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Higher-order squeezing and photon statistics for squeezed thermal states
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By use of the squeezed-number-state basis, we study several features of the squeezed thermal states.
Higher-order squeezing properties are found to be entirely determined by the second-order ones. The
photon-number distribution is expressed in closed form in terms of a Legendre polynomial. We point
out that at a critical value of the squeeze parameter, pairwise oscillations of the photon-number distribu-
tion set in. Finally, a compact analytical expression of the exact lth-order correlation function is derived
and examined.

PACS number(s): 42.50.Dv

I. INTRODUCTION

In recent years squeezed coherent states (SCS's) have
been studied extensively [1]. The experimental success in
generating SCS's at optical frequencies [2] spurs new at-
tempts to obtain squeezed-state sources. Along this line,
squeezing of thermal radiation has already been produced
in a microwave Josephson-junction parametric amplifier
[3]. However, there are few works investigating the prop-
erties of the squeezed thermal states (STS's) [4—9]. In
their paper [4], Kim, de Oliveira, and Knight calculated
the second-order correlation function, the characteristic
and quasiprobability functions for both squeezed number
states (SNS's) and STS's. They derived the photon-
number distribution for a SNS and explained its large-
scale macroscopic oscillations in terms of phase-space in-
terference. Higher-order squeezing for SNS's and STS's
was examined by Gong and Aravind [5].

In a Letter [6] the STS's were introduced within the
formalism of thermofield dynamics to extend the concept
of squeezed states to finite temperatures. Thermofield
states have been applied to thermodynamic problems in-
volving the amplification and attenuation of light [7].

In a very recent paper [10] studying higher-order
squeezing properties and correlation functions for SNS's,
we have derived analytical compact formulas for both
moments and normally ordered moments of the quadra-
ture operators. We have also shown that the photon-
number distribution for a SNS is proportional to the
square of a Gauss hypergeometric function.

The present work deals with the photon statistics and
squeezing properties of STS's. Systematic use is made of
the results for SNS's reported in our previous work [10],
hereafter referred to as I. In Sec. II the expectation
values of the field operators in STS's are found as well as
the higher-order moments of the quadrature operators.
The conditions for higher-order and intrinsic higher-
order squeezing are derived and compared to the similar
ones for SCS's [11] and SNS's [5,10]. The photon-
number distribution is obtained in closed form in Sec. III.
We find here that the squeeze parameter has a critical
value for the onset of pairwise oscillations of the distribu-
tion. We also examine the behavior of the photon-

number distribution for both weak and strong input
chaotic fields. Section IV is devoted to the calculation
and discussion of the Ith-order correlation function. In
Sec. V we summarize the results. Appendix A mentions
two useful series of Gauss hypergeometric functions,
while in Appendix B the sum of a nontrivial series involv-
ing Legendre polynomials is evaluated.

II. HIGHER-ORDER SQUEEZING

A STS is a mixed state whose density operator is a
Bose-Einstein weighted sum of SNS projection operators

In Eq. (1), W is the photon-number distribution for the
input chaotic field,

Pl
—m

W
(n+1)m+1

(2)

~m ), =S(z)~m ) . (4)

In Eq. (3), z = r exp(i8), where r =
~z~ is the squeeze pa-

rameter.
Note that the STS defined by Eq. (1) is the particular

case y =0 of the displaced squeezed thermal state (DSTS)
described by the density operator

pDsT D ( y )psrD '(y» (5)

where

D (y ) =exp( ya t —y*a) (6)

is a Weyl displacement operator. The normally ordered
characteristic functions of the states (1) and (5) are de-
rived in Refs. [4] and [9], respectively.

Since the squeeze operator is unitary, the set of vectors

with n the mean occupancy. The vector ~m ), describing
a SNS arises from the action of the squeeze operator,

S(z)=exp[ —,'z(at) —
—,'z'a ] (3)

on a Fock state
~
m )
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& g )sT=Tr(p»g)= y g & g )$N .
m=0

(7)

[ lm ), j is orthonormal and complete just like the Fock
states system [ l

m ) j. Consequently, the expectation
value of an arbitrary operator A in a STS may be ob-
tained evaluating the proper trace in the basis [ l m ), j:

Here, as well as in the following, & A )sN is the expecta-
tion value of the operator 3 in the SNS lm ), . It is suit-

able to choose Eq. (7) as the starting point of our calcula-
tions because it enables us to make use of the correspond-
ing results for SNS's reported in I.

The Ith-order moment of the creation operator a in a
SNS is from I,

(l —1)!!exp i —(sinhr coshr) ~ 2F, ——,—m;1;2 (l even},. l0

0 (l odd), (8)

where zF, is a Gauss hypergeometric function. Inserting the expectation value (8} in Eq. (7} and taking into account
Eq. (Al), we get

(1 —1)!!exp i —[(2n+1)sinhr coshr] ~ (1 even),~ 18 l/2

0 (l odd) . (9)

The particular case 1=2 was obtained in Refs. [4] and [7].
Equation (9) has a very simple structure:

&( ')'&, =(l —1)!![&( ')'&, ]'". (10)

In order to investigate higher-order squeezing we need to
evaluate the 5th-order moment of the quadrature opera-
tor X& defined as

X, =a+a~ .

In Eq. (7) we introduce the following result of I:

&(bXi) )sN=(N —1)!!lal 2Fi ——,—m;1;2, (12)
N

with

I

a SNS.
It is worth mentioning that in their paper [4], Kim, de

Oliveira, and Knight have obtained the P representation
for a STS. They found a classical behavior of the STS for
r (r„where a well-behaved P representation exists. The
STS becomes nonclassical at r =r„where squeezing sets
in.

To provide a fuller description of squeezing, we need to
evaluate the normally ordered moments &:(~,):).As
these quantities vanish for a coherent state, the condition
for intrinsic higher-order squeezing is, according to Hong
and Mandel [11],

(18)

a=c hora+exp(i8) i shnr .

By application of Eq. (Al) we find

(13)
We recall from I the normally ordered moments for a
SNS:

&:(&Xi):)sN= ( —1) (N —1)!!(1—lal')

& (~i ) &sT=(N I)"[(2n + 1)lal']
and thus

(14) N
X F ———m '1'2 (19)

(15)

The field is squeezed to any even order X in the quadra-
ture X, if the Nth-order moment & (~, ) ) is less than it
is for a coherent state [11],

(16)

For the phase choice 0=m. we find from the condition
(16), when substituting Eq. (14), that squeezing to all or-
ders sets in at the value

r, = —,
' ln( 2n + 1 } (17)

of the squeeze parameter. This value was first obtained
by Fearn and Collett for second-order squeezing [7] and
then by Gong and Aravind for ¹h-order squeezing [5].
The value (17) does not depend on the order N of squeez-
ing as a consequence of Eq. (15},which does not hold for

and consequently

&:(&X,):&„=(N—1)'.!(&:(~,)':)) ". (21)

According to Eq. (20) the normally ordered moments in a
STS are monotonic functions or r in contrast with the os-
cillatory character shown by the functions (19) for a SNS.
Moreover, in the case 0=m., when a =e ', the squeezing
is intrinsically of higher order for r & r, and odd values of
X/2. Finally one should notice the identical structure of
the higher-order moments (10), (15), and (21) as functions
of the second-order ones.

Now, we insert Eq. (19) in Eq. (7) and use again the sum-
mation formula (A 1) to obtain

&:(~ ):)sT=(—1) (N —1)!![1 (2n+1—)lal ]

(20)
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III. PHOTON-NUMBER DISTRIBUTION

The photon-number distribution for the SNS lm ), is written in I as

n fm!
2

n
~

m

2 2

( —,
' tanhr)" ~F, ——,——;—;—(sinhr)

coshr 2' 2'2'
'f

(m, n even),

WsN(m) = n!m!
( —' tanhr)"+ F

n —1
1

m —1
1

(coshr)

2 2

n —1 m —1 3
; —;—(sinhr )

2 '
2 '2'

2

(m, n odd), (22)

0 otherwise .

The two-photon nature of the squeeze operator (3) ac-
counts for the pairwise oscillations of the distribution
(22). In Ref. [4] also discussed are the large-scale macro-
scopic oscillations of W„(m) analogous to those found
for a SCS [12,13]. They are explained in the framework
of the semiclassical theory by which the interfering prob-
ability amplitudes are interfering areas in phase space
[4,12].

The photon-number distribution for a STS is obtained
on account of Eq. (1) as

~srl (2n —1)!! 1+ n
n r —rs

pg t (n+1)

' —n —(1/2)

8'„. (28)

Note that the limit n=0 of STS is the corresponding
squeezed vacuum state (SVS). By specializing Eqs.
(24)—(26) to n =0 and using the particular value P„(0)of a
Legendre polynomial [15],we recover the photon-number
distribution for the SVS [16]:

(23)

with W defined by Eq. (2). Now, by substituting E,q.
(22) into Eq. (23) and using the series (A2), we get

8'
n

n!
( —,'tanhr)" (n even),

coshr
12

2

0 (n odd) . (29)

(2n —I)!! 1+ 2n+1
( i h )z

n! (n+1)

—n —(1/2)

0.25
ll= 2

with

n n —1 1X F —n+ —'v
2 1 (24) 0.20

Wn

0.15

v:— 1—
; 2 1/2

sinh(2r)
sinh(2r, )

(25)
001

0.05

where r, is the critical value (17) of the squeeze parame-
ter. The distribution (24) can be also expressed in terms
of a Legendre polynomial, P„(1/u) [14], 0.03 n=2

I I

—-- W9

W„T= 1+ (sinhr)
2n+1
(n+1)

—n —( 1/2)

R„v P„T tl

(26)

0.02

0.01

O.S 1.6 2-4 3.2
r

~sT
l

II/T (27)

Some particular cases are readily obtained from Eqs. (24)
and (26): FIG.1. Plot of the functions 8') ( ———), Wp ( ), and

W9 ( ) S &p ( ) vs the squeeze parameter for input
mean photon number n =2.
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FIG. 2. Plot of the functions 8'9 ( ———) and 8 ~p (

vs the squeeze parameter for n = 10.

ST ST~2n + ~2n —1 (30)

The minimum value of the squeeze parameter, ro, for
which the photon-number distribution shows at least one
oscillation is obtained by specializing the inequality (30)
to n = 1. Taking into account Eq. (24) we find

This function displays typical pairwise oscillations for all
values of the squeeze parameter r. This is not the case for
a genuine STS (n )0). A plot of the particular functions
W, , 8'z and W9, 8',o versus the squeeze parameter r
(Fig. 1, for n=2) is relevant for the character of the
photon-number distribution. As can be also seen from
Fig. 2 (8'9 and W, o versus r for n=10), from a certain
value of the squeeze parameter, the following inequality
holds:

I

0.04'
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5 20
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FIG. 3. Photon-number distribution at the squeeze parame-
ters r=0.5 and 2.5 for n=2.

squeeze parameter. A closer inspection of the photon-
number distribution is made in Fig. 5, where the values of
the squeeze parameter are chosen slightly larger than ro
in order to show the onset of the pairwise oscillations.

The contributions from SHS's with large m in Eq. (23)

(sinhro) = tn —
—,'+[(n —

—,') +2n(n+I) ]'
2n+1

(31)
0.0e

From Eqs. (17) and (31) it is easy to show that, irrespec-
tive of n,

0.06

~n
0.04

ro —r, . (32)

TABLE I. Critical values of the squeeze parameter for
higher-order squeezing (r, ) and pairwise oscillations (rp) for
several input mean occupancies n.

0.4
0.8
2

10
20

0.294
0.477
0.805
1.522
1.857

rp

0.676
0.856
1.164
1.869
2.203

Pairwise oscillations do not occur in the absence of
squeezing. It is also clear from Eqs. (17) and (31) that
both ro and r, increase when n increases. As expected,
for the SVS we get ro=r, =0. In Table I we list the
values of r„Eq. (17), and r0, Eq. (31), for several input
mean occupancies. Figures 3 and 4 present the photon-
number distribution plotted for several values of the
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FIG. 4. Photon-number distribution at the squeeze parame-
ters r= 1 and 3 for n = 10.
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FIG. 6. Photon-number distribution for n =0.8 at the
squeeze parameters r=0.4 ( ) and r =2 ( ———)

PIG'. 5. 5. Photon-number distribution for n=2 at the squeeze
parameters r= 1.4 and 1.6.

are important and cannot be disregarded for both large
Fig. 4) and small values of n, as shown in Fig. 6, where

the distribution is plotted for n =0.8. For every n, oscil-
ations occur only for r ) ro [17]. A remnant of the t i-

behavior of the chaotic photon-number distribution
8'„ is seen to survive for r (ro.

IV. HIGHER-ORDER CORRELATION FUNCTIONS

The correlation functions are essential for the
definition of optical coherence [18]. For a one-mode field
the 1th-order correlation function & (a )'a'& can be calcu-
ated using the photon-number distribution 8'n~

&(at)'a'&=1! g Wn (33)

where & n &sT is the average photon number in a STS7

& n &sT
=n + (2n + 1)(sinhr)'

and

1
(&n, &sT &n &sT}'" [Im(y} —o] .

(37)

(38)

&n, &,T—= & &n~»„, =n(n+1) .
S

Thhe lth-order degree of coherence for a STS

(I)
&(a ) a &sT 1

gsT(o}—=
(&a a &»)'

(39)

(40)

can be also expressed in terms of a Gauss hypergeometric

In E . (38} 1 nq. !, &, &sT is the mean photon number for the
special value (17) of the squeeze parameter,

For a chaotic state Eq. (33) gives

&(at)'a'&T=1!(&ata &
)' (34)

gsT(0) =(21 —1)!!iF, ——,—;—1+—2' 2
' 2'

Accordingly, the chaotic field has only first-order coher-
ence.

In the case of a STS, Eq. (33) becomes after inserting
the expression (26),

(41)

In the limit n=0, Eqs. (37), (38), and (41) yield the Ith-
order degree of coherence for a SVS,

&(a )'a'&sT=l! g ~

n=l

2n+11+ (sinhr)
(n+1)

—n —( 1/2) g,,(0)=(21 1),F, 1, 1 1,. 1+12' 2
' 2'

—(sinhr) (42)

X W„U "P„
U

(35}

The q. iso t etypehe series on the right-hand side of E . (35)
' f h

). ts sum is evaluated in Appendix B and d'

to Eq. (B9), we get
an, accor ing

This formula is equivalent to Eq. (41) from I.

40
It is interesting to study the dependence of th f te unc ion

( ) on the squeeze parameter r, for a fixed input mean
occupancy n. As expected, for r =0 we recover the result
(34) for a chaotic state,

T

&(a )'a'&»=»(&n &»)'y'1,"' ' y. ' (36)
g' '(0}=1!. (43}

For strong squeezing (r ~ ~ and, accordingly, y ~0) Eq.



45 HIGHER-ORDER SQUEEZING AND PHOTON STATISTICS FOR. . . 2049

(41) gives a value independent of the initial field intensity,
n=10

lim gsT'(0)=(2l —1)!!.
f~oo

We notice that for r =r„when y=0, one obtains

ger'(0)
~
„=„=(21—1)!!

(44)

(45)

g~)(0)

l!

and

[ '"(0)] =(21-3)!! (I 2) . (46)
I I I I I.

0.4 0.8 1.2 1.6 2.0
r

For r (r, the variable (38) is real and less than unity,
while for r & r, it becomes imaginary just like the variable
(25}. Due to the fact that all the zeros of a Legendre po-
lynomial lie on the real axis between —1 and + 1, there is
no zero of the polynomial (40) in the range of values of r
specified above. Consequently, there is no extremum
point in this range, excepting y=O, because

[gsr (0) ]NO for all y, excepting y =0 .d

dy
(47)

dy
dp

and it is a maximum achieved at

((n ) sT),„=2(n, )sT=2n(n+ I),
that is,

(y),„=&((n, ) sT)
', (r),„=sinh '(n '

) .

(48)

(49}

(50)

This maximum is significant especially for n ( 1 as shown
in Fig. 7 for the input mean photon number n=0.4. It
becomes less marked for strong initial chaotic field inten-
sity, as plotted in Fig. 8 for n = 10.

However, owing to Eq. (46), gsT(0) as a function of r has
no extremum at the point r =r„when y=O. Therefore
the only extremum of this function arises from the condi-
tion

FIG. 8. As in Fig. 7, for n = 10.

In the following we focus our attention on the second-
order degree of coherence, a parameter which is relevant
to the photon statistics. For l=2, Eq. (40) reduces to

g'"(0)=3+ (51)

in agreement with the previous result of Kim, de
Oliveira, and Knight [19]. The maximum value of gsT (0)
is given by Eqs. (51) and (49) as

' '(0)] =3+ 1

4n(n+ I)
(52)

gsT'(0) ~2 . (53)

Therefore the photon statistics in a STS is superchaotic
for every r. Squeezing enhances the large fluctuations in
the intensity of the chaotic field.

V. SUMMARY

We have analyzed several general properties of the
STS's. Some significant expectation values in STS's have

For large input intensities gsT (0)=3; but at weak initial
fields n & 1, this maximum is well pronounced, as shown
in Fig. 9, which includes also the case n=0. From Eqs.
(51), (37), and (39) it follows that for arbitrary r,

12

10

I I I I

0.4 08 1.2 1.6 2
r

I

2.4 0 0.& 0.8 12 16 2 2.I
I

FIG. 7. Plot of the functions g'"(0)/I t vs the squeeze param-
eter when n=0.4 and 1=2 (curve a), 1=3 (curve b), 1=4 (curve
c), and 1=5 (curve d).

FIG. 9. Second-order degree of coherence vs the squeeze pa-
rameter for n=0 (curve a), n=0. 1 (curve b), n=0.4 (curve c),
and n=0.8 (curve d).
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been obtained by performing analytically Bose-Einstein-
weighted sums of the corresponding ones in SNS's. We
have derived in this way higher-order squeezing proper-
ties and found them to be entirely determined by the
second-order ones. The photon-number distribution was
expressed in terms of a Legendre polynomial and studied
as a function of the squeeze parameter. The onset
squeeze parameter for pairwise oscillations was derived
by simple algebraic means. We have succeeded in writing
a compact formula for the 1th-order degree of coherence
g'"(0). As a function of the squeeze parameter, gI "(0)
has a unique maximum point independent of I.

We finally remark that for strong squeezing both
squeezing properties and normalized correlation func-
tions to all orders do not depend on the initial chaotic
field intensity, being those found for SVS's [10,11].

APPENDIX A: USEFUL SERIES OF GAUSS
HYPERGEOMETRIC FUNCTIONS

We give the sums of two series involving Gauss hyper-
geometric functions needed in Secs. II and III. The first
one is [20]

s "(c)
2F, ( n,—a;c;u) =(1—s)' '(1 —s +su)2 1

(Al)

where

[s(1—u)l & I,
and (c)„=—I ( c+ n)ll (c) is the Pochhammer symbol.
The second one is a series of products of two Gauss func-
tions [21]

C)s"zF)( n, b; ——
A, ;u, ) 2F, ( n, P; ——A, ;u2)

n=0

=(1+s) + +~(1+s —su, ) (1+s —su2) ~2F) b, P; —I,;—,(A2)(1+s —su, )(1+s —su2)

with

(A3)

I

the condition (82) and circling the origin in the counter-
clockwise sense. On the other hand, from Eq. (81) we

can write

APPENDIX B: SUMMATION OF A SERIES
OF LEGENDRE POLYNOMIALS

We evaluate the sum of the series

n
G)(t, u)= g &

t "P„(u) (1=0,1,2, . . . ) .
n=1

In the particular case I=O, for

ltl (minlu+&u' —lI,

(81)

(82)

(85)

Applying again Cauchy's integral theorem, we get

Go(z, u)
Gt(t, u)= . t'J, , dz .2mi()+. ) (z —t)'+' (86)

The integration contour here encloses the point t in the
counterclockwise sense. It is straightforward to derive
the following factorization of the generating function
(83):

the sum of the series (Bl) is the generating function of the
Legendre polynomials [22]

G (t o+r u)=G (ot u)Go(g r/)

where

(87)

G, (t, u) =(1—2tu + t') (83)

Go(, u)
P„(u)= dg .

2ni (0+ ) p+) (84)

Accordingly, Cauchy's integral theorem gives the well-

known integral representation of a Legendre polynomial,

g=rGo(t, u),

g=(u —t)Go(t, u) .
(88)

An obvious change of variable in the integral (86) fol-
lowed by the factorization (87) leads, via Eq. (84), to the
remarkable formula

The integration here is to be taken along a path observing G, (t, u) =G, (t, u)[tG, (t, u)]'P, ((u —t)G, (t, u)) . (89)
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