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A simple expression for the energies of a class of doubly excited states derived from first-order pertur-
bation theory is compared with recent results based on large numerical calculations for H and He. It
concerns „(K,T)42s+'L states with A=+1, L=O, or 1, K=n —1 —T, T= —,'[1 m( —1)—]. (Lin's

standard notation is used. ) This expression involves both intrashell and intershell cases.

PACS number(s): 31.15.+q, 31.20.—d, 34.80.—i, 31.50.+w

Neglecting spin, the nonrelativistic two-electron atom-
ic Hamiltonian is

H =Ho+ I/~r —r'~,

where Ho=h +h' and h (h') is a hydrogenic Hamiltoni-
an:

h =p /2 Z/r . —

If the interelectronic repulsion term I/~r —r'~ is treated
as a perturbation, the ground-state energy E within first-
order perturbation theory is (see, e.g., Ref. [1])

E = —Z +(—,')Z .

Atomic units are used throughout this paper. The exper-
imental values for Z=3, 2, 1 are about —7.28, —2.9,—0.5276, respectively. The relative error therefore rises
from about —2% for Li+ (Z =3), about —5% for He
(Z =2), up to about —29% for H (Z =1). The present
Brief Report is concerned with the comparison of a sim-

ple perturbative approach for the energies of some highly
doub1y excited states with respect to recent elaborated
nonperturbative numerical results.

The unperturbed Hamiltonian Ho has the O(4) XO(4)
dynamical symmetry of two hydrogenic Hamiltonians.
As a result, the degeneracy degree pertaining to the
bound states of Ho is equal to (nn') where n and n' are
the principal quantum numbers associated with each
electron. On one hand, this large degeneracy degree for
n, n' large makes first-order perturbation theory dificult
to implement. On the other hand, one can expect that
first-order perturbation theory wi11 be particularly suit-
able for the particular set of highly doubly excited states

I

with wave functions sharply confined in a region where
the interelectronic angle is nearly equal to m. Such a
geometric configuration clearly minimizes the interelect-
ronic repulsion and thus favors a perturbative approach.
It is a general property of highly degenerate systems that
eigenvectors with wave functions well localized in some
regions of configuration space can be constructed. Thus,
for the hydrogen atom, one can construct within the n-
dimensional subspace (n » 1) states well localized on one
side only of the nucleus, corresponding to configuration-
space wave functions separable in parabolic coordinates
and suitable for the zero-order Stark effect. More gen-
erally, it is possible to construct stationary states local-
ized on a classical elliptical orbit [2] which correspond to
O(4) coherent states. Returning now to the two-electron
problem, it is possible to construct within a subspace of
fixed total orbital angular momentum L (n »L, n' »L)
eigenstates of Ho whose configuration-space wave func-
tions are strongly concentrated at an interelectronic angle
9 equal to m.. Explicit construction has been given in
Refs. [3,4]. It amounts essentially to diagonalizing B,
the square of the difference of the two rnonoelectronic
Runge-Lenz vectors. This diagonalization is achieved
using only angular momentum algebra. For a fixed value
of the total angular orbital momentum L, the eigenvector
of 8 with largest eigenvalue corresponds to the smallest
mean value of cos(8). For the intrashell cases (n =n')
the mean value of cos(8) for the vectors that diagonalize
B has been obtained explicitly in Ref. [5]. The general
expression (i.e., the expression valid for both the intra-
shell and the intershell cases) has recently been obtained
[Eqs. (A6), (41), and (A9) of Ref. [6]]. This general ex-
pression is rather complicated but simplifies for those
vectors corresponding to the largest eigenvalue of8:

(n —1) +(n' —1)~+nn' —1+L (L + 1)(n —1)(n' —1)/(n +n' —2)
(cos(8)) = —1+
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TABLE I. „(E=n—2, T=1)„+'I" states of H and He.
These states are labeled „(0)„+,by Sadeghpour [12]. The first

two columns correspond to n, n'. The third and fourth columns

give, for H and He respectively, the percentage of accuracy of
Eq. (2) with respect to the results obtained from large numerical
calculations. Specifically, they correspond to 100(x —y) /y
where x is the perturbative result given by Eq. (2) of the present
paper and y is the value calculated by Sadeghpour [12]. Blank
spaces correspond to the cases where y has not been calculated.

It is seen that this expression decreases when decreasing
L, and for a 6xed value of L, goes to minus unity as both
n and n' increase.

It has recently been conjectured [6] on the basis of an
analysis of the two-electron atomic problem within the
framework of the 0(4,2) group, that the resonance posi-
tions of the states with L =0 and mean values of cos(8)
very near to —1 correspond to those of the Hamiltonian
Hi..
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8.18
4.16

—1.75

3.85
2.94

—0.98

0.94
0.96

—1.16
—3.18

0.09
0.09

—1.26
—2.83

—1.42
—0.94
—1.72
—2.83

—2.00
—1.62

—2.51
—3.47

—2.93
—2.42
—3.05
—1.98

He

4.61
4.54
2.84
1.63
0.78
0.23

—0.10
—0.30
—0.42
—0.49

2.30
3.16
2.31
1.56
0.89
0.39
0.04

—0.21
—0.36

1.89
3.01
2.86
1.34
0.88
0.47
0.15

—0.09
1.03
1.26
2.81
2.19
1.67
1.32
1.03
0.03

—0.78
0.41
0.75
0.70
0.50
0.03
0.55
1.76

—0.48
—0.58
—0.12

H
&
=Ho+ I /(r +r')

TABLE II. „(E=n —1, T=O)„+ 'S' states of H and He.
Same as in Table I, but y is from Koyama et al. [13]and Fuku-
da, Koyama, and Matsuzawa [14].
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H

1.63
—0.36
—0.34
—0.34
—2.11
—1.41
—2.86

—3.94
—3.17
—4.54
—4.12
—4.91
—4.32

He

3.06
3.48
1.67
2.51
0.50
1.02
0.09
0.73

—1.04
—1.21

in the subspace where I = I' =0. The ratio
[1/(r+r')]l[(Z/r)+Zlr')] is less than or equal to
1/(4Z) whatever the r, r' values are. The maximum
value occurs for r =r'. The situation is thus favorable for
1/(r +r') to be considered as a perturbation, especially if
n and n' are very different. An estimate of the mean
value of 1/(r +r') was then obtained [6] on the basis of
classical mechanics and the corresponding 6rst-order per-
turbative energies are [6]

E (n, n ') = —
—,
' Z (1/n + 1/n '

)

+Z [ —,'s —[(2/nn')+d arcsin(d/s)]/m J, (2)

where

s =—(1/n )+(1/n' ), d—:(1/n )
—(1/n' ) .

For the intrashell case (n =n'), Eq. (2) simplifies

E(n, n)= (Zln—) +Z[1—(2/n)]/(n ),
a result previously obtained by Dmitrieva and Plindov
[7,8].

It remains to specify more precisely the states for
which Eq. (2) should actually be relevant. Two electron
states are labeled according to the now standard notation
of Lin [9] by „(E,T)„" +'L . The superscript A is not
an independent quantum number [9]. The channels with
A =+1 have been found [9] to have the lowest energies,
i.e., energies nearest to those of the unperturbed Hamil-
tonian Ho. The perturbative approach should therefore
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be relevant to the case A =+1. A is related to S, T, and
n by the relation [9] A =n( —. 1) + if K )L —n For a
fixed value of L, the energies are minimum for K max-
imum, K =n —1 —T, corresponding to the smallest mean
value of cos(8). Thus T should be equal to zero for even
singlet states and odd triplet states, and equal to 1 for
even triplet states or odd singlet states. The two possibil-
ities for the pair S,m. when T,K, A, n, n ',L are fixed corre-
spond to near degenerate states and are called T doubling
[9]. Although Eq. (2) was introduced for the case of zero
total orbital angular momentum L, it can also be conjec-
tured if for small L values (L =1,2) with a dropping ac-
curacy as L increases whereas n, n' remain fixed. The
starting point of the conjecture in Ref. [6] was an approx-
imation of Eq. (74) of Ref. [10). It can indeed be seen
that this approximation is still valid, although to a lesser
degree of accuracy, if L remains small . This is compati-
ble with the fact that adiabatic potential curves in hyper-
spherical coordinates are nearly degenerate for different
values of L and identical channel quantum numbers
E, T, A [9]. A rotational band structure [11,9] then ap-
pears as L increases from its minimum value T. The
present perturbative approach should not be suSciently
accurate to distinguish between the first two rotational
levels. To summarize, Eq. (2) is expected to be best
relevant for the states labeled

„.(E =n —1 —T, T= —,'[1—a( —1) ])„+'(L=0 or 1)

(3)

with large n', n values. Extensive calculations based on
the hyperspherical method concerning both intrashell
and intershell 'P' energies of H and He were quite re-
cently published by Sadeghpour [12]. The results of
these numerical calculations for those states compatible
with the labeling described just above (L =1, m

= —1,
S =0, T = 1, E =n —2) are compared with the results of
Eq. (2) in Table I for H and for He. To our knowledge,
there exist no such extensive calculations involving both
the intrashell and intershell cases for the L =0 case. The
most extensive results we have found are those of Koya-
ma et al. [13] and Fukuda, Koyama, and Matsuzawa
[14] (L =0, a= 1, S=0, T =0, K =n —1). The relative
accuracy of Eq. (2) with respect to the values calculated
from the hyperspherical coordinate method [13,14] are
reported in Table II. For the intrashell case (n =n')
there are also the numerical results of Rost and Briggs
based on a molecular approach [15] (L =0, m. = 1, S =0,
T=O, E =n —1). Relative accuracy of Eq. (2) with

TABLE III. „(It =n —1, T=O)„+ 'S' states of H and He.
Same as in Table I, but y is from Rost and Briggs [15].
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6.10
7.19

—2.27
—3.38
—4.20
—4.70
—5.37
—5.86

3.06
1.63
0.75
0.19

—0.22
—0.50
—0.78
—0.98
—1.15
—1.28
—1.38
—1.47
—1.57

respect to these results is reported in Table III. From
Tables I—III it appears that the energies given by Eq. (2)
tend to be too low for small n, n' values and too high for
large n, n' values, especially for S states. Further numeri-
cal results are needed to analyze the large-n behavior in
Table III; in view of the present results, it is reasonable to
expect an accuracy better than about 3% for He and
better than about 10% for H

To summarize, Eq. (2) relies on two major points: first,
the conjecture [6] that the Hamiltonian H, [Eq. (1)] in
the subspace l =l'=0 is relevant for the energies of the
states labeled by Eq. (3) if both n and n' are large; second,
the use of first-order perturbation for doubly excited
states of this Hamiltonian with I =l'=0. In our opinion,
the accuracy of the present result [Eq. (2)] is better than
one could expect, especially for H . At present it cannot
be excluded that the agreement with much more ela-
borate calculations [12—15] is fortuitous, but in our
opinion the present comparisons give support to the con-
jecture of Ref. [6]. Finally, convenient and often more
accurate, at least on a given energy range, double Ryd-
berg formulas have been given in the literature for the in-
trashell ( n =n '

) cases (see, e.g. , Refs. [16—19]).
Rydberg-Rydberg formulas or two-electron formulas
have been proposed for the intershell cases [12,20,21].
Equation (2) should be regarded as a first estimate which
does not involve any fitted parameters. It also has the ad-
vantage that both intrashell and intershell cases are treat-
ed on the same footing.
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