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Generalized dimensions of laser attractors
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We use generalized dimensions to compare the dynamics of an optically pumped NH3 ring laser with
that of the Lorenz model. While for pure single-mode emission we find excellent agreement between di-
mension spectra of the laser and the Lorenz attractor, for conditions of existence of a second counterpro-
pagating mode, dimensions are found to be higher. Thus the dimension spectra re6ect the larger phase
space occupied by the attractor. As a further result of that comparison, we find that the frequently used
correlation dimension D2 as an estimate for the Hausdorff dimension Do can differ substantially from
Do, and shows little sensitivity to attractor changes.

PACS number(s): 42.50.Lc, 05.45.+b

Recently we found that the intensity dynamics of a
NH3 ring laser represent the dynamics of the Lorenz
model [1] in detail [2]. Among others we compared the
correlation dimension D2 of the laser attractor with that
of the Lorenz model. Reliable dimension calculations
have been possible because the pulsing of the far-infrared
NH3 ring laser can be measured with a signal-to-noise ra-
tio of about 300. Good agreement in the correlation di-
mension Dz has been found. But the comparison of two
attractors by just one scalar quantity is evidently not too
meaningful.

This Brief Report shows a comparison of the dimen-
sion spectra of numerically calculated Lorenz chaos data,
experimental Lorenz-like chaos data of a ring laser with
one active propagation direction, and experimental data
which obviously were influenced by a second counterpro-
pagating mode.

As has been pointed out in [3] the geometrical and pro-
babilistic features of strange attractors can be character-
ized by the Renyi dimensions D with any q 0, not
necessarily integer. Pawelzik and Schuster [4] general-
ized the correlation integral method of Grassberger and
Procaccia [5] to calculate the Dq's via the generalized
correlation integral
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We have used intensity data from an 81.5-pm ' NH3
cw far-infrared (FIR) laser [2] to calculate the Dq values
from q=0 to 15, and to compare the Dq's with those of
the squared field values (u in [2]) numerically generated
by integration of the Lorenz equations, with parameters
r=15, b=0.25, and s=2 as appropriate for. the laser sys-

where r denotes the radius of a ball, X; and X- denote
vectors in an embedding phase space, and N is the num-
ber of points available. The D 's are then calculated with

Dq = lim ln[Cq(r)]
1

r 0 ln r)
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and they reflect the density distribution of points on the
attractors.

In particular Do is the Hausdorff (or fractal) dimen-

sion, D, is called the information dimension, and

Dz is the correlation dimension with the relation
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FIG. 1. Spiral-type pulsing of the laser intensity. Two
thousand samples were plotted per trace. Trace (a) shows the
numerically calculated Lorenz-model data. The most Lorenz-
like experimental data set No. 3 is shown in trace (b), and trace
{c)shows the case where obviously a second counterpropagating
mode existed. Information about the experimental parameters
(pressure etc.}can be found in [2].
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FIG. 2. Slopes d [ln(C~)]/d [ln(r)] of the correlation integral vs ln(r) for the case of the Lorenz model. The dimension of the

embedding phase space was varied from 2 to 20 in steps in 2.
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FIG. 3. Slopes as in Fig. 2 for the experimental data set No. 3 with behavior closest to the numerically calculated Lorenz-model
data.
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FIG. 4. Slopes as in Fig. 2 for the experimental data set No. 5 with a counterpropagating mode.
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tern [2].
Twenty-six measured data sets were available. Each

data set consisted of 25000 8-bit data of laser intensity,
sampled every 40 ns, with 15 to 25 samples per average
chaotic pulsing period. From those data sets Fig. 1 con-
tains No. 3 and No. 5 as representative. Number 3
proved to be the data set with behavior closest to the nu-

merically calculated Lorenz model data set [2], and No. 5

stands for the case with a counterpropagating mode.
The procedure to calculate the correlation integrals

from (1) was similar to that in [2]. Again we used the
maximum norm in (1) and the time delay r=nb, t (n, in-

teger; b, t, sampling time) was chosen to be about —,
' of the

averaging pulsing period. The "embedding dimension" E
was varied between 2 and 20 in steps of 2 and each D
was then calculated as an average of the last four D
values.

Examples of the slopes d[ln(C )]/d[ln(r)] of the
correlation integral from which the D values are ob-
tained are shown in Figs. 2—4. We find the D 's at low q
values less reliable because they put weight on the regions
of low point density. In spite of the large noise of the
slope curves for q=0, one can see that the average slope
in the plateau region of data set No. 5 is significantly
higher than that of No. 3 or that of the numerical
Lorenz-model data.

Figure 5 shows the D values of the three data sets dis-
cussed. The calculated D values are marked with cen-
tered octagons, triangles, and crosses. To get a clear im-
pression of the differences between the three data sets we
also added an interpolation curve for each data set.

The similarity of the D values of data set No. 3 and
the Lorenz model is obvious. The D values differ by
about 3%%uo, indicating an excellent agreement between the
structure of the laser attractor and the Lorenz attractor.
On the other hand, data set No. 5 shows significantly
higher Dz values than those of the Lorenz model. In par-
ticular, the dimension Do, which is the fractal dimension,
is almost 50% higher than in the Lorenz case.

One notes that the pulsing of data set No. 5 [Fig. 1(c)],
from which we calculated the D values of Fig. 5, differs

qualitatively from the Lorenz-like case of Fig. 1(b). In
particular the pulses of each spiral begin close to the
steady-state laser emission and the large pulses at the end
of the spirals are missing.

We have recently found [6] that the type of pulsing in

Fig. 1(c) is not described by the Lorenz equations. In fact
we found that the type of pulsing shown in Fig. 1(c) is as-
sociated with temporary emission of the ring laser in the
opposite direction. We found that in cases such as Fig.
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FIG. 5. Plot of the calculated Dq values (marked points) vs q
for the numerically calculated Lorenz-model data set, and the
experimental data sets No. 3 and No. 5. The smooth interpola-
tion curves through the calculated and marked data are plotted
so as to better display the significant differences between the
data sets. The D~ values of data set No. 3 and the Lorenz model
differ by only about 3%%uo, indicating an excellent agreement be-
tween the structure of the laser attractor and the Lorenz attrac-
tor. In the case of data set No. 5 the emission of the ring laser
in the opposite direction leads to significantly higher D~ values.

We acknowledge the valuable numerical assistance of
N. Nafah visiting from the Ecole Polytechnique de
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l(c) at the end of the spiral a small single pulse may be
emitted into the opposite direction of the ring emission
while the original emission is near zero. Then the inver-
sion which is shared by the two emission directions is re-
duced so that the large pulses at the end of the spirals are
suppressed. Additionally, the laser gain is reduced so
that the next spiral starts close to the steady-state emis-
sion.

Consequently the emission shown in Fig. 1(c) involves,
at least at certain times, two laser modes. Thus this puls-
ing results from a system with a larger phase space than
the Lorenz model.

Although the pulsing pattern of Fig. 1(c) does not obvi-
ously show the complicated structure which one might
expect from a higher-dimensional system like the two-
mode laser [6], it is remarkable that the dimension spec-
trum gives a clear indication of a more complicated at-
tractor.

Additionally, from Fig. 5, it is worth noting that the
correlation dimension D2, commonly used to compare
chaotic attractors, appears to be quite insensitive to the
attractor dimension and is thus least well suited for
characterizing chaotic systems.
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