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It has recently been shown by Evans, Cohen, and Morriss [Phys. Rev. A 42, 5990 (1990)] that bulk
thermal-transport coefficients can be calculated from the maximal Lyapunov exponents by using the
conjugate-pairing rule. In the present paper we use computer simulation to explore the validity of the
rule under conditions which are more general than those used in the derivation by Evans, Cohen, and
Morriss. We show that the existence of a steady state for dissipative dynamics and the satisfaction of the
condition known as the adiabatic incompressibility of phase space (i.e., area preserving in the absence of
a thermostat) are insufficient for the rule to hold. We also show that the linear field-induced shift of the
Lyapunov exponents with respect to the exponent index, is among the nonequilibrium molecular-
dynamics algorithms, apparently peculiar to the SLLOD algorithm (so named because of its close rela-
tionship to the Dolls tensor algorithm) for shear flow.

PACS number(s): 03.20.+1, 05.60.+w, 51.10.+y

I. INTRODUCTION

The Lyapunov spectra for nonequilibrium steady states
generated by various nonequilibrium molecular-dynamics
(NEMD) algorithms have been obtained numerically for
some years [2,3]. These spectra are of interest in charac-
terizing the fractal character of nonequilibrium distribu-
tion functions in phase space and the contraction of the
phase-space dimensionality in nonequilibrium steady
states. However, Lyapunov spectra are of more than
merely geometrical interest. Recently we have proved
some important relations between the Lyapunov ex-
ponents and the numerical values of thermal-transport
coefficients.

If one orders the Lyapunov exponents in terms of size,
one can define conjugate pairs by grouping the largest
with the smallest, the second largest with the second
smallest, etc. Regardless of whether a system is at equi-
librium or not, and regardless of whether a system is sub-
ject to an external field, if the motion of the system is
generated from a Hamiltonian, the sum of all the
Lyapunov exponents is equal to zero and the sum of each
conjugate pair is also zero [4].

If a system is subject to an external dissipative field and
each degree of freedom in the system is thermostatted,
the sum of the Lyapunov exponents becomes negative
and equal to the phase-space-compression factor [5,6].
Since the mid-1970s people have used nonequilibrium
molecular-dynamics computer simulation to calculate the
transport properties of statistical-mechanical systems.
NEMD is efficient and realistic. For example, using the
“Evans” heat-flow NEMD algorithm [6], one can calcu-
late the thermal conductivity of model liquid argon close
to its triple point with greater precision than it can be
measured experimentally.
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In order to create a nonequilibrium steady state, com-
puter simulators employ one of two families of
mathematical thermostats: the Nosé-Hoover thermostat
or the so-called Gaussian thermostat [6]. The heat gen-
erated in the simulated system from the work done on it
by the external field, is removed by a thermostat which
constrains the total peculiar kinetic energy or the total
internal energy. In the Nosé-Hoover thermostat it is only
the time average of these quantities which is held con-
stant. In the Gaussian thermostats these quantities are
made constants of the motion.

The fact that the phase-space-compression factor is
equal to the sum of the Lyapunov exponents [5,6] means
that the exponents are also related to the transport
coefficients of the system. From a practical point of view,
such a relationship is not very useful because it is extraor-
dinarily difficult to calculate all the Lyapunov exponents.
For an N-particle three-dimensional system, it requires
performing 6N molecular-dynamics simulations, each of
which involve 6N first-order differential equations.

In a recent work [1], hereafter referred to as I, Evans,
Cohen, and Morriss showed that if in the absence of ther-
mostatting (so-called adiabatic condition), the eigenvalues
of the stability matrix appear in zero-sum conjugate
pairs, then, when a Gaussian thermostat is applied to the
system, the arithmetic mean of every conjugate pair of
Lyapunov exponents is negative and independent of the
particular pair number. This rule is called the
conjugate-pairing rule.

It is thus possible to evaluate the phase-space-
compression factor and consequently the transport
coefficients by knowing just one pair of Lyapunov ex-
ponents, preferably the smallest one and the largest one,
because they are the easiest ones to compute.

It is easy to show that this adiabatic eigenvalue struc-
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ture is present if the adiabatic equations of motion can be
derived from a Hamiltonian. This is the case for many
but not all NEMD thermal-transport algorithms [6] (e.g.,
the Dolls tensor for the limiting zero-shear viscosity and
the color-conductivity algorithms for computing the self-
and mutual-diffusion coefficients of fluids and fluid mix-
tures). This eigenvalue structure is also present in the
SLLOD algorithm (so named because of its close rela-
tionship to the Dolls tensor algorithm ) [6] for calculating
the nonlinear viscosity coefficients of fluids which are far
from equilibrium. This is in spite of the fact that the
SLLOD algorithm cannot be derived from a Hamiltoni-
an. It is worth pointing out that the SLLOD algorithm,
unlike the Dolls algorithm, is the exact dynamics for a
shearing fluid not only in the linear regime but also in the
nonlinear regime [6].

It is not known whether the above-mentioned adiabatic
eigenvalue structure is a necessary condition for the
conjugate-pairing rule to hold. For example, a more gen-
eral necessary condition that had been tentatively pro-
posed [7] is that the conjugate-pairing rule should hold
for systems in which the adiabatic motion is phase-space
preserving (this condition is known as the adiabatic in-
compressibility of phase space or AIT" [6]) and which
come to a steady state under thermostatting. This con-
jecture is related to the time-invariance properties of
steady states.

In this paper we show that this conjecture is incorrect.
We do this by calculating the Lyapunov spectrum for the
“Evans” algorithm for the thermal conductivity of fluids.
The adiabatic equations of motion for this algorithm are
not derivable from a Hamiltonian but the algorithm does
satisfy AIT'. The simulations show that the conjugate-
pairing rule does not hold for this system.

We also calculate Lyapunov spectra for most of the
other NEMD simulation algorithms showing that the
conjugate-pairing rule is observed when the conditions
for the conjugate-pairing rule proved by Evans, Cohen,
and Morriss hold.

II. THEORY AND METHOD

A. Equations of motion for NEMD algorithms

The systems of interest consist of N particles of mass
m. The volume of the system is V. The position coordi-
nates and the momenta of particle / are denoted by q; and
p;, respectively, and q;; =q; —q; is the distance vector be-
tween particle / and particle j. The pair-interaction ener-
gy between these particles is ®;; and the force exerted on
particle i by particle j is F;.

We have studied four types of algorithms for dynami-
cal systems: the Dolls tensor and the SLLOD equations
of motion for planar Couette flow, the color-conductivity
algorithm for the self-diffusion coefficient, and the
“Evans” heat-flow algorithm. These algorithms are now
standard techniques in molecular dynamics and the
reader is referred to a recent text [6] for details. The
Dolls tensor equations for shear flow are given by
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. _Pi .

4=—+iry; ,

. _ (1)
pi=F,—jvp,—oap;,

where i and j are the unit vectors in the x and y direc-
tions, respectively, ¥ =3u, /dy is the shear rate, and a is
the Gaussian thermostat multiplier. In the isokinetic ver-
sion of the algorithm, where the total kinetic energy
3. p?/2m is held constant, «a is given by

N
> Fip; T YDxiPyi
i=1

a= . ()

A
EP:‘

i=1

If the total internal energy is a constant of the motion,
one has

i=1

where P, is the xy element of the pressure tensor P:

N
Pr=3

i=1

piPi X
— 33 q;F; . )
m ij
The SLLOD equations of motion are almost the same
as the above equations, except that the equation for the
time derivative of the momentum is different:

f’i:Fi‘i?’Pyi_aPi . (5)
In these two algorithms the shear viscosity 7 is calcu-
lated from the constitutive relation
—(P,,)
n=—">. (6)
Y
Both of these algorithms are correct in the limit of
zero-shear rate. For finite shear rates, the SLLOD equa-
tions are exact but the Dolls tensor algorithm leads to in-
correct predictions of the thermophysical properties [6].
The (adiabatic) Dolls tensor equations can be derived
from a Hamiltonian,

N
Hpas=Hoty 3 yiPxi » (7

i=1

where H, is the sum of the peculiar kinetic energy and
the potential energy. There is no Hamiltonian which
generates the SLLOD equations of motion [6].

Under adiabatic conditions both SLLOD and Dolls dy-
namics have eigenvalues of their respective stability ma-
trices (see Sec. IIB) that occur in zero-sum conjugate
pairs. However, a major difference between the two dy-
namics is that at an arbitrary point in phase space, the ei-
genvalues of the SLLOD stability matrix have no explicit
dependence on the strain rate.

These two shear-flow algorithms must be implemented
together with the Lees-Edwards shearing periodic bound-
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ary conditions [8,6]. The proof of the conjugate-pairing
rule given by Evans et al. refers only to an isolated
dynamical system. NEMD computer simulations are
usually carried out under periodic boundary conditions
(for recent exceptions see Refs. [9,10]). For shearing sys-
tems we employ the time-dependent, nonorthogonal,
Lees-Edwards periodic boundary conditions. The proof
of the conjugate-pairing rule for SLLOD dynamics refers
to the SLLOD equations of motion but not to the time-
dependent Lees-Edwards periodic boundary conditions
[1] which tell the N interacting particles which comprise
the system where their external neighbors are at any
given instant. Under Lees-Edwards periodic boundary
conditions these external neighbors are shifted periodic
images of the system particles [6]. The magnitude of this
shift or displacement is a function of the unit-cell size,
the strain rate, and the time. This latter fact has impor-
tant consequences for the Lyapunov spectrum of shearing
systems.

One can always argue that since we are interested in
bulk thermophysical properties we take the large system
limit of the results of NEMD simulations. If the system
is made sufficiently large, the influence of these boundary
conditions will affect only the dynamics of “surface” par-
ticles, and hence their influence should diminish as the
system becomes larger.

The third system we examined was the color-
conductivity algorithm for the self-diffusion constant.
The equations of motion are

P

q; = m ’

. 2¢;J,

p,=F;+c¢,Fp—a |p;— N R (8)
N/2

Ji=2pi-

i=1

In these equations the particles are divided into two
different fictitious species. The particles 1 through N /2
constitute species 1 and the others constitute species 2.
The particles are given a color charge ¢; which is equal to
+1 for 1<i<N/2 and —1 for N/2<i=<N. The vari-
able F, is the color field. The color current of species 1
is J;. The system is studied in the centre of momentum
frame J,= —J,. The thermostat multiplier « is given by

N 2¢;J, F
e pi N i
a= 7 . 9)
N 2CiJ]
121 Pi N

The mass current of the either species is subtracted from
the momenta to prevent the thermostat from interpreting
induced mass currents as heat.
The adiabatic equations of motion of this algorithm
can be derived from a Hamiltonian,
N
H . =H,— 2 ¢;q;'Fp , (10)

i=1
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and the color conductivity L(Fp) defined by its constitu-
tive relation,

Jp
NFp ’

L(Fp)= 11

where J,=1J,| and F,=|Fp|, are related, in the zero
color-field limit, to the self-diffusion coefficient D:

D= lim kgzgL(Fp) . 12

L ;120 gL (Fp) (12)

Finally, the “Evans” heat-flow algorithm was investi-

gated. The equations of motion in the center-of-
momentum frame are

, _ Pi
Qi";’
. 1
pi—Fi+ S,—WS 'FQ_ap" y
(13)
s=L|2y 3o [I-L3qr
i~ 5 |'m gl ij 2 EIQU ij o
j j

N

S=3 S,

In (13), Fy is the heat field and | is the second-rank unit
tensor. The Gaussian thermostatting multiplier is

N
Epi' F,+

_ =1

1
SI—WS 'FQ

N (14)
> pi
i=1
The adiabatic form of these equations of motion (13) can-
not be derived from a Hamiltonian, but they do satisfy
AIT:
a ~ad a . ad a . ad
— =y —g+—p¥°=0. 15
or ; 9q; % op; Pi 15

The thermal conductivity of the fluid is calculated from
the constitutive relation

)

A= ,
—0 TFQ

F,

i (16)
0
s[n;l(;t]ere Jo=1Jyl, Fg=|Fyl, and J, is the heat-flux vector

2

Pi 1 X
-3 o,
2m 2j§1 Y

N op;

i=1Mm

1 N
"E qupl.FU . (17)
Lj

It is worth remarking that there is a related algorithm
for heat flow due to Gillan and Dixon [11] which is not
tested in this paper. Because the Gillan-Dixon algorithm
violates AIT" and momentum conservation, the Gillan-
Dixon algorithm was not of interest (AIT is known to be
a necessary condition for the conjugate-pairing rule to
hold).
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B. Lyapunov exponents

Each of the equations of motion discussed so far can
formally be written as

I'=G(T,t), (18)

where I is the phase-space vector consisting of the posi-
tion coordinates and the momenta of all N particles in the
system. The two shear-flow algorithms (1) and (5) are
nonautonomous in the sense that in (18), G is an explicit
function of time. For both the other algorithms, G is
only implicitly dependent on time thus the color conduc-
tivity and the heat-flow algorithm are autonomous.

We can define a distance vector 8§, =TI, —I'; between
two phase-space vectors I'; and I',. If the length of the
distance vector goes to zero it becomes a tangent vector
whose equation of motion is

G

8= -8,=T-8,, (19)
' ar r=r, ! !
where T is the stability or Jacobian matrix of the equa-
tions of motion. The largest, i.e., most positive,

Lyapunov exponent A,,, can be obtained as a limit [4]

== lim a1 0)
=A= lim — ,

max T e 2t af(o)

where §,=|8;/. The ith Lyapunov exponent

i=1,2,...,6N can be calculated by following a tangent
vector §;, constrained to be orthogonal to the tangent

vectors 8,-, ie, 8;:4,=0, j=1,2,... ,i —1. The equa-
tion of motion for §; is

. i—1

6, =T-8,— 3 &8, . 21

j=1
The multiplier §;; is determined from the differential
form of the orthogonality constraint

5,6,+8,6,=0 (22)
and is
8, T-8,+8,-T5;
= (23)
8?2
J

Note that the equations of motion of the tangent vectors
1,2,...,i —1 are not affected by the equations of motion
for §,. The tangent vector equations form a hierarchical
set. The ith Lyapunov exponent is then defined from the
limit

(24)

This scheme is essentially the Benettin et al. [12]
method with their iterative Gram-Schmidt orthogonali-
zation procedure replaced by a continuous-constraint-
multiplier orthogonalization. The Benettin method is in-
convenient because the tangent vectors grow or shrink
exponentially with time, requiring periodic rescaling [12].
For this reason we use a continuous rescaling method,
proposed originally by Hoover and Posch [13] and in-
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dependently by Goldhirsch et al. [14]. We give a consid-
erably simplified sketch of the proof, by Goldhirsch, that
the Lyapunov exponents so obtained are simple time
averages of the tangent forces required to maintain these
length constraints.

Consider an orthogonal set of infinitesimal tangent vec-
tors {87} whose lengths are constant. This length con-
straint implies

82=const, i=1,2,...,6N (25)
and therefore
5-8=0, i=1,2,...,6N . (26)

The equations of motion for the length-constrained
tangent vectors are

i—1

=T-8— 3 ;87 —8id; Q7
j=1

with

_ T (28)
i (8¢)

and

8T8 +85-T-8 09
y (89)2

These equations of motion are the same as Eq. (21) apart
from the constraint multipliers §;. Fixing the length of
the vectors §;, for j <i does not affect §; because only the
direction, but not the magnitude, of the & j’s affects the
solution of Eq. (27). In order to derive a relationship be-
tween the multiplier §; and the Lyapunov exponents we
rewrite Eq. (27) as

i—1

2 68—

i=1

Bi=T-5:~ £

i—1 acaf )
T— 2 gu _gu 1 _gii”'ai ’ (30)
j=1
where
, i—1 8"80
T=T-3 g,]

j=1 )

(31

and | is the unit matrix. The solution of this equation is

851 =expy, | [ T(5)= () }ds |-8,(0)

=§,(t) exp

_ fo’;,.,.(s)ds ] , (32)

which gives the following expression for the length of the
constrained tangent vector:

[85(1) 2=8%(1) exp fo’—2§“<s)ds] . (33)

The operator exp; is the left-ordered exponential. Since
the norm of &§{(¢) is constant
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| [85(2)]? where M(t) is the propagator of the unconstrained

111’“; 2 In [5.(0)]2 tangent vectors, i.e.,

i

L[ 8 _ M(0)= expy, [ 'ds T(s) (37)

=0= lim ?t- In % exp( —2t§ii) 0

t— o :
! and M' is the Hermitian adjoint of M.

L 1 82(t) _ _ The equations given above require the solution of equa-
- ,12‘; 2t In 62(0) =i |=Ai—8u - (34)  tions of motion for the variables T, 8,, 8,, etc. However
! we prefer to solve a finite difference approximation to (27)
Therefore where the tangent vector §; is approximated by the
_ 1 et I';—Iy vector and T-8; is replaced by G(I';)—G(T).
A= EIILIT;7 f 0 Gii(s)ds (35)  This gives the following equations of motion for the ith

and the ith Lyapunov exponent is simply the time aver-
age of the multiplier used to keep the ith tangent vector
fixed in length.

The Lyapunov exponents are also the logarithms of ei-
genvalues of the matrix [4]

A= lim [MT(r)M(2)]"/*, (36)

t—

_ (T, —=T%)[G(T;)—=G(Ty) ] +(I'; — ) [G(T;)—(G(Ty)]

tangent vector:
I, —y=G(I';)—G(T,)
i—1

= X 6L —Tp)=§;(T; —TY) . (38)
ji=1

The off-diagonal multipliers §;; become

v (T;—T,)+(T;—Ty)

and the diagonal multipliers §;, the time average of
which are Lyapunov exponents, become

_ (I, —Ty)-[G(I,))—G(Ty)]
éﬁ (F, "‘Fo)(r‘, _Fo)

(40)

In I it was shown that if the eigenvalues of the stability
matrix of the adiabatic equations of motion occurred in
conjugate pairs of equal magnitude but opposite signs,
then the Lyapunov exponents of the isothermal or isoen-
ergetic equations of motion appear in conjugate pairs
whose sums are all the same. This is called the
conjugate-pairing rule. When the adiabatic equations of
motion can be derived from a Hamiltonian, the eigenval-
ues of the stability matrix can be arranged in such pairs.
This is also the case for the adiabatic SLLOD equations
of motion. As mentioned in the Introduction, it is not
known whether this eigenvalue structure is a necessary
condition for the conjugate-pairing rule to hold.

There are some further quite general remarks that can
be made regarding the nature of the Lyapunov spectra
for the NEMD algorithms considered here. Because
each of the algorithms preserves the total peculiar
momentum there are two zero Lyapunov exponents that
result from each Cartesian component of the momentum.
The first of these zero exponents corresponds to the
momentum sum and the second to the position of the
center of mass, for each Cartesian component. In addi-
tion there is another zero exponent resulting from the
nonholonomic thermostatting constraint.

In the Appendix we discuss, in relation to statistical-
mechanical systems, Haken’s [15] proof that autonomous

(39)

systems [i.e., G(I',#)=G(TI')] possess an additional zero
exponent. This means that for autonomous systems such
as heat flow and color conductivity, there is an even num-
ber of nonzero Lyapunov exponents. However, if the dy-
namics is nonautonomous, as in the shearing systems
[16], there is no additional zero exponent, leaving an odd
number of nonzero exponents (i.e., one exponent is un-
paired).

C. Technical details

The particles we have simulated interact via a WCA
potential

12 6
0—12-—0—6 ‘e, r<r,
u(r)= r r 41)
0, r=r,

which is a Lennard-Jones potential truncated at its
minimum and shifted to remove the discontinuity in the
energy. The parameters o and & are the zero and the
depth of the minimum of the original Lennard-Jones po-
tential, respectively, and r is the scalar distance between
the two interacting particles. The cutoff distance beyond
which the pair potential is equal to zero, r. is equal to
2!/, The mass and the Lennard-Jones diameter o of
the particles have been set equal to 1. The energy unit is
¢ and the time unit is 7=0(m /e)!’%. All the values of
the Lyapunov exponents and conjugate sums reported in
this work are given in units of 7!,

The equations of motion were solved using a fourth-
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order Runge-Kutta method with a time step 0.0017. The
tangent vectors were approximated by distance vectors of
length 0.0001. It has been shown by Morriss [17] that
this length is sufficiently small not to distort the
Lyapunov exponents. The tangent vectors are rescaled
about every fiftieth time step in order to maintain the
lengths and the orthogonality. The simulation-run
lengths were 16007 and the error bars of the different
averages have been obtained by the dividing the run into
four equal parts and calculating the standard deviation of
the subaverages.

It may seem an unnecessary complication to solve the
tangent dynamics for a finite phase separation rather
than solving the linearized dynamics. However, the solu-
tion for finite separations can be made very efficient by
sharing neighbor lists among the 6N simulations.
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FIG. 1. (a) Conjugate pairs of Lyapunov exponents are

denoted by open symbols and the sums of the conjugate pairs
are denoted by solid symbols. The circles depict equilibrium re-
sults and the squares depict nonequilibrium results. The pair in-
dex is largest for the maximal Lyapunov exponents and decre-
ments by 1 for each subsequent conjugate pair. The unpaired
exponent is assigned a pair index of 1. The system is studied un-
der SLLOD dynamics with reduced shear rate y7=1.0. The
Lyapunov exponents and the conjugate sums are given in units
of 77'. (b) The same as in (a), but the reduced shear rate has
been increased to 2.0.
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III. CALCULATIONS, RESULTS, AND DISCUSSION

We calculated Lyapunov spectra for each of the
NEMD algorithms discussed above. We simulated a
two-dimensional WCA fluid consisting of eight particles.
The reduced density no? was equal to 0.40 and the re-
duced temperature k3 T /€ was equal to 1.00.

The first system that we studied was a shearing fluid
subject to Couette flow under the SLLOD equations of
motion [(1) and (5)]. The Lyapunov exponents of this sys-
tem for the reduced shear rate ¥y7=1.0 is shown in Fig.
1(a). In accord with the predictions of the conjugate-
pairing rule, the sums of the conjugate pairs are constant.
The value of the unpaired exponent, for this nonauto-
nomous system, is equal to the sum of the conjugate
pairs.

At a reduced shear rate of 2.0, the sum of the conju-
gate pairs is apparently not exactly the constant. Howev-
er, the deviation which is essentially confined to the un-
paired exponent is barely distinguishable above the sta-
tistical noise. Checks were carried out using higher-
accuracy, shorter-time-step stimulations but the weak
“turnup” of the unpaired exponent persisted. The largest
exponent seems to be almost independent of the shear
rate. It is very close to the equilibrium value even at the
highest shear rate.

At very high shear rates these systems form a noner-
godic ‘‘string phase [6].” The existence of this high-
shear-rate string phase is known to be an artifact which
results from the combined influence of the Gaussian ther-
mostat and the periodic boundary conditions. At very
high shear rates a particle can stream across the simula-
tion cell in a time so short that lateral diffusion is
insignificant. The particles can minimize the entropy
production by traveling in tubes or “strings.” If the sys-
tem was not periodic this tendency would be greatly re-

o.o}§
01f {ﬁﬁﬁﬁ{
é 02f }{
& o3 %ﬂ{
r 19
| ity

Exponent Index

FIG. 2. The shift of the SLLOD exponents away from the
equilibrium value AM(y7=1,i)—A(y7=0,{) in units of 77!, for a
reduced shear rate of 1.0 as a function of the exponent index. In
this figure the exponent index is defined by setting the largest
exponent number to 1, the second largest number to 2, etc.
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FIG. 3. The same as Fig. 1(a) but the Dolls tensor equations
of motion have been applied instead of the SLLOD equations.

duced. It is possible that these small, barely distinguish-
able deviations, principally of the unpaired exponent, are
related to the existence of this nonergodic string phase.
An unavoidable and unfortunate result of the proximity
of the string phase is that the equations of motion (27) for
the tangent vectors become more and more stiff as the
shear rate increases and the string phase transition is ap-
proached.

In Fig. 2 we have plotted the difference between the
Lyapunov exponents of the nonequilibrium shearing sys-
tem and the corresponding equilibrium system at zero
shear rate as a function of the exponent index. (The in-
dex of the exponent is defined by calling the largest ex-
ponent number 1, the second largest number 2, etc.) The
data are consistent with the hypothesis that the shear-
induced shift of the Lyapunov exponents is a linear func-
tion of the exponent index.
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FIG. 5. The same as Fig. 1(a) but the nonequilibrium system
is created by applying the color-conductivity algorithm with a
reduced color field of 1.5. Note that away from equilibrium,
one of the Lyapunov exponents remains at zero.

The next system that we examined was also a Couette
flow, but one driven by the Dolls equations of motion (1).
The Lyapunov spectra of this system for a reduced shear
rate of 1.0 is shown in Fig. 3. The SLLOD and the Dolls
conjugate sums virtually coincide, although some of the
exponents are slightly different. The conjugate-pairing
rule is satisfied and the unpaired exponent is equal to the
conjugate sum.

In Fig. 4 the shift of the Dolls tensor Lyapunov ex-
ponents from their equilibrium values is plotted as a func-
tion of the exponent index. It is fairly obvious that this is
not a linear function as was apparently the case for
SLLOD dynamics. One can thus rule out the possibility
that the satisfaction of the conjugate-pairing rule implies

0.1

03} §}§
o : Hhﬂ{h}
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FIG. 4. The same as Fig. 2 but the nonequilibrium system
has been created by applying the Dolls equation of motion.
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FIG. 6. The same as Fig. 2 but the nonequilibrium system
has been created by using the color-field equations of motion
with a color field of 1.5.
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that the exponent shift should be a linear function of the
exponent index.

The Lyapunov exponents of a system subject to a color
field (8) are shown in Fig. 5. The color field is equal to
1.5. The adiabatic equations of motion can be derived
from a Hamiltonian, so we expect that the conjugate-
pairing rule should be valid; this is seen to be the case.

A difference between a color-conductivity spectrum
and a Couette-flow spectrum is that in the former case
the “‘unpaired” exponent is zero. This is because, unlike
the shear-flow algorithms, the color-conductivity algo-
rithm is autonomous [16].

In Fig. 6 we have plotted the shift of the Lyapunov ex-
ponents away from the equilibrium value. Again it is ob-
vious that it is not a linear function. Since the eigenval-
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FIG. 7. (a) The same as Fig. 1(a) but the Evans thermal-
conductivity algorithm with a heat field of 0.5 has been applied
instead of the SLLOD equations. The conjugate-pairing rule is
not satisfied in this case, so no straight line can be drawn
through the sums of the conjugate pairs. Note that away from
equilibrium, one of the Lyapunov exponents remains at zero.
(b) The same as Fig. 7(a) but the heat field has been increased to
1.0. Note that the unpaired exponent is less than zero and that
largest exponent in conjugate pair number 2 is equal to zero.
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ues of the stability matrix for color conductivity have
(like SLLOD) no explicit dependence on the applied field,
this aspect of the dynamics can be ruled out as contribut-
ing to the apparent linear exponent shift observed for
SLLOD dynamics.

The eigenvalues of the adiabatic stability matrices for
the algorithms discussed so far occur in zero-sum conju-
gate pairs. This is a sufficient condition for the
conjugate-pairing rule to hold. However, the Lyapunov
exponents are not the eigenvalues of the stability matrix,
but rather are the eigenvalues of the A matrix (36). It is
possible that there may exist a less restrictive, necessary
condition for the conjugate-pairing rule. It might be sug-
gested that a necessary condition would be that the equa-
tions of motion satisfy AIT" and that the Lyapunov spec-
tra be obtained for a steady state.

In order to test this conjecture we have calculated the
Lyapunov exponents of a system whose dynamics is
governed by the “Evans” heat-flow algorithm (13). The
adiabatic equations of motion of this algorithm cannot be
derived from a Hamiltonian but they do satisfy AI". In
Fig. 7 we show the Lyapunov exponents for two heat
fields, Fy=0.5 and F,= 1.0. It is obvious that the
conjugate-pairing rule does not hold for this system.
When the field increases, the positive exponents decrease
and become negative, even though at least one exponent
is always equal to zero. As mentioned above this is a
very general property of autonomous systems. At low
heat fields the unpaired exponent vanishes, but when F
increases this exponent becomes negative and a different
positive exponent becomes equal to zero.

IV. CONCLUSION

We have calculated the Lyapunov spectra generated by
various NEMD equations of motion. The purpose of this
investigation has been to explore the necessary conditions
for the conjugate-pairing rule to hold. Sufficient condi-
tions for the conjugate-pairing rule are that the system is
thermostated by a Gaussian thermostat applied to all de-
grees of freedom, and the eigenvalues of the adiabatic sta-
bility matrix occur in zero-sum conjugate pairs.

This rule is useful because it makes it possible to calcu-
late the phase-space-compression factor and thereby the
transport coefficients, by knowing just one pair of ex-
ponents. It is easy to show the rule is valid for any
NEMD algorithm whose adiabatic equations of motion
are derivable from a Hamiltonian. The color-
conductivity and SLLOD algorithms fall into this class
and our data verify that they satisfy the conjugate-pairing
rule. The SLLOD algorithm is not derivable from a
Hamiltonian but it does have the requisite adiabatic ei-
genvalue structure that is known to lead to the
conjugate-pairing rule. Again our numerical data sup-
port this.

The main difference between the Couette-flow spectra
and the color-conductivity spectrum is that for color con-
ductivity there is always one zero exponent. The reason
for this is that the color-conductivity equations of motion
and boundary condition are autonomous, whereas the
Lees-Edwards periodic boundary conditions employed in
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shear-flow algorithms make the system nonautonomous
[15,16].

Another property that we have studied for these three
algorithms is the field-induced shift of the exponents as a
function of exponent index. The data for the SLLOD al-
gorithm suggests that this shift is a linear function of the
index However, none of the other algorithms displays
such a linear dependence. We know of no explanation
for this effect, but it is clear that since both the color-
conductivity and the SLLOD algorithms have the prop-
erty that their local stability-matrix eigenvalues are both
independent of the applied external field, this property is
ruled out as the origin of the linear shift in the Lyapunov
exponents which is observed for SLLOD.

Finally, we evaluated the Lyapunov spectrum of the
Evans heat-flow algorithm. This algorithm satisfies AIT"
but the eigenvalues of the local adiabatic stability matrix
do not appear in conjugate pairs of equal size nor with
opposite signs. We found that the sums of the conjugate
pairs were all negative but of unequal magnitude. Satis-
faction of AIT is thus not a sufficient condition for the
conjugate-pairing rule to hold.

A final remark is pertinent regarding heat flow and the
thermal-conductivity coefficient. One should not regard
the failure of the conjugate-pairing rule for the “Evans”
heat-flow algorithm as implying that there is something
peculiar about thermal-conduction processes. The
“Evans” algorithm provides the most efficient method
presently known for calculating the limiting zero-field
thermal conductivity [18]. However it is quite straight-
forward to construct (vastly) less efficient algorithms for
calculating the thermal conductivity which do satisfy the
conjugate-pairing rule. The most obvious dynamics for
this purpose are generated by the following Hamiltonian:

H=H0+FQ'2qi(ei—€) N (42)

where e; is the contribution to the total internal energy
made by i, and @ is the instantaneous mean of {e;}. Al-
though valid in principle, this algorithm is unsuitable in
practice because, being incompatible with periodic
boundary conditions, it requires the simulation of huge
systems to reduce the N dependence of the results.
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APPENDIX

The existence of at least one zero Lyapunov exponent
in an autonomous system has been proved by Haken [15].
Here we present a simplified version of that proof, as it
applies to statistical-mechanical systems. Consider the
equations of motion

=G, . (A1)
Differentiation with respect to time gives
. dG - | 9G
=—T+——. A2
r ar r ot (A2)

When the equations of motion are autonomous, which is
the case for the color-conductivity and the heat-flow al-
gorithms but not the Couette-flow algorithms, the term
9dG /9t vanishes and we have

“ar T

From Eq. (19) we see that dT" /dt is a tangent vector, with
the corresponding Lyapunov exponent

~2
A=lim Ll
(0)

t— o 2t
This exponent is zero if dI"/dt is bounded or at least
grows at a slower than exponential rate. In the systems
examined in this work we have

. N N
[TOP=3 @+ 3p:.

i=1 i=1

(A3)

(A4)

(AS)

This is a function of the phase variables. By definition, in
a steady state the average of such a function does not
change with time. Thus the numerator in (A4) does not
grow or shrink with time and the limit is consequently
equal to zero.
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