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We present a theory of dressed-state lasers, i.e., lasers that operate on an inverted transition

between dressed states of a coupled atom-field system, in the bad-cavity limit.

We discuss the

validity of the effective Hamiltonian approach in such a case and generalize the theory beyond
secular and effective Hamiltonian approximations. We demonstrate that higher-order instabilities
that lead to self-pulsing and optical chaos may occur in experiments on dressed-state lasers. With
the help of the generalized theory we study the competition between the resonant one-photon and
two-photon processes and try to understand it physically by looking at the spectrum of the emitted

radiation.

PACS number(s): 42.50.Hz, 42.55.—f, 42.65.—k, 42.50.Lc

I. INTRODUCTION

Recently there has been a growing interest in the the-
oretical [1-5] and experimental [6-8] studies of dressed-
state lasers, i.e., lasers that operate due to the gain on
an inverted transition between dressed states of a coupled
atom-field system.

The idea of a dressed-state laser stems from Mollow [9],
who predicted that strongly driven homogeneous ensem-
bles of two-level atoms can exhibit optical amplification
as well as absorption. Mollow’s prediction has been ex-
perimentally demonstrated in several works [10, 11].

Let us start the present discussion by reviewing phys-
ical principles on which dressed-state lasers operate. A
two-level atom driven by a strong laser field of the fre-
quency wy undergoes dressing [12]. If the driving fre-
quency wy, is detuned from the atomic transition fre-
quency w, by A; = w, — wr, while the Rabi frequency
of the resonant driving field is §2, the atom-field states
form a ladder of doublets (which we denote |+) and |-)),
separated by wy and split by the generalized Rabi fre-
quency §) = VO ¥ A%, For nonzero detuning A, the
stationary inversion of the dressed-state doublets is usu-
ally different from zero. In particular, for A; < 0, the
population of the upper dressed states |+) is larger than
that of the |—) states. If, in this situation, one locates
the ensemble of dressed atoms in an optical cavity that is
resonant with transitions between |+) and |-) states of
adjacent dressed-state doublets, i.e., with w, = wy + &/,
lasing will occur for sufficiently large atomic density. The
effect of optical gain on such transitions has been stud-
ied theoretically by Holm and co-workers [13] and exper-
imentally with confocal optical cavities by Zhu, Lezama,
and Mossberg [14]. Single photon dressed-state lasing
has now been observed both in atomic-vapor-cell [6] and
atomic-beam [7] experiments.

Multiphoton dressed-state lasers are based on simi-
lar principles, but employ multiphoton resonances be-
tween dressed states. In a recent Letter [1] we have
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demonstrated that in a system of highly driven two-level
atoms located in a cavity, two-photon lasing in the opti-
cal regime should occur. Our findings were supported by
experimental observation of the two-photon gain in such
a system [8]. In a series of papers [2-4] (that we call I, II,
and III) we have presented further developments of the
theory of dressed-state lasers.

In I, we formulated the theory of dressed-state lasers
using an effective Hamiltonian approach [15]. In this ap-
proach one assumes that the cavity frequency A is in
resonance. with. the appropriate transition frequency he-
tween the dressed states (A ~ Q' for single-photon reso-
nance, or 2A, =~ ' for two-photon resonance). The effec-
tive Hamiltonians are derived using the procedure anal-
ogous to the standard [16] or generalized [17] rotating-
wave approximation. The difference is that the expan-
sion parameter here is the ratio of coupling constant to
A, or €, rather than the ratio of coupling constant to
optical transition frequency w,. The expansion param-
eter is thus moderately small, and one typically has to
include terms in effective Hamiltonian that have the form
of Stark shifts and Bloch-Siegert shifts [18]. Such terms
distinguish the theory of dressed-state lasers from the
standard laser models [19], and may influence stability
properties of the dressed-state lasers. In Refs. [1] and [2]
we have compared the theories of one-photon and two-
photon dressed-state lasers to discuss the competition
between one-photon and two-photon regimes of opera-
tion. Fortunately, the regions of operation of one-photon
and two-photon lasers are often distinct, especially for
good cavities characterized by a small width I'. There-
fore, prospects for an experimental observation of the
optical two-photon laser are good. Resonant two-photon
processes, although generally speaking characterized by
a smaller coupling, will not be destroyed by competing,
but nonresonant single-photon processes.

In the subsequent paper, II, we have demonstrated
that nonresonant transitions between dressed states that
lead to the appearance of Stark and Bloch-Siegert shifts
also affect quantum properties of emitted radiation. In
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fact, both single-photon and two-photon dressed-state
lasers are predicted to exhibit squeezing [20]. Squeez-
ing occurs in the regions of parameter space not far from
the lasing threshold and is correlated to an appearance
of larger Bloch-Siegert and Stark shifts. Large squeez-
ing effects (60% reduction of the relative variance of the
field quadrature) are possible when atom-cavity coupling
is large and the cavity is not too narrow. Finally, we
should mention that squeezing is practically not affected
by pump-depletion effects [4].

Until now two possibilities of an experimental realiza-
tion of dressed-state lasers have been considered: (i) the
use of confocal cavities [7] that are characterized by high
values of atom-cavity coupling g; (ii) the use of standard
Fabry-Pérot cavities that can be very narrow. The first
case is, in our opinion, much more interesting, since it
may lead to large squeezing. On the other hand, for such
cavities, the system is typically not far from the bad-
cavity limit, i.e., the limit when cavity width is larger
than any other width characterizing the system. Obvi-
ously, for Fabry-Pérot cavities, the bad-cavity limit is
also easy to be realized experimentally. Lasing in such
a case may still be possible, since to reduce the effect of
the large cavity width one may increase the number of
atoms in the cavity.

On the other hand, it is known that in the bad-cavity
limit standard laser theory of the single-mode laser with
homogeneous broadening predicts higher-order instabili-
ties such as self-pulsing and chaos (see, for instance, Ref.
[19]). It is interesting, therefore, to investigate possibili-
ties of such instabilities for dressed-state lasers.

In the present paper we address and attempt to resolve
two fundamental problems of the theory of dressed-state
lasers.

(i) The emergence of self-pulsing and chaos. The the-
ory presented in Refs. [2-4], as well as in the papers of
Agarwal [5] was based on an effective-Hamiltonian ap-
proach and the so-called secular approximation. The lat-
ter approximation consists in taking into account only
resonant spontaneous transitions between dressed states.
Even within this framework and in the parameter re-
gion of its validity (see Secs. II and III) the presence of
Bloch-Siegert shifts and Stark shifts may enhance the sig-
nificance of higher-order instabilities (i.e., of self-pulsing
and chaos). We identify the regions of parameters where
higher instabilities occur and see how far they are from
experimentally accessible situations. The results that are
obtained in the regions of validity of effective Hamilto-
nian theory are discussed in Sec. IV.

(ii) Generalization of the theory beyond secular
and effective-Hamiltontian approach. The effective-
Hamiltonian approach may alternatively be interpreted
as a kind of adiabatic approximation. It is in fact
equivalent to performing the following procedure: First,
we write the full set of equations describing the evo-
lution of the system. Second, we identify appropriate
macroscopic variables that describe the process in ques-
tion (cavity field, dressed-state inversion and dressed-
state polarizations). The number of relevant macroscopic
variables is always finite. Third, we write the equa-
tions for macroscopic variables and eliminate adiabati-
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cally the remaining variables from these equations. When
such an adiabatic elimination is performed neglecting
spontaneous-emission terms, one obtains the same result
as in the effective-Hamiltonian approach with the secular
approximation. Full elimination allows one to go beyond
the secular approximation. Effective-Hamiltonian the-
ory (EHT) described in terms of adiabatic elimination
and generalization beyond secular approximation (effec-
tive adiabatic theory, EAT) are discussed in Sec. II. To
go beyond the secular approximation we introduce the
whole hierarchy of macroscopic variables, and perform
the adiabatic elimination by breaking the hierarchy on
tke higher level. Such a procedure allows for systematic
improvements of the effective-Hamiltonian theory. The
hierarchy of macroscopic polarizations and generalized
“effective” approach (GET) are presented in Sec. III.

In the present paper we discuss the results that cor-
respond to up to 41 appropriately chosen macroscopic
variables. We compare the results for such an im-
proved “effective” theory with the standard effective-
Hamiltonian approach. In this way we answer a part
of the first question, i.e., we identify the regions of va-
lidity of the effective-Hamiltonian approach. We show,
on the other hand, that for bad cavities secular ap-
proximation may break down, despite the fact that the
spontaneous emission rate is the slowest rate in the sys-
tem. In the bad-cavity limit the system becomes, gen-
erally speaking, more unstable, and consequently the
effective-Hamiltonian approach (with or without the sec-
ular approximation) becomes very inaccurate. In par-
ticular, the competition between one-photon and two-
photon processes may lead to self-pulsing and chaotic
behavior, which cannot be predicted within the effective-
Hamiltonian framework. The results in the region where
the effective-Hamiltonian approach is not valid are dis-
cussed in Sec. V.

Our aim is to illustrate what kind of differences be-
tween full theory and effective-Hamiltonian theory arise,
and to discuss the details of the competition between
one-photon and two-photon processes. We also try to un-
derstand the competition in a quantitative and physical
sense by looking at the spectrum of the emitted radiation.

We stress that our theory and the physical problem
that we study are very closely related to the works on
multimode instability of optical bistability, initiated by
Bonifacio and Lugiato [21] and carried on over the years
(for a recent review see Ref. [22]). These papers were
in fact the first to demonstrate that Mollow gain [9] can
induce cavity lasing. The theoretical results of Brambilla
et al. [22] have found a very precise confirmation in a
series of nice experiments by Segard et al. ([23], see also
[24]).

The main difference between our work and previous
theoretical studies is the fact that the latter consider the
standard problem of optical bistability. The input field
pumps one of the cavity modes of similar frequency. Un-
der appropriate conditions, the interaction between the
pump mode and the atoms can create Mollow gain for
one or several cavity modes close to the resonance. When
this gain overcomes losses these modes exhibit laser ac-
tion. The conditions considered by us differ, because in
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our case the input field does not pump cavity modes. In
addition, four-wave-mizing effects are avoided in our the-
ory, contrary to the case of optical bistability.

II. EFFECTIVE ADIABATIC
AND EFFECTIVE-HAMILTONIAN THEORIES

In the previous works [1-4] effective Hamiltonians for
dressed-state lasers were constructed using the method
of Stenholm [15], which in fact is a version of time-
independent second-order perturbation theory. We have
applied such a perturbative approach only to the Hamil-
tonian. In the spontaneous decay terms in the Liouvil-
lian, the so-called secular approximation was used, i.e.,
only resonant spontaneous transitions between dressed
states were considered. To go beyond secular approxi-
mation we reformulate here our theory in terms of the
adiabatic elimination procedure applied to semiclassical
equations of motion.

As in I, II, and III we consider a system of N two-level
atoms located in a cavity. The atoms are pumped by
an external driving field of frequency wy. The strength
of the pump is characterized by the Rabi frequency Q.
The pumping field has a traveling-wave character and is
oriented orthogonal to the cavity modes.

Let o3y, aL, and o, denote the standard Pauli matri-
ces that describe two-level atoms, each of which is enu-
merated by an index p. The atoms interact with the
pumping field and with a single, nearly resonant mode
of the cavity. Let us denote the cavity-photon creation
and annihilation operators by at and a. Additionally, the
atoms may undergo spontaneous emission into the modes
of the electromagnetic field that are not associated with
the cavity resonance. The density matrix of the system
then obeys the Liouville-von Neumann (master) equa-
tion of the form [25]

p=—i[M,p]+Lap+Lrp . (2.1)

The Hamiltonian in Eq. (2.1) is in the standard rotating-
wave approximation given by the expression
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H= % Z[Aﬂfsp + Qou + af‘) + g,,a'La + y;aTO’y]
m
+Asata . (2:2)

The free parts of the Hamiltonian, corresponding to the
first and the last terms in Eq. (2.2), are proportional
to the appropriately defined detunings A; = w, — w
and Ay = w, — wr. The term proportional to the Rabi
frequency 2 describes the driving of the atoms, while the
coefficients g, denote the coupling of the atom p to the
cavity mode. The phases of individual atomic dipoles are
fixed relative to the pump field in the expression (2.2),
and by that a spatially varying phase ¢, is introduced
into g,’s. The magnitude of the atom-cavity coupling
constant, on the other hand, is assumed to be a constant,
i.e., lgu] = g exp(ip,) (for a detailed discussion, see I).

The last two terms in Eq. (2.1) describe cavity damping
and spontaneous emission, i.e.,

Lrp = 2T (apat — %afap — 1pata) (2.3)

and

Lap=2y Z(U#P”L - %"'LU#P - %pala,,) ;o (24)
m

where I is the cavity half width at half maximum and 2y

denotes the free-space atomic-spontaneous-emission rate.

Equations (2.1)—(2.4) are written in the basis of the

atomic Hilbert space, consisting of bare excited states

[1), and bare ground states |0),. To obtain a dressed-

state picture, we change the basis, introducing dressed
states [12]

|[+), = cosall), + sin a|0), (2.5)

and

|=)u = —sina|l), + cosa|0),, . (2.6)

In the above expressions the “rotation” angle «, which
belongs to the interval [0,7/2), is defined through the
relations Q@ = Q'sin2a and A; = Q' cos2a, where
denotes an effective Rabi frequency, equal to the dressed-
state energy splitting Q' = 1/Q2 + A2

After elementary calculations, we obtain the explicit
form of the Hamiltonian transformed to the dressed basis

Q p
H = Z 503+ Agata + Z %‘a*[(l + cos 2a)a, — (1 — cos 2a)ol + sin(2a)o3,]
# )

+ z -g-f[(l + cos 2a)}), — (1 — cos 2a)o, + sin(2a)o3,)a .
u

(2.7)

The spontaneous-emission term (2.4) in the dressed-states basis is

Lap= -;-3/- Z {[sin(2a)o3, + (1 + cos2a)o, — (1 — cos 2a)o’L]p[sin(2a)03,, + (1 + cos 2a)a;“ — (1 — cos2a)oy)
m

—[1+ o34 cos 20 — (0 + a);) sin 2a)p — p[1 + 03, cos 2a — (o, + o}) sin 2a]} .

(2.8)
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In Egs. (2.7) and (2.8) the symbols 03, o}, and o, re-
fer to the atomic operators in the dressed-state basis,
and correspond to the dressed-state inversion, raising,
and lowering operators, respectively. The cavity damp-
ing term (2.3) remains unchanged under the change of
basis of Eqgs. (2.5) and (2.6).

From the expressions (2.7) and (2.8), and (2.3) we de-
rive the equation of motion for the quantum-mechanical
averages oy, aL, 03y, a, and a'. Anticipating a semi-
classical approximation, we may treat these equations as
classical c-number equations (i.e., we decorrelate atom—
cavity-field products). To do so we introduce the nota-

tion

Yo = ysin 2« ,
7= -;—/(2 +sin? 2a) |
y2 = y(1 + cos? 2a) , (2.9)
Y3 = g— sin 2« cos 2«
V4= % sin? 2a ,
and
Fy = % (1£cos2a), Fo= %sin 2a . (2.10)
The equations of motion take then the form
op=—(m1 +iQ)ou + 0 + 7303, — 740,
+iein Fios,a ~ ie~i¢n F_ a*oszy,
—2iFy(e" "% a*a, + €' 04a) , (2.11)
O3, = —72(03 — O3u) + 273(0u + f’;)
+2iF, (e"*** a0, — e'%* o,a)
+2iF_(e"*%*a*o}, — e g a) (2.12)

. 2F?
S: —(‘yl + lQI)S+ iF+S3Cl et [ -
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a=—(T+ils)a—iy e " (Fyo, — F_o} + Fyos,).
©
(2.13)
The equations for o}, and a* are the complex conjugates
of (2.11) and (2.13), respectively.

To formulate the dressed-state-laser theory we identify
the macroscopic variables that are the relevant order pa-
rameters for each type of lasing. Here we shall present de-
tailed calculations for the case of the one-photon dressed-
state laser. For such a case the relevant macroscopic vari-
ables are for the dressed-state polarization,

S = Ze"w“ O s
u
and its conjugate S*; and for the dressed-state inversion,

53':2 O3y
u

the cavity field amplitude a, and its conjugate a*.

We introduce also the stationary dressed-state inver-
sion S3 = 3, 03,. From Egs. (2.11) and (2.12) it is
elementary to derive equations of motion for the macro-
scopic variables. Such equations, of course, contain on
the right-hand side couplings to combinations of ¢, and
o3, other than S, S*, S3. On the other hand, each of
the Eqgs. (2.11) and (2.12) contains on the right-hand
side couplings to S, S*, S3 apart from couplings to other
terms. The latter can be neglected in the lowest-order.
One can solve then Eqs. (2.11) and (2.12) adiabatically,
expressing o, o-L, and o3, in terms of S, S*, S3. The
solutions are then inserted into the equation of motion
for the macroscopic variables and averaged over spatially
varying phases ¢, (for the discussion of the latter point
see I). The resulting closed set of nonlinear equations
represents what we call in the following the effective-
adiabatic theory (EAT). These equations are expected
to be valid close to resonance, A, = . They include
systematically the terms of order of [F2/(Q or A»)],
(Fy/Q"), or v2/€, etc. The equations of the EAT read:

(2.14)

(2.15)

1 1

S V] ¥ - - Sa*
Q'+ Ay + iy2 ’ O<Q’—i"/1 Az-“’h)] ¢

( 2iv3 _ 75 ) ( vaF-S3  2Fgo(yoN + 7353)> a (2.16)
W +ivya Q+Az2+im Q'+ Az +im Q —in 7
Ss = —72(S3 — S3) + 2iFy (a"S — S*a) — 4F, @’ L ST N AN N e
3= —72(o3 3 + 073 O — i, O +imn Q,Q_*__hg 70 Y303
44, F? ( a*S S*a )
M- Siata+ 274F 4 ) 2.17)
@+ A 477 vt D+ Az+in U +Ay—im (
in 53(1 74F_S 273FOS
7= — ] -1 — — . 2.18
a (T'+iA2)a—iFy S T dtin T 0t T O +ins (2.18)
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The above equations are expected to be valid for the
well-defined resonance when both Q' and A, are much
larger than 7 and F. In such situations it is natural

to neglect terms proportional to 74 in the adiabatic de-
nominators in Egs. (2.16), (2.17), and (2.18). The terms
containing adiabatic denominators and proportional to
v originate from the non-Hamiltonian part of the evolu-
tion. The secular approximation (which is valid when v is
sufficiently small) consists of neglecting all those terms,
that is, the last four terms in Eq. (2.16), the last four
terms in Eq. (2.17), and the last two terms in Eq. (2.18).

After performing secular approximation we obtain a
set of equations that are fully equivalent to the one de-
rived with the help of the effective Hamiltonian (see I).
The equations of the effective-Hamiltonian theory (EHT)
thus read:

. s . 2F 919
S=—-(71+zQ)S+zF+Sga—mSa, ( )
S's = —72(53 - 5'3) + 2iF+(a*S - S'a) s (220)
. . . iF? S3a

a=—(T+iAs)a—iFyS— WZZ (2.21)

The above equations have been thoroughly studied in I,
II, and III. Note that the same procedure is applicable
for two-photon resonance, when 2A, ~ Q'. The only
difference is that the appropriately defined macroscopic
polarization variable for two-photon lasing is

S= Ee'z"d’“a,, .
m

Using the definition (2.22) one can derive equations of
two-photon EAT and EHT. The latter are fully equiva-
lent to the one studied in I, II, and III.

Note, that EAT equations have typically much more
complicated structure than EHT equations. Contrary to
the case of EHT, we were not able to find stationary solu-
tions of EAT equations analytically. Again we remind the
reader that the EHT method, as compared to the EAT
method, should work for small y. Our results indicate
quite generally that the bigger the dressed-state splitting
is, the better the EHT method works. For strongly in-
stable regimes, however, we may expect qualitative and
quantitative differences between the two theories even for
small v. For instance, close to the threshold of instabil-
ities, the EAT method works usually much more accu-
rately than the EHT method. A detailed discussion of
the validity of both approaches will be presented in Secs.
IV and V. First we have to formulate the method of sys-
tematic improvement to the approximations used. Such
a method, based on an introduction of the whole hierar-

chy of macroscopic order parameters will be presented in
Sec. III.

(2.22)

III. GENERALIZED EFFECTIVE THEORIES
(GET)

One of the basic problems that one encounters when
using EAT or EHT methods is the competition between
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one-photon and two-photon processes. The informa-
tion about the stability of one-photon and two-photon
dressed-state lasers comes from two distinct theories.
Each of them describes the evolution of a different set
of macroscopic variables. In particular, macroscopic po-
larizations for one-photon and two-photon lasing are en-
tirely different [compare Egs. (2.14) and (2.22)]. The
competition problem may be in such distinct theories
studied only in the stationary limit. It is natural then to
ask for the theory that would simultaneously describe the
dynamics of both kinds of lasing processes. One should in
such theories introduce both the one-photon polarization
(2.14), as well as the two-photon one (2.22). This idea
led us to the formulation of generalized effective theories
that are based on a hierarchy of macroscopic variables.

We introduce the following hierarchy of macroscopic
variables.

(i) The family of n-photon polarizations that describe
multiphoton transitions between the dressed states,

s = Ze_‘"d’“a# .
"

The polarizations with n > 0 (n < 0) build up in n»-
photon lasing processes that correspond to the transi-
tions from the upper (lower) to the lower (upper) dressed
states, respectively. The n = 0 polarization corresponds
to the coherence linking dressed states of the same dou-
blet.

(ii) The family of complex conjugates of S(™),

S(n)* = Zein¢,, U; )

n

(3.1)

(3.2)

(ii1) The family of polarizations that correspond to n-
photon transitions from both lower to lower and higher to
higher dressed states. We call such transitions nth-order
Rayleigh transitions, since they lead to the emission at
the driving laser frequency,

S =3 emntugy, . (3.3)
I

Note that Sé‘") = S:(,")* and that S3 is the dressed-state
inversion (2.15).

Similar variables for the single-atom case (apart for
the phase factor) has been defined by Grynberg, Pinard,
and Verkerk [26] in their discussion of saturation four-
wave mixing. They used the quantum-dressed-state ap-
proach in the Schrédinger picture in which, e.g., S:(i")
corresponds to the reduced [27] coherence

AM =3"< K +n,+|plK,+ >
K

— < K+n,—|p|K,— > . (3.4)

The approach used in Ref. [26] for the four-wave-mixing
problem neglected all nonresonant coupling and was,
therefore, equivalent, to the GET5 approach (see below).

From Egs. (2.11), (2.12), and (2.13) it is elementary
to derive equations of motion for the hierarchy of macro-
scopic variables,



2062

S = _(y, +i)S™ 4 iF, S5 Vg — iF_a* P
—2iFp(a* S 4 g8(n-D)

+70N8ng + 7385 — 72 S (3.5)

S5 = —yp(S§™) = Sabn0) + 2iF, (a* S+ — gS(-n+D)xy
+2iF_(a* S — q5(n1)

+293(8™ 4 5(=m) (3.6)

that, together with the equation for the field amplitude
Eq. (2.13) rewritten as

a= —(P+ iAZ)a — iF+S(1) + iF.__S(_I)* _ iFoS:(il) ’
(3.7)

form a closed albeit infinite set of equations.

To solve this hierarchy of equations, we propose to
break it in a systematic way. The starting point again will
be the theory of the one-photon dressed-state laser. In
lowest order we simply write down the equations for the
five relevant variables (S(l), S S;(SO), a, and a*) and
neglect all the couplings of these variables to any other
macroscopic variables. In this way we obtain general-
ized effective theory with five equations (GET5). Such a
theory is in fact equivalent to neglecting all terms that
come from adiabatic elimination in Egs. (2.19), (2.20),
and (2.21). In other words, such a theory corresponds
to neglecting all antiresonant terms in the dressed-state
Hamiltonian (2.7), and is equivalent to the EHT ap-
proach in which Bloch-Siegert shifts are neglected and
secular approximation is made. This simplified theory
serves quite well for estimations of lasing thresholds (see
Ref. [1]).

The next step is to include in the theory those macro-
scopic variables that appear on the right-hand side of
the exact equations for the first five variables. All other
macroscopic variables are neglected. There are ten new
variables that enter the right-hand side of the five equa-
tions of GET5. We call the resulting theory GET15.

The further systematic improvements of the theory are
constructed similarly. Having a theory with m variables,
GETm, we identify m' new variables that enter the right-
hand side of the m exact equations for m variables. We
include these and only these m’' new variables into the
improved theory, GET(m + m’). We write the exact
equations for the first m variables and the approximate
equations for the m’ new variables, neglecting couplings
to all variables not included in the theory.

Such an approach has led us to the hierarchy of ap-
proximate theories, GETH, GET15, GET23, GET29,
GET35, GET41, etc. For instance, for GET41, which
was the highest we investigated, the relevant variables
are S for n = —6,-5,...,6, its conjugates, S_,(,") for
n = —6,-5,...,6, and two field variables a and a*.

The physical meaning of the breakdown of the hier-
archy is the following: at each level of the approximate
theory we neglect some higher-order multiphoton pro-
cesses that lead to multiphoton macroscopic polarization
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and lasing. To solve the equations of motion for GET
theories we have used numerical methods. Solutions of
equations of motion were obtained with the help of the
International Mathematics and Scientific Library proce-
dure DGEAR.

As the initial conditions we typically assumed van-
ishing atomic polarizations and the dressed-state inver-
sion corresponding to atoms in their ground states, i.e.,
S§°) = —Nsgn(A;). As in our semiclassical approach
quantum fluctuations are absent; we have to introduce
some photons into the cavity, at least initially, to assure
a possibility of a nontrivial solution for the field ampli-
tude. Thus we assumed that N;, = |a(0)|? > 0.

Comparison of the results obtained for subsequent
GET theories allowed us to determine the convergence of
our method. It is worth stressing that in all cases studied
GET41 gave qualitatively the same results as GET35 for
regular trajectories and qualitatively the same for chaotic
trajectories. That means that the results obtained for
GET41 may be considered as “exact” in the considered
regime of parameters.

In principle analogous hierarchy of generalized effective
theories may be formulated without transforming to the
dressed-state basis. Of course, the resulting hierarchy
is not equivalent to the one considered here. We think
that it is important to stress, that at least for the wide
class of problems related to dressed-state lasers (i.e., to
the strongly driven atomic system), the method based on
dressed states seems to be much more efficient. With this
method we have achieved the convergence on the level of
41 equations in the worst cases. The method based on
bare states, when applied to the description of chaotic
behavior, did not converge even when more equations
were used.

By comparing with the “exact” results obtained with
the help of GET41 we were able to check the validity
of the effective-Hamiltonian and effective-adiabatic ap-
proach. The results of our studies are presented in Secs.
IV and V. The results in Sec. IV are obtained in the re-
gion of parameters where both EAT and EHT are valid.
The results in Sec. V illustrate the breakdown of the adi-
abatic approach. They are still, however, obtained in
the region of validity of the generalized effective theory
GETA41.

IV. RESULTS IN THE REGIONS OF VALIDITY
OF EFFECTIVE THEORY

Let us start the discussion by defining approximately
the regime of parameters of interest. We shall use the
spontaneous emission rate v as the frequency unit and ex-
press all other parameters in terms of v. First, we shall be
approaching the bad-cavity limit, i.e., cavity width will
be typically of the order of 20-100. The characteristic
values of the Rabi frequency €2 depend on the intensity
of the driving field. To achieve large separation of the
dressed states we shall use Q2 of the order of 10-100. For
similar reasons, atom-laser detuning will range from 10
to 100. Finally, the atom-cavity coupling ¢ and number
of atoms N depend on the particular experiment we have
in mind, i.e., experiment with confocal cavities or Fabry-
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Pérot cavities. By rescaling the variables as a = a/ VN,
5 = 5, and .§'§") = S:(,") one notices immediately
that the relevant parameter that characterizes laser op-
eration is in fact the product D = g\/ﬁ , which for both
kinds of cavities may range between 0 and a few hundred.

The first set of results we present corresponds to the
situation when both EAT and EHT are valid. We have
determined the regions of parameters where this takes
place by comparing the results to the ones obtained with
the help of the “exact” theory GET41. In particular,
adiabatic theories work well for large atom-laser detuning
Ay

As might be expected from the standard laser theory
even a simple EHT leads to self-pulsing and chaos. We
illustrate this statement in Fig. 1, which shows the insta-
bility regions in the A,-Q)’ plane. For a one-photon laser
for a sufficiently large value of the parameter D = gV'N,
a region of instability arises close to resonance (Ay = ).
In this region the standard stationary solution above
threshold becomes unstable. This region is well separated
from the region of existence of the two-photon laser that
is determined from the EHT theory based on the effective
two-photon Hamiltonian.

We have traced the route to chaos following the pass
into the instability region indicated by the vertical ar-
row in Fig. 1. We have observed the period-doubling
route and illustrated it in Figs. 2(a)-2(f), which show

500
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0 200 400 600 800
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FIG. 1. Regions of existence and stability of different
modes of operation of one-photon and two-photon dressed
state lasers. The diagram is presented in the A2-Q’ plane
and has been obtained with the help of EHT theory. Inside
the large region (denoted S;) surrounded by the solid line
stationary and stable solution for the one-photon laser ex-
ist. A narrow region (U1) close to the resonant line A, = Q'
corresponds to the unstable one-photon laser solution with
self-pulsing or chaotic behavior. Small regions on the left sur-
rounded by dashed (U2) and solid (S2) lines correspond to
the unstable and stable regions of stationary two-photon las-
ing. These curves were calculated with the help of two-photon
EHT. Other parameters are A; = —100, I' = 20, g = 0.001,
N =3 x 10", The vertical arrow indicates the route to chaos
illustrated in Fig. 2
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trajectories in the phase space and time dependencies.
Cavity width is moderately large here, I' = 20. As we
mentioned, in this region of parameters more accurate
theories give similar results. This is illustrated in the
series of Figs. 3(a)-3(c), that are calculated for the val-
ues of Q' and A, chosen in the self-pulsing region and the
larger value of T'. It is shown that the theory without sec-
ular approximation does not differ very much from the
effective-Hamiltonian theory. The generalized effective
theory GET41 leads to small changes in the behavior,
and introduces chaotic transients [Fig. 3(c)]. The sta-
tionary state in all three cases, however, is practically
the same, and can be accurately described in the frame-
work of the simplest of those theories, i.e., EHT.

The second type of results that we present concerns the
possibility of experimental observation of higher-order in-
stabilities in dressed-state lasers. Note that when atom-
laser detuning is smaller, the results of I indicate that the
role of Bloch-Siegert shifts becomes more pronounced.
The presence of these terms leads to the difference be-
tween one-photon dressed-state laser theory and the stan-
dard laser case. In particular, it may affect the stability
properties of the dressed-state laser. Therefore, in those
regions of small and moderate A; we study the stabil-
ity of stationary solutions and the role of Bloch-Siegert
shifts. We compare the results obtained in the frame-
work of one-photon EHT, and GET5 (which is the same
as EHT, but with Bloch-Siegert shifts neglected, i.e., it
corresponds to the standard laser theory).

For the choice of parameters that corresponds to the
experiment of Lezama et al [7] (i.e., for not too large
Ay), the effects of the Bloch-Siegert shifts are not very
pronounced (Fig. 4). They lead only to a small increase
of the size of regions of higher-order instabilities close
to the resonance, Ay = Q'. Note, however, the factor
3 increase of the parameter D allows for achieving the
instability region.

In the region of parameters corresponding to experi-
ments of Lezama et al, but for a slightly larger magni-
tude of A,, antiresonant couplings that lead to Bloch-
Siegert shifts deform dramatically the stability regions
(Fig. 5). Here, self-pulsing and chaos should be accessi-
ble for the value of D only two times larger than the one
required to pass the threshold for stationary laser action.

The results of Figs. 4 and 5 indicate that higher-order
instability region lies not too far from experimentally ac-
cessible regimes. That is a very important conclusion,
since it is interesting from the fundamental point of view,
and it might be extremely useful for analyzing experimen-
tal results.

V. BREAKDOWN OF ADIABATIC THEORIES

In this section we present the results in the region
where EHT and EAT are not valid. There are two kinds
of discrepancies between the adiabatic and “exact” the-
ories.

First, note that the results of Sec. IV are in the re-
gion of validity of the EHT theory. They are, however,
typically not valid close to the boundaries of instability
region in the parameter space. The reason is that im-
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FIG. 2. (a) Phase-space diagram representing the trajectory of the dressed-state laser in the instable region for the pa-
rameters chosen along the arrow indicated in Fig. 1. The variables represent the normalized laser intensity X = |a|*/N and

atomic polarization Y = |S|?>/N?. The trajectory represents self pulsing in the form of a 1-cycle. The parameters are Q =183,
A, = 200. All other parameters are the same as in Fig. 1. (b) Time dependence of the laser intensity for the 2-cycle solution

presented in (a). (c) Same as in (a), but for @ = 181. The trajectory represents a 2-cycle. (d) Time dependence of the laser

intensity for the 2-cycle solution presented in (c). (e) Same as in (a), but for @ = 180. The trajectory represents a 4-cycle. (f)
Time dependence of the laser intensity for the 4-cycle solution presented in (e).
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provements of the EHT theory lead typically to small
shifts of the boundaries of instabilities. They may there-
fore in such situations lead to qualitative changes of the
asymptotic behavior for parameters very close to thresh-
olds of instabilities. Frequently, in such cases it is enough
to improve the theory by going beyond secular approx-
imation and by using EAT [Figs. 6(a) and 6(b)]. EHT
theory leads here to self-pulsing, whereas EAT theory as
well as the “exact” GET41 both predict stable behavior.

The dramatic breakdown of EHT, and of EAT, occurs
in the regions of parameters where the competition of
one-photon and two-photon processes takes place. That
happens, for instance, in the region far from resonance.
Here, however, we present a series of results for 2A, ~ Q’,
i.e., not far from the two-photon resonance. In the region
where both of these theories predict stable behavior, the
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exact theory GET41 predicts self-pulsing behavior with
superimposed chaos [Figs. 7(a) and 7(b)]. To understand
the physical meaning of this behavior we have calculated
the spectrum of emitted radiation. The spectrum is de-
fined via simple Fourier transform of the signal,

1 t+T ,
l/ et a(t’)dt’
t

2

Pw) = tlim lim T (5.1)

—00 T—o00

We expect that for such a choice of parameters there
will be a strong competition between one-photon and
two-photon lasing processes. In fact both one-photon
and two-photon EHT predict stable stationary solutions.
According to these theories one-photon lasing should oc-
cur at the frequency Aiph ~ 175, whereas two-photon
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(a) Time dependence of the laser intensity calculated for the values of @ = A; = 300, and I' = 100. All other

parameters are chosen as in Fig. 1. The initial value of the cavity field amplitude was a = 1. The curve represents the results of
the EHT approach. (b) Same as (a), but obtained without the secular approximation, i.e., with the help of the EAT approach.
(c) Same as (a), but obtained with the help of the “exact” GET41 approach.
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FIG. 4. Regions of stability of stationary mode of opera-

tion of one-photon and two-photon dressed-state lasers. The
diagram is presented in the D-A; plane and has been obtained
with the help of one- and two-photon versions of EHT theo-
ries (D = gv/N). Full lines are the borders of the stability re-
gion given by EHT theory with Bloch-Siegert shifts included.
The dotted curves correspond to EHT without Bloch-Siegert
shifts (i.e., GET5 theory). Dashed line represent region of
existence of the stationary two-photon lasing, as predicted
by two-photon version of EHT (this solution is unstable—
denoted as Uz). The parameters correspond to those of Ref.
[7): T =15 A =—10, Q = 34.

lasing at A" ~ 125. The spectrum of emitted radi-
ation shows characteristic features of both lasing pro-
cesses, i.e., well-developed peaks close to A" and AZP".
Additionally we observe a large Rayleigh peak at w =0,
which indicates the significant role played in the dynam-
ics by multiphoton Rayleigh transitions (i.e., transitions
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FIG. 5. Same as in Fig. 4, but for slightly larger value

of A; = —30. Note the appearance of the region of stable
two-photon action.
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between the same kind of dressed states) [Fig. 8(a)]. The
same result is presented in logarithmic scale in Fig. 8(b),
which shows both lasing peaks more clearly, and contin-
uous background due to the chaotic component of the
motion.

Figures 9(a) and 9(b) are obtained in the region where
two-photon EHT exhibits self-pulsing and one-photon
EHT leads to stable stationary behavior. The full theory
GET41 shows, on the other hand, chaos on a full scale
[Figs. 9(a) and 9(b)]. The spectrum, calculated from
both the one-photon and two-photon EHT theories is
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FIG. 6. (a) Time dependence of the one-photon dressed-
state laser intensity at the threshold of self-pulsing. The
dashed curve represents the result of EHT, the solid curve,
the result of EAT. The parameters are Q = 200, A, = 245,
A; = =100, T = 20, g = 0.001, N = 3 x 10''. (b) Same as
(a), but the dashed line represents the result of EAT, whereas
the solid represents the “exact” result of GET41.
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presented in Fig. 10(a). The spectrum of the two-photon
laser exhibits two components: one (close to w = 40) is
located close to the frequency of the unstable station-
ary solution. The second component of the two-photon
laser spectrum (w =~ 65) results from self-pulsing, which
has roughly the period T ~ 27/(65 — 40). Note that
the second component of the two-photon laser coincides
practically with the frequency of one-photon lasing. One
can expect that the competition of the two processes is
strong. As a result both effective-Hamiltonian theories
become invalid. Indeed, the competition between the
component of the two-photon laser spectrum due to self-
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FIG. 7. (a) Time dependence of the dressed-state laser
intensity. Both two-photon EAT (solid line) and one-photon
EAT (dashed line) predict stable stationary action for the
same values of the parameters: @ = 120, A, = 60, A; =
—100, T = 20, g = 0.001, N = 3 x 10*2. (b) Same as (a), but
the only presented solid curve represents the “exact” results

of GET41.
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pulsing, with one-photon lasing leads to fully developed
chaotic behavior. To describe this behavior one must
use the “exact” GET41 theory. The spectrum calculated
from the full theory is broadband and shows complicated
structure, characteristic for chaotic behavior.

VI. CONCLUSIONS

We have generalized the theory of the dressed-state
laser beyond the effective-Hamiltonian theory (EHT). We
have reformulated it in the form of adiabatic elimination
taking into account terms neglected in the secular ap-
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FIG. 8. (a) Spectrum of the laser output (obtained with
GET41) P(w) for the parameters of Fig. 7. (b) Same as in
(a), but displayed in logarithmic scale.
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FIG.9. (a) Time dependence of the dressed-state laser in-
tensity displaying the competition between two-photon self-
pulsing and one-photon stationary operation. The dashed
curve represents the result of two-photon EAT, the solid
curve, the results of one-photon EAT. The parameters are
Q = 60, A2 = 30, Ay = =30, T = 15, g¢v/N = 350. (b)
Same as (a), but the only presented solid curve represents the
“exact” result of GET41.

proximation (EAT). We have also formulated the hierar-
chy of generalized effective theories (GET) that allow for
systematic approximations of the dynamics of dressed-
state lasers. The methods presented here can be adopted
to other nonlinear optical systems.

We have applied the theory to investigate stability
properties of dressed-state lasers in the bad-cavity limit.
We have shown that EHT and EAT can be used in prin-
ciple, when the dressed-state splitting is large enough
(i.e., both © and A; should be large). The adiabatic
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FIG. 10. (a) Spectrum of the laser output P(w) for the

parameters of Fig. 8. The dashed curve represents the result
of two-photon EAT, the solid curve, the results of one-photon
EAT. (b) Same as in (a), but the only presented solid curve
represents the “exact” result of GET41.

approach breaks down (a) for parameters close to insta-
bility threshold; (b) in the presence of strong competition
between different kinds of lasing processes.

In the region of validity of EHT, self-pulsing and chaos
can be observed, as well as the known routes to chaos.
The higher-order instabilities appear in the regions of
parameters that lie not too far from the current experi-
mental possibilities [28].

In the region of strong competition between various
lasing process, adiabatic theory cannot be used. The out-
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put of the laser contains typically chaotic components.
The behavior of the system may be analyzed and ex-
plained by looking at the spectrum of the emitted radia-
tion.
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