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Feshbach-type projection calculations of triply excited resonances in He
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The Feshbach-type projection method is applied to the 2s 2p P' and 2s2p P' resonances in He
The results are compared with the saddle-point technique results and some other calculations by
methods closely related to the Feshbach-type projection method.

PACS number(s): 31.50.+w, 32.80.Dz

I. INTRODUCTION

The Feshbach projection-operator method [1] in its
most advanced formulation by Temkin and Bhatia [2] is
applicable to doubly excited atomic resonances lying in
the inelastic-scattering region with several open channels.
The method has been recently extended [3] to the case of
an infinite number of open channels associated with all
singly excited target states, i.e., to the case of triply excit-
ed resonances lying just above the double ionization
threshold. The extended method is based on the approxi-
mate description of open channel functions as containing
the (N —2}-electron core represented by the ground-state
wave function of doubly ionized system (whose energy
level is the double ionization threshold of the ¹lectron
atom}.

In this context the three-electron system (He } is the
simplest but very interesting case where the doubly ion-
ized system is hydrogenic and is described by the one-
electron 1s function. This function may be interpreted ei-
ther as the (N —2)-electron core in the open-channel
space functions, or as the one-electron hole in functions
of the closed-channel space. In Ref. [3] the former inter-
pretation was used to define the projector P projecting
onto the open-channel space. On the other hand,
Nicolaides [4] used the latter interpretation to construct
hole-projection operators. In general these techniques
are different. However, they are equivalent for three-
electron triply excited resonances lying below doubly ex-
cited two-electron levels.

The hole-projection operators have also been used by
Chung within the saddle-point technique [5,6]. In this
method the hole function is optimized so as to maximize
the resonant energy. As it has been recently proven [7],
this way of optimization follows from the mini-max prin-
ciple, which demands that the excited-state energy should
be maximized with respect to parameters describing an
approximate space of lower-lying states. (For further in-
formation about the saddle-point technique and its rela-
tion to the Feshbach-type approach, see also Refs. [8,9].)
The saddle-point technique has been successfully applied
to triply excited resonances of three-electron systems
[6,10,11]. Since in the three-electron system under con-
sideration the only difference between the saddle-point
technique and the Feshbach-type method is the above-
mentioned maximization, the question arises how large
the effect of this maximization is, i.e., whether the
Feshbach-type projection method can provide as good re-

suits as those of the saddle-point method.
In order to answer this question, which is the main aim

of this work, I have performed calculations by both
methods within the same basis sets. These calculations
have been carried out for the 2s 2p P and 2s2p P' res-
onances of He . The 2s 2p P resonance was
discovered by Kuyatt, Simpson, and Mielczarek [12] and
interpreted as such by Fano and Cooper [13]. It was
confirmed by other experimental [14—18] and theoretical
[6,19—22] works. The present results are in good agree-
ment with the experimental data. The 2s2p P' reso-
nance has not yet been observed but it was predicted by
Chung [11]and Chung and Davis [6].

II. FESHBACH-TYPE PROJECTION METHOD
FOR TRIPLY EXCITED RESONANCES

PC=A/(r, )u(x2, x3, 1) (2)

for an arbitrary antisymmetric three-electron function 4,
and

P+Q=I, PQ=O, Pt=P . (3)

These conditions lead to a strong orthogonality require-
ment

(4)

The Feshbach-type projection method for triply excit-
ed resonances [3] shall be presented here in a specific for-
mulation of a three-electron atom. Let us assume that
the lowest triply excited resonant levels lie above the dou-
ble ionization threshold, i.e., above the ground-state level
of a hydrogenic ion, but below doubly excited two-
electron thresholds. The method is based on the assump-
tion that each open-channel function can be written as

@=A/(r, )u(xz, x3, 1),
where A is the three-electron antisymmetrizer, P(rt) is
the spatial part of the hydrogenic ground-state wave
function (one-electron core), and u(x2, x3, 1) is a function
of the proper total angular momentum of the two remain-
ing electrons, coupled to the spin part of the core to form
the proper spin of the entire system. The spin coordinate
of the core electron is denoted by 1.

The projection operators P and Q projecting, respec-
tively, onto the open-channel space and its orthogonal
complement must fulfill the following conditions:
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The question how to realize projection onto P or Q space
can be answered by solving a set of Eqs. (2) and (4).
There are two ways of doing this. One of them, described
in detail in Ref. [3], gives explicit forms of operators P
and Q which read

and

P Pi—+P2+P3 PIP2 PiP3 P2—P3+P, P2P3 (5)

3

Q—:I P=—g (1 P;)—, (6)

where

P, —= ly(r, ) &((((r, )l .

Thus, in order to obtain QV one should act on qI with the
operator Q as defined in Eqs. (6) and (7). This procedure
is well known as the hole-projection technique [6]. Al-
though it was derived from assumptions (2) and (3) in
Ref. [3], it was earlier derived in another way and applied
by Nicolaides [4] and was used by Chung within his
saddle-point method [6]. A procedure equivalent to the
hole-projection one was also used by Ahmed and Lipsky
[21].

The other way of solving Eqs. (2) and (4) is to find P%
for a given 4, i.e., to find an appropriate u which is
necessary to form P% according to Eq. (2). Assuming
that the trial function 4 is of configuration expansion
form and considering the form of P% obtained by using
Eq. (5), one finds out that u is strictly expressible in terms
of P and orbitals appearing in 4. Thus one can easily
forecast a finite (but strict) expansion form for u.
Coefficients of this expansion can be found from a set of
linear algebraic equations obtained from Eq. (4). (In Ref.
[3] this procedure is described in detail for a general N
electron case. ) When PV is obtained in this way, then
QV=(1 P)4 is also k—nown.

In the case under consideration (triply excited 3-
electron resonances lying above the double ionization

threshold but below doubly excited two-electron levels)
this procedure is equivalent to the hole-projection tech-
nique provided the trial function %' is of configuration ex-
pansion form. This is not a weighty limitation because
trial functions of that type are mostly being used in actu-
al calculations. On the other hand, the algorithm men-
tioned above holds for the more general case, i.e., for res-
onances lying in an arbitrary energetic region. Therefore
this algorithm has been applied in the computer code I
used in my calculations.

Feshbach projection, regardless of the way in which it
is realized, can be used in calculations in which the
Rayleigh-Ritz variational method is applied to the QHQ
operator, where H is the nonrelativistic Hamiltonian of a
three-electron atom. The QHQ-matrix eigenvalues lying
below the doubly excited two-electron levels are inter-
preted as energies of triply excited resonances. Such cal-
culations will be referred to as QHQ calculations.

III. CALCULATIONS, RESULTS,
AND DISCUSSION

The method described above can be applied, without
modifications, to resonances lying just above the He+
ground state but below the next threshold, which is the
2s 'S resonance of He. (For resonances lying above the
2s threshold, the open channel 2s kl should also be pro-
jected out from the Q space, etc. ) The 2s 2p P and
2s2p P' resonances are the only two lying below the 2s
level of He. Since both of them have been calculated by
Chung [10,11] and Chung and Davis [6] by means of the
saddle-point technique, the basis-set experience of these
authors has been taken into account in this work. Most
of the spin-angular terms used by Chung and Davis [6]
have been included in the present calculations with non-
linear parameters optimized by them. This was possible
because Slater-type orbitals have been used both in this
work and in the calculations of Chung and Davis [6].
Nevertheless, the basis sets used in this work are not the
same as those of Ref. [6], since the radial terms have

Spin-angular
terms

Number
of radial

terms

TABLE I. 2s 2p P resonance energy calculation.

Nonlinear parameters

—hE (a.u. )

Saddle point'

(s,s) S,p
(p,p) 'S,p
(s,p) 3P, d
(s,p) 'P, d
(p, d)'P, d
(s,p) P, s
(u,u} '»f
(s,d} 'D,f
(p, d) 'P, d
(p, d) 'P, s
(sp) Ps
(d, d) 'S,p
(p,p) S,p
(p, d) 'P, d
(sd} D f
Total

'The optimal q is 1.91.

34
15
18
18
9

19
5

4
7
8

19
8

5

2
4

175

0.74
0.8
0.72
0.47
0.63
0.36
0.84
0.59
0.75
0.72
0.36
1.2
0.8
0.75
0.47

0.74
0.8
0.81
0.71
0.99
0.72
0.84
0.85
0.75
0.72
0.72
1.2
0.8
0.75
1.05

0.725
0.7
0.8
0.9
0.65
0.85
1.05
1.2
0.75
0.9
0.85
0.7
0.7
0.75
1.4

0.753 468
0.027 835
0.008 530
0.006 531
0.002 565
0.001 076
0.000484
0.000 568
0.000 153
0.000096
0.000075
0.000 072
0.000054
0.000035
0.000012
0.801 554

0.753 392
0.027 250
0.008 419
0.006 506
0.002 543
0.001 034
0.000479
0.000 561
0.000 151
0.000075
0.000082
0.000074
0.000053
0.000034
0.000011
0.800664
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been chosen independently. In order to systematically
compare results of the QHQ and saddle-point methods, I
performed both the saddle-point and QHQ calculations
using the same basis sets. The radial part of function
P(r), in terms of which the operator Q is defined in Eqs.
(6) and (7), was R„(r)=Ce q', where C is the normaliza-
tion factor and q was 2.0 for the QHQ calculation; q was
instead optimized in the saddle-point calculation to max-
imize the resonance energy.

The results are displayed in Tables I and II. The spin-
angular terms are ordered in these tables with respect to
the magnitude of their contributions (

—b,E) to the reso-
nant energy. The fact that the [(s,d)'D, f] spin-angular
term, appearing in Table I after the [(p,p)'D, f] term, has
a greater contribution than the latter, is due to the strong
interaction between them. As one can see, the spin-
angular term sequence has turned out to be the same for
the saddle-point and QHQ calculations (except that the
order of the [(p,d)'P, s] and [(s,p) P,s] terms has been
changed in the saddle-point calculation, see Table I). The
quantitative differences between the saddle-point and the
QHQ results are exclusively due to the maximization of
the energy with respect to q. These differences are about
0.025 eV for both states. Very recently Chung [23] per-
formed more-accurate QHQ and saddle-point calcula-
tions (in a basis set of 302 functions) for the 2s 2p P res-
onance. His results are, respectively, —0.801974 and—0.801 125 a.u. They differ between each other by about
0.023 eV. Thus, the differences between the QHQ and
saddle-point results for the resonances under considera-
tion are of the same magnitude as the corresponding
differences in the case of the lowest 'S' resonance of He,
where the relation between the Feshbach projection and
the hole projection is the same as in our case [6].

Comparison of theoretical and experimental position of
2s 2p P is given in Table III. As one can easily see, the
QHQ results match the experimental data best. Chung's
saddle-point result is the best among the saddle-point
data. It is the lowest one just because of the better choice
of basis set; the maximization has been performed in all
the saddle-point calculations with respect to the same
representation of the 1s hole.

It is very interesting to compare the QHQ results with
those of Ahmed and Lipsky [21] and Nicolaides [4].
Ahmed and Lipsky [21] used the hydrogenic wave func-
tions, with the 1s orbital omitted, as a one-electron basis

set. Within this basis they obtained multiconfigurational
wave functions of some lower-lying doubly excited He
states. Then they multiplied them by hydrogenic orbitals
(still except ls) describing the third electron and diago-
nalized the Hamiltonian matrix obtained in this basis set.
This gave the position of P at 57.350 eV above the He
ground-state level. In Table III this method is referred to
as the closed-channel expansion. Another Ahmed and
Lipsky result, of 57.305 eV was obtained using the
straightforward configuration-interaction expansion
(within the same orbital basis set) for the resonant wave
function. After completing this calculation, performed as
a numerical experiment, they modestly suggested that
orthogonality to the 1s orbital is all that is necessary to
define triply excited states, and that a projection operator
can be constructed which projects out the ground state of
a one-electron system. Such a projector is defined in Eq.
(6) and was in fact used before by Nicolaides [4]. Thus,
calculations of Nicolaides [4] and Ahmed and Lipsky [21]
are equivalent to the QHQ calculations [25] and therefore
marked in Table III as "QHQ." The best 2s 2p reso-
nance position obtained in the QHQ calculation by
Chung [23] at 57.192 eV is lower, i.e., better, than the
"QHQ" results only because of the better choice of varia-
tional manifold.

The existence of 2s2p P' resonance in He was pre-
dicted by Chung [11]. Its position obtained by Chung
and Davis [6] is 57.421 eV above the helium ground state.
The position obtained in this work is 57.420 eV in the
case of the saddle-point calculation or 57.395 eV in the
QHQ calculation. This resonance cannot be observed in
the experiment in which the electron is scattered from
the He ground state, but it is hoped that it will be ob-
served in other experiments in the future and that the
theoretical predictions will be confirmed.

The QHQ results, as well as those obtained in this work
and that of Chung, do not differ very much from those
obtained by means of the saddle-point technique. The
case of the 2s 2p resonance suggests that they can be in
even better agreement with experimental data than the
latter. It cannot be stated, however, which of those two
methods is better, because a coupling to the continuum
shift, which could be of both signs, is not included in the
calculations presented here. Nevertheless, the fact that
the results of the Feshbach-type projection method and
the saddle-point technique are close to each other and

TABLE II. 2s2p P' resonance energy calculation.

Spin-angular
terms

(sp) Pp
(s,d) D, d
(p, d) 3P,p
(p,f)'D, d
(pp) Pd
(s,f) F f'
(d,f) '+,p
Total

Number
of radial terms

29
13
8
4
9
5

7
75

0.75
0.6
0.72
0.75
0.78
0.59
0.91

Nonlinear

0.66
1.05
0.91
1.05
0.78
1.35
1.1

parameters

0.775
0.9
0.725
0.8
0.75
1.1
0.675

0.784 872
0.004 240
0.003 977
0.000 543
0.000464
0.000 231
0.000 176
0.794 503

—AE (a.u. )

Saddle point'

0.784052
0.004 245
0.003 899
0.000 540
0.000475
0.000 231
0.000 173
0.793 615

'The optimal q is 1.885.
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TABLE III. Position of the 2s 2p P resonance in He, calculated relative to the He ground-state level, which is —2.903 724 a.u.
(Ref. [24]).

Reference

Theoretical
Eliezer and Pan (Ref. [19])
Nicolaides (Ref. [4])
Smith er a!. (Ref. [20])
Ahmed and Lipsky (Ref. [21])

Safronova and Senashenko (Ref. [22])
Chung and Davis (Ref. [6])
Present work

Chung (Ref. [23])

Experimental
Kuyatt, Simpson, and Mielczarek {Ref. [12])
Grissom, Compton, and Garret (Ref. [14])
Quemener, Pacquet, and Marmet (Ref. [15])
Sanche and Schulz {Ref. [16])
Hicks et al. (Ref. [17])
Roy, Delage, and Carette {Ref. [18])

'See discussion in the text.
ba.u. =27.211 65 ev.

Method

Stabilization
ccgHgsta

Close coupling
Closed-channel expansion
cc +QssR

Second-order perturbation
Saddle point
Saddle point
QIIQ
Saddle point
Qeg'

E (eV)

57.3
57.3
57.48
57.350
57.305

56.75
57.225
57.228
57.204
57.215
57.192

57. 1+0.1
57.21+0.06
57. 15+0.04
57. 16+0.OS

57.22+0.04
57. 19+0.03

that they agree quite well with the available experimental
data shows that the description of the open-channel space
as given in Eq. (1},which in the case under consideration
is fundamental for both methods, works well. The hole-
projection methods, i.e., the Nicolaides method and the
saddle-point technique of Chung, have been successfully
applied to atoms with more than three electrons [4,26].
Keeping in mind that the Feshbach-type projection
method allows implementation of a better description of
the (N —2)-electron core in the open-channel space rep-
resentation than is possible within the saddle-point

method [27], we believe that the Feshbach-type projec-
tion method is capable of providing good results also for
systems with atoms of more than three electrons.
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