtained. But
the rate at which it is traversed is altered. Since g and g
are different, it is not obvious which of the sets of equa-
tions of motion generates the correct time behavior. Al-
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III. CANONICAL HARMONIC OSCILLATOR

In the preceding section we derived three different sets
of equations of motion. Each of these equations should
produce chaotic trajectories. Thus we are free to choose
the most convenient set. Since Eqs. (5)—(8) include $ to
the fourth power, and s may assume values in the interval
(0, 1) the numerical integration algorithm may become
unstable. Therefore we used Eqs. (16)—(19) in our investi-
gations of the harmonic oscillator. The equations of
motion of the harmonic oscillator in the phase space of
the physical variables are given by

dq'
dt' s

dp' ~ 2$ p~p
dt' $ Q

ds
dt'

dp,
' 2, 2(p,') $

(p kT)— —
dt' s2

(35)

(36)

(37)

where we used m =1 and the spring constant E =1, i.e.,
we introduced reduced variables by choosing K ' as
the unit of length and (m/E)' as the unit of time. As
already mentioned in the preceding section, due to our
scaling [Eq. (3)] all equations are coupled in contrast to
the Nose-Hoover equations. From Eqs. (22) and (24) we
find that the mean of the kinetic energy is equal to the
desired value. However, the virial theorem is only
fulfilled if the system is ergodic and chaotic.

The set of equations (35)—(38) represents a system of
two degrees of freedom. Since there is one integral of
motion, the energy H', the trajectories of the system are
confined on a three-dimensional hypersurface in phase
space. If there is another integral of motion, the system
is confined on a two-dimensional torus on the energy sur-
face and the system is integrable. The trajectories of such
a system are cornrnonly presented in the form of Poincare
surfaces of section (see [14] and references therein). For
an integrable system the intersections of a trajectory with

though the force in Eq. (21) is scaled by $, and the addi-

tional $, d$/dt'-dependent term is small in the thermo-

dynamic limit, Eqs. (16)—(19) can produce the correct dy-

namics, if s =1. Hence the question of which of the sets
of equations of motion gives the correct dynamical be-

havior for a specific system needs to be investigated in

more detail. The dependence on the ratio H'/gkT is

especially important, because this determines the size of
s. We think that the accurate dynamics is obtained if the
conditions s=1, p,'=0 are fulfilled. However, static
quantities can be obtained from either of the three
different sets of equations.

Since our equations of motion are more nonlinear we
can hope to obtain a sufficiently chaotic motion for a ful-

ly statistical description, even for systems with a small
number of degrees of freedom. In the next section we
will demonstrate that this actually happens for a system
as simple as a one-dimensional harmonic oscillator.

the surface of section lie on curves. If the motion is
periodic a finite number of points is obtained. If the
motion is quasiperiodic, infinitely many points form a
continuous curve. Trajectories of these types are called
regular. When there is no additional integral of motion
the intersection points irregularly cover part of the sur-
face of section. The motion is then denoted as stochastic
or chaotic.

For our system we choose the surface of section as fol-
lows: the coordinate s has to be one and the momentum
p,

' should be greater than or equal to zero. The remain-
ing degrees of freedom in phase space are q', p'. This
choice of the surface of section has the advantage that
the intersection area with trajectories is bounded in the
surface. Since H' [Eq. (20)] is conserved, it gives the
equation from which the momentum p,

' can be calculated
for points in the surface of section. If s = 1, we obtain

p,'=+
t Q [2H' —(p')' —(q')'1] '" (39)

Because of the positive term under the square root, a
boundary curve in the p'-q' plane is obtained. Conse-
quently, we see whether the whole allowed phase space is
covered by a chaotic trajectory or not. Another choice of
the Poincare surface of section, like the condition p, =0
used in [7,8], does not restrict the intersection area. Thus
it is not clear from such a surface of section whether all
trajectories are chaotic or not. The disadvantage of our
selected surface of section is that we have to choose
different s values for different H'/kT ratios. Neverthe-
less, our choice allows us to distinguish between different
types of trajectories, if H'/kT = 1. This can be seen from
the following consideration. The maximum value of s:
$ =exp(H'/2kT), i.e., $ (2 for H'/kT=1, is obtained
for q'=p'=p, '=0. Thus s assumes values in the interval
(0,2), and consequently we should find intersections of
trajectories with the surface of section defined by s =1.
We finally emphasize that a distinction between regular
and chaotic regions in phase space by Poincare surfaces
of section of systems with two degrees of freedom is only
possible if trajectories are compared for the same value of
the conserved quantity H'. Only in this situation is a
well-defined representation of the dynamics in the surface
of section obtained. The numerical solution of the equa-
tions of motion was obtained by a fourth-order predictor
corrector scheme.

In Fig. 1 we present the p'-q' surface of section for the
solution of Eqs. (35)—(38) for different initial conditions.
The mass for this plot is Q =10. The mean of the kinetic
energy was set kT/2=0. 25, and the conserved energy
was H'=0. 5 for all initial conditions. As the figure
shows, we find regular and chaotic behavior depending
on the initial condition. Trajectories close to the center
of the surface of section [(q',p')=(0, 0)] are chaotic,
whereas trajectories closer to the boundary of the inter-
section area are regular. The boundary of the intersec-
tion area is given by the outermost solid line. Moreover,
it seems that the chaotic regions are confined between
regular tori. Thus the motion is never sufficiently chaotic
for a fully statistical description [7,8]. However, the devi-
ation of the virial from the statistical value is small. We
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FIG. 1. Poincare surface of section for Q =10 and different
initial conditions.

found a maximum deviation of 1%. It seems that al-
though the motion is regular the trajectories cover a large
enough part of the phase space to provide nearly ergodic
averages for the virial.

Figure 2 shows intersections of the trajectory with the
surface of section for the initial condition (q', p') =(1,0),
(s,p,') =(1,0), and Q =0.6. From the plot it is obvious
that the trajectory is chaotic and covers the whole energy
surface. Consequently, time averages should be equal to
isothermal ensemble averages. This is re6ected in the
virial. The deviation from the desired value ( —0.5) for
this trajectory is 0.01%. The kinetic energy agrees with
the desired value within 0.008%, and the variation of the
total energy is 2X 10 %%uo. Of course, the precision of the
result depends on the number of time steps and the time
step itself. For the current result, we performed SX10
time steps with the step size 1 X 10

Additionally, we calculated the intersections of trajec-
tories with the surface of section defined by p,'=0 for the
initial conditions used in [8], but with H =0.5. As ex-
pected from Fig. 2, all trajectories were chaotic. Since
the intersections of the trajectory with the surface of sec-
tion, shown in Fig. 2, cover the whole accessible phase,
space, all trajectories are chaotic for H'=0. 5, kT =0.5,

and Q =0.6.
We also used slightly higher and several smaller Q

values for the same parameters H' and kT. All the calcu-
lated trajectories were chaotic and the virial was equal to
the ensemble average within the precision of the calcula-
tions. Furthermore, we investigated the effect of the ini-
tial conditions on the dynamics of the system for different
H'/kT ratios. If we fix the kinetic energy (say kT =0.5)
and change arbitrarily the initial condition for q', we will
find different energies H'. A large value of H'/kT causes
a slow exploration of the energy surface. The surfaces of
section show jumps of a trajectory between different two-
dimensional tori, i.e., we see a behavior usually observed
in intermittent chaotic motions [14]. Therefore we
recommend choosing the initial condition such that the
total energy of the system is approximately equal to kT.
For any choice of the initial condition with H'=kT we
found Q values which yield global chaotic trajectories.
Moreover, when the energy is larger than 0.5 the motion
is already chaotic for larger Q (Q )0.6) values. On the
other hand, for smaller energies we had to use smaller Q
values.

In addition, we calculated the Auctuations of the ener-

gy Ho =p' /2+q' /2 and found agreement with the ex-
pected value for a canonical ensemble. We also solved
Eqs. (27)—(30) for the harmonic oscillator. As expected,
these equations also yield chaotic behavior. However, we
had to perform extensive calculations to obtain precise
averages for the kinetic energy and the virial.

From our calculations we conclude that canonical time
averages can be obtained even for the harmonic oscillator
by extending Nose's idea. A different scaling is sufficient
to produce global chaotic trajectories. A further exten-
sion of the phase space, as discussed by Hamilton [8],
Kusnezov, Bulgac, and Bauer [9], and Bulgac and
Kusnezov [10] is not necessary. As outlined in the
preceding section, the virial theorem is fulfilled if the sys-
tem is ergodic. Since the original Nose equations provide
exactly the same conclusions, Hamilton's extension is
inadequate in global chaotic systems. There remains just
another constant which has to be specified. In the case of
the harmonic oscillator the additional extension provides
a stronger perturbation of the oscillator than in the
Nose-Hoover equations, allowing for a global stochastic
motion.

IV. CONCLUSIONS

0

FIG. 2. Poincare surface of section for Q =0.6 and the initial
condition (q',p') =(1.0,0.0).

In the present study we modified Nose's idea of cou-
pling a system via scaling to a heat bath. Instead of the
scaling function u =s we used u =s . This coupling
leads to more perturbed equations of motion. Further-
more, a decoupling of a part of the equations as in
Hoover's formulation is not possible. The system is al-

ways more strongly coupled to the heat bath. We also
answered the question of which time averages are au-
tomatically fulfilled and found that in the virtual variable
formulation the virial theorem is satisfied and that the
average of the kinetic energy is not necessarily equal to
the desired value. On the other hand, in the physical



EXTENDED-PHASE-SPACE ISOTHERMAL MOLECULAR. . . 2255

variable formulation the virial theorem is not necessarily
fulfilled but the mean of the kinetic energy is equal to the
given value, if the time scaling of Eq. (15) is used. How-
ever, if the dynamics is suSciently chaotic the equiparti-
tion of energy holds and in the virtual variable formula-
tion the mean kinetic energy is equal to the desired value.
Furthermore, the virial theorem is satisfied in the physi-
cal variable formulation. From these considerations we
conclude that the enforcement of the virial, as introduced
by Hamilton [8], is not the best way of generating a
chaotic dynamics. For an already chaotic system the ad-
ditional coupling is an unnecessary complication. We
showed numerically that our scaling provides equations
of motion which are suSciently chaotic for a fully statist-
ical description even for a one-dimensional harmonic os-
cillator, as long as the mass parameter Q is appropriately

chosen. This is not possible with the Nose-Hoover equa-
tions [7). Thus or modification of Nose's idea allows us
to investigate the effect of a deterministic and hence
time-reversible coupling to a heat bath of one degree of
freedom on a simple system such as the one-dimensional
harmonic oscillator. An extension of the phase space by
two or more degrees of freedom, as proposed in [9], is not
necessary.

As mentioned previously, our modification is not the
only possible extension of Nose's idea. More general
modifications, which also should yield chaotic trajec-
tories, are discussed in [11]. As a further example for an
extension, we analytically investigated a scaling of the
coordinates: q,'=sq, . Even with Nose's scaling of the
momenta this additional scaling should generate global
chaotic trajectories.
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