PHYSICAL REVIEW A

VOLUME 45, NUMBER 3

1 FEBRUARY 1992

Theory of multiphoton ionization tested on negative ions
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In a recently published perturbation theory study of multiphoton-ionization cross sections of H™ [S.
Geltman, Phys. Rev. A 43, 4930 (1991)], a serious discrepancy was reported between the model-based re-
sults and previous ab initio Floquet-theorem-based coordinate rotation results [M. Crance, J. Phys. B
23, 1285 (1990)]. We present two-and three-photon ionization cross sections from many-electron,
many-photon-theory nonperturbative calculations, which essentially agree with Geltman’s results. This
finding supports our earlier conclusions on the physics of photodetachment without or with an external

static field.

PACS number(s): 32.80.Rm, 32.80.Fb

Because of their empty singlet excited spectrum, stable
atomic negative ions are suitable for testing nonresonant
multiphoton-ionization theory and for gaining insight
into the physics of laser-atom interactions. Furthermore,
their small ionization potentials make them attractive
candidates for accurate laser- or static-field-induced-
ionization experiments [1-5].

For practical reasons, the theoretical treatment of the
multiphoton ionization of negative ions has been approxi-
mated drastically by adopting models of short-range po-
tentials seen by the extra electron (e.g., [6-14]). In recent
years, advances in the theory led to the incorporation of
the electronic structure and many-electron effects in con-
junction with multiphoton or dc-field-atom interactions
to different levels of accuracy [15-22]. In our two publi-
cations of Li~ [19] and on H™ [20], we pointed out that a
discrepancy existed in previous results between different
types of model-based theory [9,10] and ab initio theory
[15-17], and that it is the former that is correct. We con-
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FIG. 1. Two-photon detachment cross sections as a function
of laser field frequency w. This figure is taken from Fig. 4 of
Geltman [14] with our results added (crosses). The initials are
those used by Geltman [14]. They correspond to (C), Ref. [21];
(A), Ref. [7]; (LS), Ref. [24]; (best phase BP, model M, zero-
range plane-wave ZRPW), Ref. [14].

cluded [19] that “much of the essential physics of nega-
tive ions in strong external ac and dc fields is caused by
final-state effects” and these, apparently, were computed
fairly accurately in the previous model-based calculations
[9,10]. In other words, any reasonable theory that would
incorporate a good representation of the perturbed final
state should provide, regardless of the formalism, at least
semiquantitatively accurate cross sections for negative
ions.

In two recent publications on the multiphoton ioniza-
tion of H™, Geltman [14] employed perturbation theory
in conjunction with model-based approximations. His re-
sults for linear polarization are reproduced here. (His
Figs. 4 and 7 are our Figs. 1 and 2 with our own results
added.)

When comparing his results to previous theories, such
as the ab initio complex-coordinate rotation calculations
of Crance [21], Geltman discovered a discrepancy of a
factor of 2-3 for his best approximation. He concluded
“we feel that the full correlation effects in the intermedi-
ate and final continuum states are taken into account in
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FIG. 2. Three-photon detachment cross sections as a func-
tion of laser field frequency w. This figure is taken from Fig. 7
of Geltman [14], with our results added (crosses). The initials
are those used by Geltman [14]. They correspond to (C), Ref.
[21]; (BP, M, ZRPW), Ref. [14].
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our best phase results, so we do not understand the
reason for such a large difference with Crance’s results.”
He observed similar discrepancies when comparing the
results with other ab initio calculations as well (e.g., [16]).

Since the field of advanced multiphoton-ionization
theory and calculation is relatively new, it is important to
document all the available information in order to in-
crease our understanding. Thus, we have turned to our
many-electron, many-photon theory (MEMPT) and
analysis already in the literature [19,20,22] and have plot-
ted our results for the two- and three-photon ionization

cross sections [20] on the figures of Geltman [14]. As can
be seen from our Figs. 1 and 2, the results of the MEMPT
are in good agreement with those of Geltman. This fact
confirms our previous conclusion [19] that in the theory
of the ionization phenomena that occur from ac- or dc-
field-negative-ion interactions, the important element is
the accurate representation of the perturbed final state.
Furthermore, it sheds additional light on a recent discus-
sion [21-23] on the identification and method of compu-
tation of the effects of electron correlation on multipho-
ton ionization by strong fields.
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