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The evolutionary history of elastic materials subjected to the shear stress and the high confining pres-
sures encountered in seismological applications is simulated by a set of avalanche models. Some models
exhibit bimodal fracture-size distributions reminiscent of a first-order phase transition, while others have
scaling behavior. We argue that this scaling behavior arises as a consequence of the high degree of self-
generated roughness. In all models the scaling region broadens as surface roughness is increased. An
epidemic growth model, closely related to the avalanche models, is introduced to understand the statisti-
cal properties obtained in the simulations. By means of these alternative formulations we interpret the
scaling in the size distributions of the avalanche models as a finite-size effect; the system self-organizes,
tuning itself to a size-dependent steady state which exhibits an apparent criticality. A value for the scal-
ing exponent, determined from the epidemic model by way of correlated percolation theory, is in good
agreement with the numerical result. These problems have relevance to sandpile and earthquake models

and to aspects of self-organized criticality.

PACS number(s): 05.20.—y, 05.70.Jk, 46.30.Nz, 91.30.Bi

I. INTRODUCTION

In this paper we are concerned with fracture propaga-
tion in a regime relevant to the study of earthquakes.
Shallow seismic events occur at depths of 10-50 km,
with corresponding pressures of 3—15 kbar. In contrast
to typical laboratory experiments, these high pressures
eliminate the possibility of generating tensile cracks and
favor shear fracture. Repeated fracture and healing on a
given surface is now possible, and is in fact observed.

In the following we develop several discrete models for
fracture propagation on a two-dimensional fault with
healing. Based on rock friction experiments that indicate
that the velocity dependence of the friction force is weak
[1], we work with a velocity-independent dynamical fric-
tion coefficient. This assumption is frequently found in
the seismological literature. The growth rules we pro-
pose for these fractures are given in terms of a nearest-
neighbor algorithm valid in the range of parameters of in-
terest. These rules reproduce the scaling laws of elastic
cracks.

Our approach is set in the context of the general prob-
lem of the statistical study of irreversible phenomena.
We work within two frameworks: (i) the “time-average
framework,” in which a model for the system is allowed
to evolve and statistics are obtained by averaging over
long time intervals, and (ii) the ‘“ensemble framework,”
where a series of fractures are generated on a set of sys-
tems that satisfy identical “macroscopic” constraints but
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differ at the “microscopic” level. Models of type (i) are,
for example, the avalanche models of Bak, Tang, and
Wiesenfeld [2], Zhang [3], Ito and Matsuzaki [4], Carlson
and Langer [5], and Nakanishi [6]. Work along the lines
of type (ii) has been previously carried out, among others,
by Herrmann and collaborators [7], and Lomnitz-Adler
and Lemus-Diaz [8]. In equilibrium statistical physics
both approaches are in general interchangeable due to an
underlying ergodic hypothesis. In our case, despite the
absence of a formal justification, we work with both
descriptions. The model used in framework (ii) has been
constructed to incorporate the essential features of the
avalanche models. Both treatments are complementary
and provide a fuller understanding of the dynamics of
fracture propagation.

As far as self-organized criticality is concerned, while
it can be argued that in the thermodynamic limit none of
these system have critical points, for any finite lattice one
of the models tunes itself to a state which appears criti-
cal.

This paper is organized as follows: In Sec. II we
present the necessary elements of the theory of elastic
crack propagation, to justify that a two-dimensional,
nearest-neighbor approximation is valid for modeling se-
ismic fracture. We introduce a set of avalanche models
in Sec. III, and interpret the generated statistics in terms
of a nucleation model in Sec. IV. In Sec. V we construct
an epidemic growth model that corresponds to the
avalanche models under consideration. From the
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cluster-size distribution of the epidemic model we obtain
in Sec. VI, via correlated percolation theory, the ex-
ponent observed for the automaton’s avalanche-size dis-
tribution. Section VII contains our conclusions and a
discussion.

II. FRACTURE-PROPAGATION MODEL

A fracture that is introduced into a prestressed solid
induces a redistribution of the stress field. The stress on
the fracture surface itself is reduced; beyond the fracture
surface and in its plane, stresses are increased,
significantly so at short distances from the edge of the
crack and less so at longer range (see reviews [9]). The
amplitude of the redistributed stress fields depends on the
size of the crack and the stress drop on the fractured sur-
face. Hence, a succession of cracks induces fluctuations
in the stress field.

We simulate a fault which supports repeated seismic
events by two-dimensional-lattice models with nearest-
neighbor interactions. The conditions under which the
nearest-neighbor approximation is appropriate can be de-
rived as follows. A planar crack in the interior of a
stressed elastic solid has a stress on its walls equal to the
sliding friction; the difference between the external stress
and the friction is the stress drop 7. Because we neglect
inertial effects in our problem, we take the friction on the
crack wall to be zero. For a thin crack of characteristic
length L that terminates abruptly at a smooth edge, the
exterior stress increment falls off as (L /£)'/? at short
distance £ from the edge. At long range the stress incre-
ment falls off as the point-source Green’s function, which
is £ for a d-dimensional crack. If (L /£)'/2>>1, the in-
cremental energy density outside the crack is proportion-
al to the square of the incremental stress, and falls off at a
rate proportional to L/§. In the case of a two-
dimensional antiplane shear crack in an infinite, elastical-
ly homogeneous medium, the exact solution for the stress
is [9, 10]

o=1x/(x2—L*>'2 x>L (2.1

where L is half of the width of a crack and x is measured
from the center; £=x —L. Thus the incremental energy
in a finite interval of distance from the edge varies as
L In(§,/§,), where &, and &, are the outer and inner dis-
tances of the interval from the edge.

Since a real elastic material with a finite yield stress
cannot support the infinity at the edge implied by the
short-range dependence, a slip-weakening zone (some-
times called a plastic, transition, or damage zone) devel-
ops over the distance &,, where 7(L /2£,)!/?=0y with
oy the yield strength of the material (Fig. 1). The transi-
tion zone is a tubular region that surrounds and follows
the edge; in the transition zone dense dislocations are
formed that are displayed as microfracturing, twinning,
development of slip lamellae, etc. Outside the slip-
weakening zone we assume the material to be homogene-
ous and elastic.

To fix the range of validity of a nearest-neighbor model
of stress redistribution in a lattice model with lattice con-
stant b, we compute the ratio of the energies per unit
length of the crack edge in the regions 0<£<b and
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FIG. 1. Distribution of stresses in the plane of fracture (solid
curve). The shaded regions denote the slip weakening zone; the
lattice spacing b is also indicated. Dotted-dashed curve illus-
trates the nearest-neighbor approximation.

b <£<2b. The energy density is # =02/2u, where pu is
the shear modulus. We use the exact expression for a 2D
crack given in (2.1). If we assume both a linear stress and
a linear shear modulus profile in the slip-weakening zone
(see Fig. 1) we obtain, in the limits (b/L)<<1,
(€./L) <1,

hy/hy=[1+In(b/E,)]/In(2) . (2.2)

The logarithmic factors describe the energies in the two
lattice intervals outside the slip-weakening zone while the
first term describes the energy inside it. If the assump-
tions of the linearity of profiles in the slip-weakening zone
are changed, the first factor is changed slightly. Since the
stress drop is related to the size of the slip-weakening
zone by

T/0y=(2E./L)V?, (2.3)

the nearest-neighbor model will hold in the approxima-
tion £, <<b, which implies 7/0y <<1. Since all dimen-
sions of the redistribution are proportional to the crack
size, both for the size of the slip-weakening zone and the
decay of the stress outside it, the conditions for the valid-
ity of the nearest-neighbor model are fixed by the rela-
tions at the largest crack sizes. For a yield stress of 600
bar, and a loading stress of 30 bar, /0 y=0.05 and the
nearest-neighbor approximation fails for fracture dimen-
sions greater than L /b=80. We show below that the
physical system loses its mechanical stability long before
fractures of this size appear.

III. TIME-AVERAGE FRAMEWORK

We construct several avalanche models that simulate
fracture propagation and in which inertial effects are
neglected. As a starting point, consider a typical
avalanche model recently described in the literature
[2,3,4,11]. Space is discretized into a two-dimensional
lattice with coordination number z, and at every lattice
point (i,j) a scalar variable 4 (i,j) is defined which we
shall refer to as the energy. Time is also discretized, and
at every time step one of the lattice sites is chosen at ran-
dom and a fixed quantity € is added to it. If the A value
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at this point is greater than one, an avalanche is initiated
with the following rules: (1) the quantity A/z is
transferred to each of the neighbors; (2) 4 at (i, ) is set to
zero (the site breaks); (3) if any of the neighbors has a
value of h which is greater than one, the process is re-
peated until no & exceeds the critical value of one. The
‘“avalanche” occurs during one time step, and in this
sense is instantaneous. Once an avalanche has died out,
time is increased by one unit and the process described
above is repeated.

Features of this model that will be of relevance below
are (i) it is locally conservative, unless a site (i, ) is at the
edge of the lattice the sum of energies is conserved; (ii)
the loading mechanism is random, and over long periods
of time builds up an energy surface which approaches a

~random walk as € tends to zero; (iii) the avalanche propa-
gates according to a threshold dynamics, i.e., there is a
value for & (in this case, one) such that if a site exceeds
this value it is unstable; (iv) the algorithm for the dynam-
ics is local in space; (v) external loading is applied over
the entire surface, and energy is removed only at the
edges. Such a model must be capable of generating
avalanches whose dimensions are comparable to the size
of the system. This implies [11,12] that in a steady-state
regime properties reminiscent of a critical state should be
observed. This is the self-organized criticality (SOC) first
described by Bak, Tang, and Wiesenfeld [2]; (vi) the dy-
namics has no memory; a site which has previously
transferred its energy to the neighboring sites has exactly
the same properties as all of the other lattice sites.

Feature (ii), while being somewhat unrealistic as a tec-
tonic loading mechanism, is a useful prescription to simu-
late a certain degree of roughness on the fault surface,
which, as mentioned before, is subject to repeated healing
processes.

Feature (vi) is inappropriate to describe propagating
shear cracks; regions that have already broken should not
accumulate stress or energy during the fracture event.
Therefore we modify rule (1) of the growth algorithm so
that once the energy of a site has been reset to zero it
cannot accumulate energy for the duration of the
avalanche. With this mechanism the concentration of en-
ergy at the crack tip increases with L for any two-
dimensional crack. For example, consider a circular
crack of radius L with average energy per site prior to
fracture given by (A ). The area depleted of energy is
S =wL?; because of nearest-neighbor interactions, all the
energy is transferred to the perimeter whose length is
t =2mwL. Hence the average energy per site at the perim-
eter 1s

<h>perimeter:<h>(l+L/2) . 3.1)

An identical result is obtained for an infinite two-
dimensional crack if L is the half-width of the crack as in
(2.1). These statements are consistent with the observa-
tion that the stress concentrations scale as V'L .

The explicit rules of the modified growth algorithm
which we study in this paper are as follows.

(1) The quantity h /k is transferred to each of the k
neighbors which have not yet participated in the
avalanche. Sites which lie outside the lattice boundary
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are considered to be unbroken.

(2) If k>0, h(i,j) is set to zero.

(3) If any of the neighbors has an & value greater than
one the process is repeated until no 4 exceeds the thresh-
old.

In the above algorithm, the case k =0, for which the
site whose energy exceeds the threshold and has no
nearest neighbors to which it can transfer its energy, has
not been defined. In Sec. IV three alternative rules will
be defined giving rise to three different models.

IV. TIME-AVERAGE BEHAVIOR
OF AVALANCHE MODELS

In our numerical simulations it is assumed that the
time scale for the fracture (avalanche) is very short com-
pared with the scale for the increase and accumulation of
energy. The system was allowed to run for 2 X 107 time
steps, in each of which an energy unit of e=1 was added
to a site chosen at random. Runs with smaller values of €
were also performed to study the effect of this parameter
on the resulting distributions. Prior to taking any statis-
tics, the system evolved for a transient of 10° time steps
to avoid bias arising from initial conditions. To detect
finite-size effects, lattices of 8 X8, 16X 16, 32X 32, and
64 X 64 sites were studied [in case (3) a 128X 128 lattice
was also considered]. The fractures were grown in suc-
cessive shells of sites which broke “simultaneously.” We
consider three variants of the model which differ for the
case kK =0.

A. Model 1: Local, nonconservative dynamics

The energy at the isolated site is lost to the system and
its energy is set to zero. This model is local, in the sense
that energy is transferred from one site to its first neigh-
bors, and is nonconservative since the energy at the
anomalous site is removed from the plane without redis-
tribution.

The distributions of fracture sizes for model 1 are
shown in Fig. 2. As the lattice size increases, the distri-
bution is seen to have two distinct parts. At the small
scale there is a large number of small events, which fol-
low an approximate power law over a reduced range of
avalanche sizes. At the largest scale there are fractures
whose size is essentially equal to the size of the lattice.
There are no events in the intermediate range.

The bimodal distribution is reminiscent of two-phase
coexistence in a first-order phase transition. A mean-field
nucleation argument for the propagation of the avalanche
supports this analogy. We define (4 ) as a spatial aver-
age taken over the lattice,

(hY=3h;/N*. (4.1)
iJj
If a circular fracture has a radius
L,.=2(1—(h))/{h) 4.2)

(see 3.1), it will grow without bounds because the energy
concentration at the perimeter exceeds the fracture
threshold. The validity of the assumptions implicit in ex-
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FIG. 2. Avalanche-size distributions of model 1. Lattice
sizes range from 8 X8 in the upper left-hand corner to 64X 64 in
the lower right-hand corner.

pression (4.2) can be checked with Fig. 2 and 3. We ob-
serve in Fig. 2 that the transition cluster size S,, =mL?2 is
of the order of 30, from which L, is of the order of 3;
from (4.2), the corresponding (A ) is approximately 0.4.
Figure 3 shows a histogram for the relative frequency of
occurrence of the value of (k) over all time steps. Aver-
age energies greater than about 0.4 are never encoun-
tered, indicating that the largest scale events occur when
the energy is close to this value, which we shall refer to as
(h )y

As the lattice size increases, the energy histograms of
Fig. 3 tend to a boxcar distribution. A one-degree-of-
freedom system that has this distribution is a periodic
linear sawtooth oscillator. All values of the sawtooth
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FIG. 3. Relative frequency of occurrence f({h)) of the
mean energy (& ) for model 1.
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FIG. 4. Time evolution of mean energy {4 )(t). Note the

similarity of this plot with that of a one-dimensional relaxation
oscillator.

function between the threshold and the base are sampled
with the same probability, while all other states are occu-
pied with probability zero. In Fig. 4 we show that the
evolution in time of (k) is indeed of this form. Our
model has a “charging” period equal to the average time
T between two catastrophic events, i.e., avalanches with a
size of the order of the system. Under the assumption of
small spatial inhomogeneities, a catastrophic event may
only occur in the vicinity of the transition energy, which
is Hyg={h ), N?in the mean-field approximation; there-
fore

T =Hyy /¢ 4.3)

where € (=0.25) is the energy transferred to the system at
each time step. We may consider the time-interval distri-
bution between big events, i.e., events whose size is com-
parable to that of the system. In Fig. 5 we show this dis-
tribution for avalanches whose area is larger than or
equal to N¥1—2/N). From (4.3), T=6500 for the
64 X 64 lattice.

Since large fractures that leave h;;=0 over the entire
lattice occur periodically, at no time are there large spa-
tial fluctuations in h. There is a long recovery-time inter-
val of the order of T, during which no avalanches occur,
as we have observed in the simulations. Thus no events
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FIG. 5. Distribution of intervals between large events

[S>(64)%(1—-5)] for model 1. Lattice size is (64).
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FIG. 6. Variation with € of the relative frequency of oc-
currence f({h)) of the mean energy k), in model 1. Solid
curve, e=1; dashed curve, e=1; dotted curve, e=. Note
that (k) decreases with «.

take place until (% ) lies just below {4 ),,=0.4. The nu-
merical values of parameters such as {4 ),,,L,. depend on
the level of roughness of the fault surface which is con-
trolled by the parameter €. Immediately after a large
event the energy surface is set to h;;=0, and during the
charging period, the distribution of energy for any given
site is given by the binomial distribution. It follows that
for a mean energy (4 ) the width of the energy profile is
equal to V'e(h ), so that as £ decreases the surface be-
comes smoother, (4 ), increases (see Fig. 6) and L,, de-
creases (see Fig. 7), qualitative features remaining the
same.

As a final remark we point out that in these calcula-
tions the nearest-neighbor approximation is valid. The
critical cluster length L, =3 is well within the bound
L /b ~80 obtained in Sec. II.
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B. Model 2: Local, conservative, relaxed threshold
dynamics

In this model an isolated site with energy greater than
the threshold does not break and continues to retain its
energy after the fracture has been completed. This site
can only break in a future avalanche, which occurs if € is
added to it, or if it is engulfed by a future event initiated
elsewhere. This model is inconsistent with a postulate of
threshold dynamics, wherein a site that has an energy in
excess of a critical threshold is always unstable. We ex-
pect to observe large energy variations, especially follow-
ing a rupture whose size is comparable to that of the en-
tire lattice; at this time most of the sites have 2 =0, but a
few sites still can have large values of 4. These isolated,
highly charged sites can initiate a rupture at any time,
and the system can generate avalanches of any size.

Model 2 is conservative, except for fractures which in-
tersect the boundaries of the lattice. It is not a reason-
able choice for the modeling of fractures; since the elasto-
dynamic interactions which underlie energy transfers be-
tween sites are long range, it is difficult to justify a model
in which energy can either be transferred to nearest
neighbors or not at all. Our purpose in this exploration is
to investigate the role of energy conservation in such
models. Although physically unrealistic, the model has
some interest from the statistical-mechanics point of
view, and shows some generalizable features of collective
behavior of extended nonlinear systems that have impli-
cations beyond the problems of fracture propagation.

The avalanche-size distribution for this model is shown
in Fig. 8. Avalanches of all sizes are present with ap-
parent scale invariance extending up to, but not includ-
ing, the largest avalanches, where a maximum is once
again observed. These simulation results are compatible
with the nucleation theory arguments presented in con-
nection with model 1 if the transition avalanche size L,
is of the same order as the lattice length Nj; in this case,
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FIG. 8. Avalanche-size distributions of model 2. The solid
line has a slope of —1.45.



2216

10 10

8- 8

6 6 —

4 4

4 4
R 5

2 2

O T T T O T rrrr T
0.0 0.5 1.0 0.0 0.5 1.0

fKh)

10 10

8 8-
4 .

6 6 —

4 4

2 2 -

O T T T T T O rrrr T
0.0 0.5 1.0 0.0 0.5 1.0

h)

FIG. 9. Relative frequency of occurrence f({h)) of the
mean energy ¢4 ) for model 2.

the average value of {4 ) should scale as 1/N, from Eq.
(4.2).

The distribution of (4 ) becomes sharper as the lattice
size is increased, with the maximum shifting to smaller
values of () (Fig. 9. We infer that the system is self-
organizing to a steady state. The peak and average
values of the distributions scale with N with an exponent
that is significantly different from — 1.0, namely about
—0.5 (Fig. 10), this behavior is an indication that the as-
sumptions behind the nucleation model appropriate for
case 1 cannot accommodate case 2 without some
modification. If we allow for the possibility of a geome-

In(N)

FIG. 10. Scaling of {h )yp with lattice size (model 2). Black
dots are the maxima in the distribution of (4 ) (see Fig. 9),
whereas white dots are global time averages of (4 ). Straight
lines have been drawn to guide the eye and have slopes of
—0.51 and —0.47 respectively.
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trically complex avalanche boundary, we rewrite Eq. (3.1)
as

<h)perimeter=<h>+(h)(S/t) , 4.4)

where S is the crack area and ¢ its perimeter. If we as-
sume that ¢ scales with S in terms of an exponent v
defined by

t~Sv (4.5)

where v=<1/2 is an effective dimension that measures the
amount of structure in the perimeter, then {4 ) scales as

(hYy~N"%, (4.6)

In Fig. 10 we observe that v is equal to about 1.

With regard to temporal correlations, since large
amounts of energy can be accumulated at some sites,
small fluctuations in energy can trigger large events at
any time. Thus the periodic-relaxation oscillator model
is inadequate. In this case large events may be followed
by other large events after a short time interval; the
time-interval distribution between catastrophic events is
not sharply peaked (Fig. 11).

The power-law size distribution over a wide range of
fracture sizes (Fig. 8) might lead one to believe that the
system is self-organizing into a critical state. There are
two objections to this inference: first, the maximum in
the avalanche distribution for large fractures is difficult
to accommodate in a finite-size scaling treatment of the
problem, since the maxima scale with a smaller exponent
than the slope in the power-law distribution; second, the
maximum in the energy distribution decreases with in-
creasing lattice size, indicating that the “critical state” is
size dependent. This latter observation can be under-
stood if the system self-organizes into a steady state such
that L,,~N and if avalanche perimeters are complex.
Based on percolation-theory results below, we shall argue
that the observed scaling can then be interpreted as a
finite-size effect.

When the arguments presented above for the scaling of
perimeter with fracture size are extended to Eq. (2.3), i.e.,
t/0y=(£./L)", we find from Eq. (4.6) that the size of
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FIG. 11. Distribution of intervals between large events for

model 2.
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the slip-weakening zone &, of the largest fractures (L ~N)
is independent of the lattice and hence is small.

C. Model 3: Nonlocal, conservative
dynamics-implications for self-organized criticality

In this case, the energy of the isolated site is set to zero
and is redistributed evenly along the boundary of the bro-
ken region. Except for fractures that intersect the bound-
ary of the lattice, this model is also conservative; all ener-
gy remains in the fault plane.

The first two models display a radically different phe-
nomenology from one another. In particular, model 2
self-organizes into an apparent critical state. Systems

S

FIG. 12. Avalanche-size distributions of model 3. Largest lattice size is (128).

capable of self-organized criticality have attracted a great
deal of attention since they were discovered numerically
by Bak, Tang, and Wiesenfeld [2], and have been studied
in much detail [11,3,12]. Hwa and Kardar [12] have ar-
gued that a conservative avalanche model will self-
organize critically, while a system that is capable of dissi-
pating energy anywhere besides the lattice boundaries
will not. The results from the first two models appear to
be consistent with their conclusion. In Hwa and Kardar
the analog of the energy was transferred locally. This as-
sumption is important in the arguments on the origin of
self-organized criticality given by Kadanoff et al. [11].
Our third model is nonlocal and conservative.

In Figs. 12—-14 we show, respectively, the avalanche-
size distribution and the distribution of {4 ) as a function
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FIG. 13. Relative frequency of occurrence f ({4 )) of the mean energy {4 ) for model 3.
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FIG. 14. Distribution of intervals between large events for
model 3.

of lattice size, and the time-interval distribution between
large events. For this particular model we had to go to
larger lattices, with NV up to 128, because the trends were
not easy to determine for the smaller lattices. With the
five lattice sizes under study we see that this model, al-
though conservative, behaves more like model 1 than like
model 2: it does not organize into a steady state, and the
fracture-size distribution separates into a bimodal distri-
bution which does not span all avalanche sizes. It ap-
pears that the question of self-organization into a steady
state depends on more than merely having conservative
or nonconservative dynamics.

V. ENSEMBLE FRAMEWORK: EPIDEMICS MODEL

We now develop an epidemic [13] growth model for
fracture propagation, closely related to the avalanche
description of Sec. IV, with a view to understanding the
appearance of a power-law decay in the cluster-size dis-
tribution of model 2. This model is explicitly constructed
to mimic the dominant features of the avalanche dynam-
ics.

Again consider fracture propagation as a process re-
stricted to a discretized plane. At every lattice site (i, ;)
we have an energy h;;, which we may view as an external
field, and allow for a site-dependent nearest-neighbor
coupling parameter J;;. The energy values are assumed
to be distributed according to a probability distribution
P(h;;) which is the result of an ensemble of possible
configurations consistent with a set of external con-
straints. We propose a growth model following the
prescription presented by Lomnitz-Adler and Lemus-
Diaz [8] for fracture growth on a heterogeneous seismic
fault. The basic features of their model which we shall
adopt are the following.

(1) Growth is initiated at a seed site chosen at random.

(2) For a given cluster, a growth site is selected on the
perimeter, and a number g, which depends on the state of
fracture of its neighbors, is assigned to the site.

(3) A probability p (g) that the site fracture is defined.

(4) A random number R, 0<R <1, is generated; if
R <p, thesite fractures and the cluster grows.
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(5) Steps (2)—(4) are iterated until no more growth sites
remain.

Step (3) depends on a coupling constant, which in Ref.
[8] has a fixed value. We introduce a coupling that de-
pends on the size of the cluster in accordance with the
dependence of the stress concentration on fracture size
derived in Sec. IV. The connection with the avalanche
models can be made as follows: consider a boundary site
(i,j) at some point in the evolution of an avalanche,
whose energy is

h,-j=h,~5’-+J (5.1)

ij »
where h,—‘} is the energy of the site prior to the initiation of
the avalanche and is the external field in the ensemble ap-
proach. The term Jj; is the energy transferred by the ¢
broken neighboring sites (coupling constant in the ensem-
ble approach). We make contact at a mean-field level

with Eq. (4.4) through the following identification:
(h ) perimeter =R Y+ (RIS /)=(h ) +{g)I(S5,t), (5.2)

where ( ) denotes an ensemble average defined below,
(g ) is the average number of broken neighbors, and the
effective coupling parameter J (S,?) is proportional to the
area to perimeter ratio of the crack (cluster).

The mean-field approximation assumes that the ener-
gies at different sites are uncorrelated prior to the initia-
tion of growth of the cluster, i.e., their values have a dis-
tribution 7(h) which is independent of position. The
average energy is now given by

(h)=[hP(h)dh (5.3)

where the integral is taken from zero to infinity in order
to allow for the avalanche model 2 situation. Incorporat-
ing Eq. (4.5), the effective coupling parameter J (S) is

J(S,)=J(S)=J,S"”,

To~(h) .

Equation (5.4) describes the cluster-size dependence of
the coupling parameter consistent with our avalanche
models.

It remains to specify the definition of the probability of
fracture p;;(q) at a cluster boundary site (i,j). For the
avalanche models, we have a threshold dynamics in
which the site breaks if 4;; =(h,~(} +J;;)> 1. We now write
Jij=4q,;J, where J is given by (5.4). In order to mimic the
threshold dynamics, we define the probability p (¢g) that a
site on the cluster boundary with g broken neighboring
sites breaks by

p@=[", dnPh
fo“’dh Ph)=1.

(5.4)

(5.5)

Our results do not depend strongly on the specific form of
P(h).

Our growth algorithm is the Leath prescription [14], in
which a cluster grows in successive shells, J being the
same in each shell, and the sites within each shell are as-
sumed to fracture simultaneously. This is the same algo-
rithm used in the avalanche simulations.
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VI. CLUSTER GROWTH PHASE DIAGRAM
AND PERCOLATION

In this section we utilize some results from percolation
theory to elucidate features of the power-law decay ob-
served in model 2. We show that if v>0 and J, >0, as in
this problem, the system always has a finite probability of
percolating, i.e., there is no attainable critical point. This
result is established through an interplay between per-
colation, correlated percolation and this growth model.
If J,=0 and v=0 we have percolation theory [15], while
if J,>0 and v=0 we have a problem of correlated per-
colation which falls in the same universality class as per-
colation [16]. In our problem, with J,>0 and v>0, we
are cutside the universality class of percclation; hewever,
by making reference to the previous cases, some general
properties may be deduced.

In Fig. 15 we show a schematic phase diagram for
correlated epidemic models with v=0. There is a line of
critical points J.({4 )) which separates two regions: one
for which the order parameter, the percolation probabili-
ty @, is zero, and one for which it is finite. At any point
on this line the cluster-size distribution p(S) follows the
power law S~ 7! where the exponent 7 takes its percola-
tion value of 2.05. In the neighborhood of any of these
points, the usual percolation scaling relations hold.

In the case v > 0 the effective J(S) [Eq. (5.4)] of a grow-
ing cluster increases with size following the trajectory in-
dicated by the arrows in Fig. 15. There is a critical clus-
ter size S, such that

J(S)=JySY=J.({h),v=0), (6.1)

at which the coupling constant appears to be that of
correlated percolation at criticality. For any value of J,,
there is a finite probability of growing a cluster whose
size exceeds S,; further, for any such cluster there is a
finite probability of additional growth and percolation.
For a given pair ({4 ),J,) the cluster-size distribution
can be expected to resemble the schematic diagram of

Q>0

Jo((h))=JsSe

Q=0

(hy

FIG. 15. Schematic phase diagram for correlated epidemics
model (v=0). The curve is a line of critical points in the per-
colation universality class. Arrowed line is the trajectory fol-
lowed during the growth of a cluster in the v> 0 case.
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Fig. 16. For cluster sizes in the neighborhood of S, the
coupling constant is approximately equal to that of per-
colation theory because at S,, dJ /dS =J,S.'*" is small,
and consequently J(S) changes slowly with cluster size.
Hence, we expect to find a range of S values for which
the cluster-size distribution scales as in percolation
theory. Recall that there is a finite probability @ of
growing a percolating cluster of infinite size. If S, is of
the order of the lattice size, S, ~ N2, this percolating clus-
ter will appear to be finite and the cluster-size distribu-
tion will resemble the dashed curve in Fig. 16. Under
these circumstances, from Egs. (5.2), (5.4), and (6.1), we
have that JON*~(h )N?*~J.({h),v=0) from which
we recover Eq. (4.6),

(h)Y~N"%, (6.2)

We now interpret the scaling behavior of model 2 as an
apparent percolation-class critical behavior due to the
finite size of the system. The system self-organizes by
tuning its average energy through Eq. (6.2) in order to
achieve the critical parameters of the v=0 epidemics
model near the largest possible fractures.

A quantitative test of this interpretation is an estimate
of the slope of the avalanche-size distribution (Fig. 8) in
the region near the largest avalanches in terms of per-
colation theory in the neighborhood of p.. Let p(S) be
the correlated percolation cluster-size distribution func-
tion. Near the line of critical points of Fig. 15, the
cluster-size distribution associated to a set ({4 ),J) maps
onto that of percolation theory for an effective probabili-
ty p. In the avalanche models we observe fluctuations in
the average energy (4 ); variation in the perimeter to sur-
face ratio of the clusters also induces variations in J,
which result in a distribution g (p) of probabilities in the
associated percolation problem. We write

p(S)= folg (p)ng(p)S dp , 6.3)

where ng(p) is the number of S clusters per unit site. In-

|Og(p(s))

log (s)

FIG. 16. Schematic diagram of the cluster size distribution
for a v>0 correlated epidemics model. The cluster at the far
right is infinite and occurs with finite probability Q.



2220

troducing the usual percolation-theory scaling expression
ng(p)=f(z)/S7, withz=(p —p,)S’, into (6.3), we have

p(S)=8 """ [ f(2)g(p,)+(2/5%)g (p)+ - - 1dz

QAS_T_0+1+BS~T—20+1+ S (6.4)

where we have expanded g(p) around p, and 4, B are
constants. Substituting the percolation values 7=2.05
and 0=0.4 in (6.4), the leading term for the cluster-
growth-size distribution in our epidemic model should
scale with an exponent —1.45. For comparison, we have
drawn a straight line with slope — 1.45 near the distribu-
tion for the largest avalanches in Fig. 8.

VII. DISCUSSION

In this paper we have constructed several nearest-
neighbor planar models of seismic shear crack propaga-
tion with the property that broken sites are incapable of
accumulating energy for the duration of the fracture.
The models differ only according to the rule that must be
invoked for the seemingly rare case in which the energy
of a site exceeds the threshold for rupture, and yet has no
nearest neighbors to which this energy can be transferred
because they are all broken sites. In the first model the
energy was transferred directly out of the system; in the
second, the site did not rupture until some later fracture
event, and in the third, the site ruptured and its energy
was transferred to the entire crack perimeter. The first
and third models generate bimodal fracture distribution
functions; model 2 generates fractures of all sizes which
satisfy a power-law distribution except for fractures
whose size are almost those of the lattice itself.

Our results can be understood in terms of a classical
nucleation process, provided that in model 2 the perime-
ter is allowed to scale in a not-trivial way with cluster
size. The scaling behavior observed in model 2 is a conse-
quence of an unusual form of self-organization. The sys-
tem tunes itself into a steady state for which the critical
cluster size, i.e., the largest avalanche which does not re-
sult in mechanical instability, is comparable to the lattice
dimensions. This tuning is manifested in the size depen-
dence of the system’s mean energy.

The power laws generated by the model can be under-
stood, via an epidemic model, in terms of finite-size
effects and percolation theory. In most systems which ex-
hibit critical behavior, finite size tends to soften the
singularities, in this case they produce an apparent
second-order phase-transition behavior of the percolation
universality class. The avalanche-size distribution has a
power-law decay that is very close to that expected from
percolation theory (see Fig. 8), while the exponent
v=0.25 in the perimeter to area ratio ¢t/S~S " ob-
tained from Fig. 9, is incompatible with the percolation
value v, =0. This can be understood if we accept that,
although the system does not belong to the universality
class of percolation, the largest finite cracks grow in a
manner analogous to an epidemic model of the percola-
tion class near the critical point. It is in fact the nonzero
v which drives the system towards a pseudocritical point,

J. LOMNITZ-ADLER, L. KNOPOFF, AND G. MARTINEZ-MEKLER 45

providing a mechanism of dynamic selection. Other
mechanisms capable of such a selection appear in in-
vasion percolation [17] and the two-state models of Carl-
son et al. [18]. In model 2, as in [18], finite-size effects
play a central role in generating the observed ‘“critical”
behavior. In our case even the location of the critical re-
gion is size dependent.

While universal agreement as to what constitutes self-
organized criticality does not exist, one of the signatures
of this phenomenon is considered to be the appearance of
power laws and scaling relations. Although our models
share some features in common with previous automaton
models, the principal differences are that all three of our
models preserve a memory of rupture for the duration of
a fracture, i.e., healing of the frictional bonds in the frac-
ture takes place only after the entire fracture has been
completed, whereas in Bak, Tang, and Wiesenfeld [2] and
Zhang [3] all sites have exactly the same properties
whether they have ruptured or not. For this reason we
describe our models as being temporally nonlocal. Model
1 is not conservative. Model 2 is conservative and all en-
ergy transfers are between nearest neighbors. Model 3 is
conservative but is not spatially local. Our results are
summarized in Table I.

Hwa and Kardar [12] state that a necessary condition
for a system to self-organize into a critical state is that it
be conservative. Model 3, while being conservative, does
not settle into a steady state, indicating the relevance of
locality. It is tempting to think that a conservative local
dynamics is a sufficient condition for SOC. However
model 2, though capable of generating power-law decays,
does not sit at a critical point. This fact is brought out
when the tail of the size distribution is considered: there
is a large probability of generating avalanches whose size
is comparable to the lattice dimensions themselves and
which do not allow for a simple finite-size scaling
analysis. We conjecture that such spikes in the
avalanche-size distribution function can be used as a sig-
nature to distinguish between avalanche dynamics which
are analogous to systems with first-order phase transi-
tions and systems at criticality. All of our models present
behavior reminiscent of first-order phase transitions and,
we believe, the same applies to the Burridge-Knopoff [19]
nonconservative model with nearest-neighbor dynamics
studied in detail by Carlson and Langer [5]. Though the
question of what is a sufficient condition for SOC remains
open, much effort is currently being applied in this direc-
tion [18].

Avalanche models such as these have been proposed to
describe earthquake dynamics [4,5,6,20], the principal at-

TABLE 1. Dependence of self-organized criticality on gen-
eral features of the models. Zhang’s results are those of Ref. [3].
For more details see text.

Model Local Memory Conservative SOC
Zhang Yes No Yes Yes
1 Yes Yes No No
2 Yes Yes Yes “Yes”
3 No Yes Yes No
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traction being that by such means one can generate the
well-known Gutenberg-Richter relation which is a power
law in the frequency of occurrence of earthquakes of a
given moment. With respect to the models discussed in
this paper, models 1 and 3 generate bimodal size-
frequency relations, the first branch being an approxi-
mate power law which is cut off at a critical size. We
have found that as the surface roughness is increased, this
power-law region extends to larger avalanche sizes.
Model 2 is nonphysical, yet has the property that it is
capable of generating its own surface roughness. This
model can generate power-law size distributions which
extend to the very largest avalanches which the system
can support. We conclude from these results that
avalanche models of the kind presented in this paper can
reproduce the Gutenberg-Richter relation provided that
the energy surface is allowed to be sufficiently rough. We
also note that a discrepancy between our model and
earthquake distributions is that, while it is a popular
seismological assumption that all earthquake events are
members of a single population, in the model distribu-
tions two distinct populations can be identified. Since the
largest model events are dissipative, we may speculate
that an improvement in the application of models of this
type to earthquake problems will take place after a closer
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analysis of dissipation [21] and the influence of the
boundary conditions [22].

One system to which models of this class could apply is
the sandpile that inspired the original work on SOC.
Jaeger, Lin, and Nagel [23] found that the avalanches ob-
tained in real sandpiles generate a bimodal distribution,
and that the average slope lies between two angles of in-
stability ®,, and repose ®,. Based on models 1 and 3, we
expect the experimental determination of ®,, to yield
different values for those experiments carried out by tilt-
ing the sandpile slowly as in Ref. [19] where ®,, -h =1,
and those where grains are deposited randomly and
®—(h),=0.4. The finite-size effects discussed in Ref.
[24] can be understood within the context of model 1 if
the small sandpiles studied in Ref. [25] are smaller than
the critical avalanche size L., so that all avalanches lie
within the scaling region.
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