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Thermodynamic and stochastic theory of electrical circuits
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We begin the development of a thermodynamic and stochastic theory of electrical circuits ap-
proaching nonequilibrium stationary states containing linear or nonlinear capacitors, resistors, and
inductors. We restrict ourselves to circuits with only point attractors. The theory centers around
a function P, and we show that (1) it is the macroscopic driving force to a stationary state, (2) it
is a global Liapunov function, (3) it provides necessary and su%cient conditions for the existence
and stability of stationary states, (4) its time derivative is a component of the total dissipation, (5)
it is an excess work of moving the circuit away from the stationary state, and (6) it determines a
stationary probability distribution of a Fokker-Planck equation. The generalization from linear to
nonlinear circuits is made with the concept of an instantaneous mapping from the nonlinear circuit to
a thermodynamically and kinetically equivalent linear circuit. A translation of chemical to electrical
networks holds at the thermodynamic but not stochastic level of description.

PACS number(s): 05.70.Ln, 84.30.—r, 44.90.+c

I. INTRODUCTION

In a series of articles [1—4] Ross, Hunt, and Hunt
(RHH) have developed a thermodynamic and stochastic
description of kinetic chemical systems valid both near
and far from equilibrium, including the relaxation to sta-
tionary states and conditions of stability for such states.
Their theory so far encompasses both linear and non-
linear one- and multidimensional systems that evolve in
time to a limit point (stable nodes or foci, but not stable
oscillations, for example). The theory has been extended
by Ross, Chu, Hjelmfelt, and Velarde [5] to the transport
processes of linear and nonlinear diffusion, thermal con-
duction, and viscous flow. Here we further extend the
RHH theory to electrical networks.

There exists extensive prior work in the general field of
the title of this article [6—21]. Landauer has discussed the
relevance of a number of theorems of Prigogine's group
[6—8] and Nicolis [9] to electrical circuits [10,ll]. Stability
analysis of electrical circuits has a long tradition and is
discussed in numerous texts [12—14]. Likewise, the role
of fluctuations in electrical circuits has received much
attention [10, 11, 15—19], in part due to the importance
of bistable memory elements.

We begin with a description of the RHH [1—4] approach
and use a chemical system as a basis for a brief review.
Consider a one-dimensional chemical reaction [1,21] sys-
tem shown in Fig. 1,

k1,k
A+ (r 1)X = rX-,

k2, k
X = B,

where A and B are held constant in time. The time
evolution of the intermediate X is given by

In a linear system (r = 1) the stationary solution of Eq.
(2) is given by

k1A+ k gB—
k 1+k2

and thus

dX
dt

= —(X —X')(k i + k2). (4)

k 1 ——k 1X, k 2 ——k 2)

where the (') quantities indicate those of the ITKE sys-
tem. The stationary states of the ITKE system are given
by

k~A + k 1B k1AX + k gB
k', +k', k,X -1+k, (6)

ITKE guarantees that the time derivatives of X in both
the nonlinear and linear ITKE system are identical,

dX
dt

= —(X —X')(k', + k~).

The generalization of Eq. (4) to nonlinear systems (r g 1)
is through the concept of instantaneous thermodynamic
and kinetic equivalence (ITKE). At each value of the vari-
able X, or correspondingly at each instant in time, it is
possible to identify a linear reaction mechanism where
the constraints (temperature, concentrations of A and
B, etc.), the equilibrium constants, and the microscopic
forward and reverse rates of the ITKE linear system are
identical to those of the nonlinear system. For (r g 1) in
Eq. (1) the ITKE system (where r = 1) is given by

k1 ——k1X", k2 ——kg,

dX
dt

= k1AX" —k 1X"—kgX + k 2B. (2)

In the following we use a (') to denote the reference con-
centration of the system; for linear systems it is just the
stationary-state concentration, or for nonlinear systems
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where dGq and dGs are differential changes in the Gibbs
free energy for the compartments 1 and 3 in Fig. 1, each
held at constant temperature and pressure (specific to 1
or 3), and dAz is the differential change in the Helmholtz
free energy for compartment 2 held at the same constant
temperature and constant volume. If an identical con-
version were to occur but at the reference concentration,
then we have

dM —pAdng + pxdnx + pgydngy

and the diff'erence defines dP,

dP = dM —dM' = (px —px)dna, (10)

which is the central function in the theory.
RHH [1—3] examined the properties of P and showed

the following.
(i) P is the affinity of a chemical species and is the

macroscopic driving force towards the stationary states.
(ii) P is a global Liapunov function. The function P

is greater than or equal to zero, bounded, and its time
derivative is negative except at the stationary state where
it is zero. P is a minimum in stable stationary states and
a maximum in unstable stationary states.

(iii) 4 provides global necessary and sufficient condi-
tions for the existence of stationary states (6P ~,) 0 or
BP/BX ~, = 0) and their stability (B P/BX ~,) 0 for sta-
ble stationary states, ( 0 for unstable stationary states,
and B P/BX ~, = 0 for critical stationary states).

(iv) P is a component of the total dissipation. D =
(p~ p&)A+(px —pI3)B —P. Th—e part of the dissipation
not represented by P is due to the conversion of A to X
at the pressure X* but at the rate A and the conversion
of X at the pressure X' to B at the rate B; P represents
the dissipation due to the displacement of X from X'.

(v) —dP is the excess work provided by a spontaneous
infinitesimal change in the system beyond that required
to cause an equivalent opposite change in the (') system.

(vi) P gives the stationary probability distribution

it is the stationary-state concentration of the correspond-
ing ITKE system.

For a given conversion of dn~ moles of A, dn~ moles
of B, and dn~ moles of X, the change in the free energy
of the system as shown in Fig. 1 is

dM = dGg + dA2+ dG3
= pgdng + p g dn g + p, gdn g,

of the stochastic master equation describing Eq. (1),
P'(X) oc exp( —P/RT). This is an extension of Einstein's
fluctuation formula to nonequilibrium systems.

For multidimensional systems RHH [2, 4] consider re-
action mechanisms of the type

A+ (ry —1)Xy ——A)X&,

sqXg + (pz —1)Xz (sg 1)Xg + rzX2,

s~X~ = (s~ —1)X~ + B.
The multidimensional generalization of Eq. (10) becomes

dP = ) (px px )dX'. (12)

For linear systems with arbitrary stationary states and
for nonlinear systems with a stationary state of equilib-
rium, P is a state function and properties (i)—(v) hold.
However, for nonlinear systems with arbitrary stationary
states, Eq. (12) is an inexact differential. Properties (i)—
(v) follow since they depend on dP, however property (vi)
depends on P. Therefore, to integrate Eq. (12), a path
of integration must be supplied. RHH have shown that
if the path of integration is the deterministic path, then
property (vi) follows.

In the development of the thermodynamic theory for
linear and nonlinear heat conduction, diffusion, and
viscous flow [5], properties (i)—(v) are shown to hold.
Given the excess work P, a stochastic equation is

sought for which exp( —P/RT) is a stationary solution.
For viscous flow this is a Fokker-Planck equation with
state-independent noise for linear systems, and state-
dependent noise for nonlinear systems. For linear and
nonlinear thermal conduction it is a Fokker-Planck equa-
tion with state-dependent noise, and for diffusion it is a
master equation.

In this manuscript we present a thermodynamic
and stochastic theory of some representative resistance-
capacitance (RC), resistance-inductance (LR), and
resistance-inductance-capacitance (LRC) circuits analo-
gous to the development for chemical reactions and the
transport of mass and heat.

The concept of instantaneous thermodynamic and ki-
netic equivalence is known and used in electrical circuit
theory and we begin with that topic.

II. INSTANTANEOUS THERMODYNAMIC
AND KINETIC EQUIVALENCE

=2 =3
A =ABX= B

FIG. 1. A chemical reaction apparatus with three volumes
divided by selective membranes. The membrarie between 1
and 2 is permeable only to A, and the membrane between 2
and 3 is permeable only to B. Pistons insure that the pressure
of A in volumes 1 and 2 and the pressure of B in volumes 2
and 3 remain constant in time. A catalyst is in volume 2,
which ensures that the reaction occurs only in volume 2.

The RHH theory of nonlinear chemical systems de-

pends on the concept of instantaneous thermodynamic
and kinetic equivalent (ITKE) [1] reaction mechanisms
or equivalent networks. Two chemical systems are ITKE
if the constraints, the equilibrium constants, and the mi-
croscopic rates of each corresponding step are identical.
Thus for (r g 1) in Eq. (1) there exists at each value of
the variable X, or at each instant in time, a unique map-
ping to an ITKE system with (r = 1). At this value of X
the rate of formation of X from A, X from B, the rate of
dissipation, and all other instantaneous kinetic and ther-



45 THERMODYNAMIC AND STOCHASTIC THEORY OF. . . 2203

Ri R2 differentials need not be. We also assume that the circuit
is isothermal.

A B A. Linear one-dimensional RC networks

FIG. 2. One-dimensional RC circuit; the resistances and
capacitances are independent of voltage for Sec. IIIA and
dependent on voltages for Sec. III C.

d Vx VA Vx
dt C'R',

Vx —V
C' R'

2
(14)

If we set V~ ——V&, V~ —
V&, and Vx ——V&, then the two

systems have identical thermodynamic properties includ-
ing the maximum work which can be extracted by moving
charges among A, X, and B. If we add the additional
requirements that R&

—Rq(v~, V»), Rz —R2(V», V~),
and C = C', then the rate of change of V» (or Vx), the
currents through R~ and R&, the currents through R2
and R2, and the dissipation are identical. By measur-
ing voltages, currents, rates of dissipation, and all other
instantaneous quantities, these two circuits are indistin-
guishable at that instant. For each value of Vx there is
a different (') system, and as the system evolves in time
we define a new ITKE circuit at each instant.

The concept of equivalent networks is known and used
in circuit theory. "Two n-terminal resistive black boxes
N~ and N2 are equivalent if they can be interchange-
ably connected to the same arbitrary n-terminal network
N without affecting the values of the voltages and cur-
rents inside N [12]." A more restricted specialization of
this statement is that two black boxes N~ and N2 are
equivalent at a particular operating point of a network
N if either may be connected to N without affecting the
values of the voltages and currents inside N at that oper-
ating point [12]. Systems which show ITKE satisfy this
condition, since the voltage drop across and all the cur-
rents in two ITKE systems are identical. Thus, at; each
instant one may replace the other in a larger circuit ¹

III. ELECTRICAL NETWORKS FAR
FROM EQUILIBRIUM

Throughout this section we assume all resistances, ca-
pacitances, and inductances are positive although their

modynamic properties are identical in the noniinear and
the ITKE linear reaction mechanism.

This concept of ITKE translates to electrical circuits.
Two electrical circuits are ITKE if the rates of change of
the voltages, the currents, and the rates of dissipation are
identical. In Fig. 2 we show an electrical circuit which
we assume to be nonlinear. The time evolution of the
voltage is given by

d Vx Vw —Vx Vx —Va
dt C(V»)Rg(vg, V») C(v»)Rz(V», Vjy)

'

and the resistances are functions of the indicated volt-
ages. For each value of the state variable we define an
ITKE linear system which we denote with a ('). The time
evolution of the voltage in this system is given by

We formulate the thermodynamics of electrical pro-
cesses far from equilibrium using the methods developed
for chemical and transport processes. We first consider a
one-dimensional linear electrical system, and then gener-
alize to multidimensional and nonlinear systems. Figure
2 shows a typical linear electrical circuit if we take the
resistances and capacitances to be independent of the
voltages. The time dependence of the voltage across the
capacitor labeled X is given by

dVx
dt

V~ —Vx

C» Rg

Vx —Vg

C» Rz

where the stationary-state voltage Vx is

(V„V~I f 1

R,
+

R &I l(R +
R )I

(16)

For a given transfer of charge among V~, V», and V~,
the change in the energy of the system is

dE = Vgdng+ Vxdnx+ VI3dn (17)

where dn; denotes the transfer of charge at V;. For an
identical transfer of charge but at the stationary state we

have

Integration of Eq. (19) yields P,

+
(Rg Rz

(V» —Vx)'. (2o)

P is greater than zero except at a stationary state, where
it is zero, and it is bounded.

The time derivative of P,dP, dV» , z(1 I)—=(v» —v»)c» =-(v» —v»)'l +
dt dt (Rg R2$

'

(21)

is always negative except at the stationary state, where
it is zero. Thus P decreases to a minimum as the cir-
cuit evolves from an arbitrary state to a stationary state;
it is a Liapunov function and expresses the macroscopic
driving force towards the stationary state. P also gives

necessary and sufBcient stability properties of the sta-
tionary state,

dE' = Vgdng + Vxdnx + Vjydngy.

The difference between Eqs. (17) and (18) defines the
differential dP which is an excess work.

dP = (V» —V»)dnx = (V» —V»)C»dvx.
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Bvx

, =Cx&0,

= Cx(Vx —Vx) I
= o

(22)

From the theory of the grand-canonical ensemble, fluc-
tuations in numbers of particles in an open system is
Gaussian [27],

( (nx —& nx &)'
2kT(B & nx & /Bvx)

and hence P is a minimum in the stationary state and
the stationary state is stable. Another way of stating the
stability condition of the stationary state is

bg), &0; (23)

if for every variation at the stationary state Eq. (23) is
satisfied, then excess work is necessary and the stationary
state is stable. This is the analog for stationary states of
the criteria of equilibrium formulated by Gibbs [22].

Power is dissipated by the resistors R~ and R2, and
the heat generated by dissipation is

D= (v„—vx)' (vx —v, )
1 R2

The total dissipation can be rewritten as

D = D' —P,

(24)

(25)

and thus P is a component of the total dissipation. Equa-
tion (25) indicates that the dissipation in the stationary
state is a minimum in agreement with the well-known
theorem of Prigogine [6], which holds for this strictly lin-
ear system [23, 24].

For a chemical system P is the stat, ionary solution
of a stochastic birth-death master equation, P(Vx) =
exp( —P/RT), in the thermodynamic limit of a large num-
ber of particles. We seek a stochastic equation with a
stationary solution given by the exponential of —P for
an electrical circuit. We write Eq. (15) as a Langevin
equation [25, 26]

The equilibrium condition requires V~ ——V~ ——( V~ &,
and this is identical to Eq. (28), where the stationary
state Vx is equilibrium. Thus, the probability distri-
bution obtained from the RHH theory at equilibrium is
consistent with that obtained from equilibrium statistical
mechanics.

B. Linear N-dimensional RC networks

The results of the preceding section generalize to mul-
tidimensional systems of the type shown in Fig. 3. The
time dependence of the voltage on a capacitor is

dV; V; g
—V; V; —V+(

dt C;R C;R+(
V, —V,' ( I

LR, +R,„,
V; g

—V;, V+y —V+)
C;R; C;R;+g

(31)

where 1 & i & N and the stationary-state voltages are
given by

where n~ is the number of charges on the capacitor, and( n~ & denotes the average which is the macroscopic ob-
servable. The number of charges is related to the voltage
by the capacitance, CxVx = nx, so

Cx(Vx —& Vx &)')

+ V'2r. = f(Vx) + V'2r. ,x% xR2

(26)

where e is uncorrelated noise. This Langevin equation
can be converted into a Fokker-Planck equation

v, +v+
R+i) ER. R+i (32)

For a given transfer of charge, the change in the energy
of the system is

OP(vx, t) 8f(Vx) P(Vx, t) DsI'P(Vx, t)
Bt 8Vx 0Vx2

N+&

dE = ) V~dn;,
i=0

(33)

If we assume that the exponential of P for an electrical
network gives the stationary solution just as in a chemical
system, then the stationary solution and the amplitude
of the noise are

1 1 kT+
&Ri R2 Cx2

where dn; denotes the transfer of charge at V;. For an
identical transfer of charge, but at the stationary-state
voltages, we have

(28)
P(Vx) oc exp[—Cx(Vx —Vx) /2kT] = exp( —P/kT),

R2 Rx . RN+1

where k is Boltzmann's constant and T is the thermody-
namic temperature. For this linear circuit, the amplitude
of the noise (I') is independent of the state variable Vx.

This probability distribution is consistent with fluctu-
ations given by equilibrium statistical thermodynamics.

Xo Xl

FIG. 3. Multidimensional RC circuit; the resistances and
capacitances are independent of voltage for Sec. IIIB and
dependent on the voltages for Sec. III D.
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N+1
dE' = ) V~'dn;,

i —0
(34)

and the difference defines the differential dP of the excess
work,

Integration results in

N

y = ) 2*(v; —v, ')'.
l=1

(36)

N N

dg = ) (Vi —V,')dn» = ) (V; —V )C;dV;.
As in the one-dimensional case, P is greater than zero in
arbitrary states and equal to zero in stationary states.
The time evolution of P is given by

N
— =) (v» —v )c;

N

) (v v ) i

i v' v' v'+l1
R+i )

„/V» i —V i+ V —V;
~)l R;

V, —V + V;+i —Vi+i)
)

1—[—(v —v')'+ 2(v —v')(v -i —v'-i) —(v- i —v'- i)']

N+I

[(V; —Vi') —(V; i —V, )], (37)

which is negative in arbitrary states and zero in station-
ary states. P also gives necessary and sufficient stability
properties

BP(V t) ) Bf P . QzP

Bt . Bv; . . ' Bv;Bv. (42)

= c;(v» —v, ') I,= 0,
If we require the stationary-state probability distribution
to have the form

=0,
(38) P oc exp ) '

(V; —V ) = exp( —P/kT),
(.c;
E

. -»T ' (43)

and thus P is a minimum in the stationary state and V'
is stable. Hence Eq. (23) holds. P is a Liapunov function
which yields the evolution of the system.

The power dissipated by the resistors is given by

then the amplitude of the noise must be

(1 1 ikT
LR R 'C'i i+i/

)- (V; —V; i)z
R; (39)

—I'T
CC; iR, ' i =2, . . . , N (44)

and can be rewritten as

D = D' —Q. (40)

dV;

dt
V; 1 —V;

C;R;
+ i/21';e; = f; + i/21', »;.

i '+ 1

(41)

The Fokker-Planck equation which corresponds to this
I.angevin equation is

Hence P is a component of the total dissipation. Again,
we see that the dissipation in the stationary state is a
minimum in agreement with the minimum entropy pro-
duction theorem of Prigogine for this strictly linear sys-
tem.

We seek the stochastic equation for which the station-
ary probability distribution is given by exp( —P/kT). If
we write Eq. (31) as a Langevin equation, then

For linear multidimensional networks the noise is state in-
dependent, but correlations exist among the noise terms.
Consider capacitor i and its two nearest neighbors i —1
and i + 1: conservation of charge requires a fluctuation
in the number of charges on i to be offset by an equal
and opposite fluctuation of charges on the two nearest
neighbors. Thus, the negative mixed partial derivative
terms between nearest-neighbor capacitors exists because
a fluctuation of charge on capacitor i requires the charge
to be transferred from capacitor i —1 or i+ 1. This cross
correlation is found for chemical reactions with more than
one chemical intermediate species. If the multidimen-
sional chemical master equation is approximated as a
Fokker-Planck equation, then the probability diffusion
coeKcients are I';; ) 0 and I';; 1 ( 0 and I';;+1 ( 0

[25].
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C. Nonlinear one-dimensional circuits

We now turn to nonlinear systems which can have multiple stationary states. A nonlinear generalization of Eq.
(15) is

d Ux Vx —Ux Ux —U~ Vx —Ux 1 1

C(UX)R1(VA» Vx) C(UX)R2(UX» VB) C(VX) Rl(UA» Vx) R2(UX» VB) p
+

where

t' VA Va ') ( 1 1 ) (VA' Va) (I I')
R1(VA, Vx) R2(Vx, Va)) (R1(VA, Vx) R2(Vx, Va)) (, R', R2) (R, R2)

(45)

(46)

Vx is the stationary state of the instantaneously equivalent linear electrical circuit (see Sec. II). For a given transfer
of charge among VA, Vx, and Va, the change in energy of the system is

dE = Vgdng + Vxdnx + Vadn g. (47)

For an identical transfer of charge but at the voltage Vx, the stationary state of the ITKE linear system, the change
in energy is

dE' = VAdn~+ Vxdnx + Vgdn~.

The difference defines the differential of the excess work dP,

dP = (Ux —Ux)dnx = (Ux —Vx)C(VX)dUX.

Therefore, we have

O = f (» x —&x)&x(&x)»»&x,

(48)

(49)

(50)

where VX is a function of Vx, and the constant of integration is introduced such that P ) 0. The time derivative of
ls

dUx 1—(Vx —Vx)CX Vx
Ch

—(Vx Vx) l(R (V V )
+ R (V V )

I. (51)

Thus, (t» decreases continually in time and is a Liapunov function. (t» is also an extremum in the stationary state since

&Vx
= Cx(UX)(UX —Ux) I.= —Ux

I
+ C(Ux)' [.= 0

1 A» X 2 X» B
(52)

The second derivative evaluated at the stationary state gives necessary and sufFicient stability properties,
~»

DUX
( ~ C(V) V

~ &
C(V )

(9VX (R1(UA» VX) R2(VX» VB)) Ux (Rl(VA» UX) R2(UX» UB)

BV» (R1(UA, Vx) R2(VX, Va))
+

I
C(UX)'

I
. (53)

Since the resistances and capacitances are always pos-
itive, the coefBcient of the partial derivative is negative.
Thus, if the stationary state is stable, then by linear sta-
bility analysis BUX/BV» ( 0 and P is a minimum, and if
the stationary state is unstable, then by linear stability
analysis DUX/BUX & 0 and P is a maximum.

In the ITKE electric circuit corresponding to this non-
linear circuit, the dissipation is given by Eq. (24) and
(t) is related to the total dissipation by Eq. (25). In the
nonlinear circuit the dissipation is

t

At each instant the dissipation in the nonlinear circuit
is identical to that in the ITKE circuit. However, unlike
in the ITKE linear circuit the dissipation in a nonlinear
circuit does not split into the dissipation at the stationary
state and P. The total dissipation can be rewritten as

(UA —Vx)(UA —Vx) (Va —Vx)(Ux Ua)
Rl (UA Ux) R2(UX UB)

(55)

D= (UA —Ux)' (Vx —Ua)'+
R1(VA, Vx) R2(VX, Va)

(54)

and»t» is again seen to be a component of the total dissipa-
tion. The component of the dissipation not represented
by P is the dissipation that results from the transfer of
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BP 0f(V»)P cf BP
0& OU» BU» BU»

' (56)

where f(V») is the right-hand side of Eq. (45). The noise
and the probability distribution are

(R).(V~, V») R~(V», V~) p C»(V») ' (57)

charge from the battery at VA to the capacitor at the
voltage V» at the rate (V~ —V»)/Rq(V~, V») and the
transfer of charge from the battery at VB to the capaci-
tor at the voltage V» at the rate (V» —V~)/R2(V», V~).
The term P represents the dissipation due to the displace-
ment of V~ from V~. The dissipation is not necessarily

minimized in the stationary state, but P is.
We again seek a stochastic equation for which the expo-

nential of —P is a solution of the stationary distribution.
It is a Fokker-Planck equation [28]

P(V») oc exp( —P/kf). (58)

D. Nonlinear N-dimensional networks

The results of Secs. III B and III C generalize to nonlin-
ear multidimensional circuits; however, as we will show,
there is a significant difFerence: dP is an exact difFeren-
tial for linear or one-variable systems but not generally so
for nonlinear multidimensional circuits, and hence a path
of integration must be defined. Consider the nonlinear
generalization of Eq. (31),

In the nonlinear circuit, for P to give a stationary so-
lution of the Fokker-Planck equation, the amplitude of
the noise must depend on the state variable V~, but in
a linear circuit the noise is state independent. This can
be contrasted with the chemical case: the Fokker-Planck
approximation of the chemical master equation contains
state-dependent noise for both linear and nonlinear reac-
tions (see discussion).

dV;

dt
V; y

—V;

C;(U;)R;(U; g, V)
V; —V,'f 1

C*(U) &R (U-~

V; —V+(
C, (V;)R;+, (V;, V,+,)

1 ) V; y
—U; V;+l —V+,

V) R;+g(V;, V+y) j C;(V))R;(V; g, V) C;(V)R;+g(V;, V+y)

where 1 ( i ( N and the (') voltages are given by

V v,;, )r'
&R)(V; q, V) R;+q(V;, V+q)) (R;(V; q, V) R)+q(V;, V+)))
(V,", V+) (I 1

R;„) «, (60)

For a given transfer of charge, the change in the energy
of the system is

X+1
dE= ) Vdn;,

i=o
(61)

where dn; denotes the transfer of charge at V;. For an
identical transfer of charge but at the (") voltage,

requires a path of integration. Hence, P for a multi-
dimensional nonlinear circuit is not in general a state
function. We must augment Eq. (63) with a path of
integration, and the value of P at a given point depends
on the path chosen. In Refs. [3] and [4] the authors show
that the deterministic path is the proper choice for a
variety of reasons,

%+1
dE'=) V dn;,

i=0
(62)

(65)

and the difference defines the differential dP of the excess
work

N

dP = ) (V; —V~')dn; = ) (V; —V;")C;(V;)dV; (63)

Vg). ..) Vpg

Q = ) (U; —V )C;(V~)dV;,
i=1

(64)

Our attention immediately turns to the fact that dP is in
general an inexact differential since U may depend on
all the other capacitor voltages. The integral of Eq. (63),

On a macroscopic level, they consider a bistable system;
two stationary states separated by an unstable separa-
trix. They require that the value of P, as a given point
on the separatrix is approached from either basin of at-
traction, be independent of the stable stationary state
chosen as the end point of the trajectory, except for a
constant offset. This condition is met if the determinis-
tic trajectory is used, but not if other paths such as a
straight line are used. On a mesoscopic level, they use
microscopic reversibility and Kurtz's theorem to show
that the deterministic potential exp( —Pg, &/RT) is the
most probable path for fluctuations. Lastly, they show
that the potential generated by exp( —Pg«/RT) is a use-
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ful approximation to the numerical solution of a master
equation with a finite number of particles.

The proofs of properties (ii) and (iii) in Sec. I follow
that given in Sec. III B; however, while P is a minimum
ip. the stationary state, the dissipation is not generally
minimized in the stationary state, as is shown for the
nonlinear one-dimensional circuit (Sec. III C).

E. Linear one-dimensional LR networks

We now turn our attention to circuits containing in-
ductive elements. The only sources of dissipation are
the resistances, however we allow an additional element
which stores energy; the inductor. We do not treat LR
and LRC networks as completely as RC networks, but
we show that the RHH approach generalizes to inductive
circuits.

A linear IR network is pictured in Fig. 4. The time
dependence of the current through the circuit is

dI V~ —V~ R(I —I')
dt L L

(66)

where Vx is a function of time. The time derivative of P
from either Eq. (80) or (81) is

V~ —Va
R (67)

The change in the energy stored in the magnetic field by
the inductor for an incremental change in the current is
dE = LIdI. For a given transfer of charge between V~
and VB, the change in the energy of the system is

dE = VgdnA+ edna + LIdI. (68)

Using the definition of current and conservation of charge
we have I = dn~/dt = dn~/dt, a—nd thus Eq. (68) im-

plicitly depends on time. This is contrasted with the RC
circuits and the chemical case where dE or dM are inde-
pendent of time. For an identical transfer of charge but
at the stationary-state current we have

dE' = V~dn~ + Vjydngy + LI'dI, (69)

and the diff'erence of Eqs. (68) and (69) defines the dif-
ferential dP which is the excess work,

dP = L(I —I*)dI

Integration of Eq. (70) yields

(70)

(I —I')', —
2

and P is greater than zero except at the stationary state,
where it is zero.

The time derivative of P,

v —v ~'"- = L(I —I')—" = R-(I —I')' = -(
(72)

Dp = L(I —I') i, = 0, , =L&0, (73)

and hence P is a minimum in the stationary state and
the stationary state is stable.

The power dissipated by the resistor is

V —V ~'
D = RI = ' = D' —Q+ 2RI'(I —I')

R
(74)

and thus P is a component of the total dissipation. Equa-
tion (74) indicates that the dissipation in a nonequilib-
rium stationary state of a linear inductive circuit is not
a minimum [8, 11]. Assuming V~ g Vg, the dissipation
increases monotonically from 0 as Vx varies from V~ (the
minimum dissipation) to Vg (the stationary state). How-

ever, the component of the dissipation represented by P
decreases monotonically as Vx approaches V~.

We again assume there is a stochastic equation for
which P is a solution of the stationary probability dis-
tribution. We rewrite Eq. (66) as a Langevin equation

dI Vx —Va

dt L
= J(Vx)+ v'2r. (75)

The corresponding Fokker-Planck equation is

OP Df(VX)P ct'1 P
Bt BI BI~ (76)

If we assume that P oc exp( —P/I."T), then the amplitude
of the noise is

RkT
L2 (77)

As in the linear RC network, the amplitude of the noise
is state independent.

is always negative except at the stationary state, where
it is zero. Thus, P decreases to a minimum as the circuit
evolves from an arbitrary state to a stationary state; it
is a Liapunov function, and expresses the macroscopic
driving force towards the stationary state. P also gives
necessary and sufficient stability properties of the sta-
tionary state,

A B
F. Nonlinear IRC networks

FIG. 4. The IR circuit used in Sec. III E.

In this subsection we combine inductive and capacitive
networks to form a nonlinear LRC network as pictured
in Fig. 5. The equations of motion for this network are
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X B

the stochastic equation for which exp( —P) gives the sta-
tionary probability distribution. If we write Eqs. (78) as
Langevin equations, then

dI2 Vx —Va f (V )

FIG. 5. The LAC circuit used in Sec. III F.

dIg Vx —Vjy VX —V~
dt L(Ig) L(Ig)

d Vx V~ —Vx I.
dt R(Vg, Vx)C(Vx) C(Vx)

(83)
d Vx V~ —V~ I2

dt RC C
——+421.= f,(V, I,)+ V'2r. .

The Fokker-Planck equation which corresponds to this
Langevin equation is

BP Bfy(Vx)P Bf2(Vx, I2)P B~P

Bt BIs BVx BVx2
'

Vx —V~

R(Vg, Vx)C(Vx)
Ig —I~

C(Vx) If the stationary probability distribution is given by

These equations have a unique stationary state of V~ ——

V+ and Is ——(Vz —V&)/R(Vz, Vz); the (') states are the
stationary states of the ITKE linear network

(C(Vx —Vx )
2 + L(I2 —Is )

2 l
P oc exp

~ 2kT ) '

then

kT
2

(85)

(86)

V~ —V~

R(V. , Vx)

The difFerential of the excess work is given by

dP = (Vx —Vx)C(Vx)dVx + (I2 —Is)L(Is)dI2, (80)

which is an inexact differential since I2 depends on Vx.
We define P as the integral over the deterministic path

dVx dI2
(Vx —Vx)C(Vx) + (I2 —I2)L(I2)

dt

~ ~

'( (Vx —Vx) (81)
( R(V~, Vx) g

where Vx is a function of time. The time derivative of P
from either Eq. (80) or (81) isdQ, dVx, dI~= (Vx —Vx)C(Vx) + (Is —I~ )L(I2)

(Vx —Vx)'
R(V. , Vx)

(82)

Thus P decreases with time. P can also be shown to
be an extremum in a stationary state. Since P decreases
spontaneously with time, stable stationary states must be
minima and unstable stationary states must be maxima.

Further properties of P can be derived and they are
similar to those found for one-dimensional RC circuits
(Sec. III C). The circuit in Fig. 5 is capable of support-
ing sustained oscillations. We emphasize that the anal-
ysis presented here assumes only fixed-point attractors.
The theory for limit-cycle attractors is in development.

In general, solving a nonlinear multidimensional
Fokker-Planck equation is a dif6cult problem, so we
examine the stochastic basis of P for the linear case;
C(Vx) = C, R(V~, Vx) = R, and L(I2) = L We seek.

and thus the noise term only need appear in the dif-
ferential equation for the capacitor voltage. The circuit
interacts with the heat bath only through the resistor.
Thus, the noise term in the Langevin Eqs. (83) is con-
nected with the resistance terms and only appears in the
equation for the capacitor voltage.

IV. COMPARISON WITH CHEMICAL SYSTEMS
AND TRANSPORT PROCESSES

Using the RHH [1&] approach we have discussed the
thermodynamic and stochastic theory of a number of
classes of electrical circuits. The same approach has been
applied to chemical reactions, diffusion, thermal conduc-
tion, and Poiseuille and Couette fluid flow [5]. The results
for electrical circuits are most similar to those for fluid
flow, because changes of state variables in the electrical
and fluid flow systems produce only changes of internal
energy: kinetic energy for fluid flow and electromagnetic
energy for circuits. The dissipation is equivalent to the
loss of free energy, and the free energy has only energy
terms, not entropy terms. However, in chemical reac-
tions, heat conduction, and diffusion, changes of state
involve both changes of internal energy and entropy. The
dissipation is equivalent to the loss of free energy of the
system, and free energy has both energy and entropy
components.

Oster, Perelson, and Katchalsky [29—31] have devel-
oped a translation of chemical networks into generalized
networks and with this translation an equivalent elec-
trical network can be written for a chemical system.
The electrical network is composed of nonlinear resis-
tors, capacitors, and transformers. Chemical potentials
are mapped to voltages on capacitors, and the reaction
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rates to currents through resistors. The power dissipated
by the resistors is identical to that dissipated by the reac-
tion mechanism. Linear chemical mechanisms translate
to nonlinear circuits. Thus, P for a chemical network
differs from P for the equivalent electrical network, since
the ITKE system is different. Further, P for a chemi-
cal network with concentration variables solves a master
equation, but 4 for a nonlinear electrical network solves
a Fokker-Planck equation with state-dependent noise. In
the presence of external noise large compared to internal

noise, yet very small compared to macroscopic averages,
this difference disappears [32].
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