
PHYSICAL REVIEW A VOLUME 45, NUMBER 3 1 FEBRUARY 1992

Beam-pointing fluctuations in a gain-guided Raman amplifier
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~e present a measurement of the beam-pointing fluctuations of a transient Raman-amplifier output

using an interferometric method and a theoretical treatment of the three-dimensional, spatial propaga-
tion of transient stimulated Raman scattering (SRS) including the fluctuations of the Stokes field giving

rise to the beam-pointing Auctuations. The theory is based on an effective steady-state model for the

transient SRS process. By using nonorthogonal transverse modes to expand the field, we incorporate the

effects of excess spontaneous-emission noise associated with gain-guided amplifiers. The agreement of
the measurements with the theoretical treatment demonstrates that the beam-pointing jitter is caused by

quantum noise. The beam-pointing fluctuations increase as the Fresnel number of the interaction
volume increases because more spatial modes are excited.

PACS number(s): 42.50.—p, 42.65.Dr, 42.55.Vc, 42.60.Jf

I. INTRODUCTION

Macroscopic quantum-mechanical fluctuations of light
have been observed in a number of single-pass stimulated
optical processes, such as superfluorescence [1],amplified
spontaneous emission [2], and stimulated Raman scatter-
ing SRS [3]. These processes involve light initiated from
spontaneous noise and amplified to a macroscopic level in
a gain medium without a cavity. In SRS the fluctuations
have been observed in the pulse energy [3—5], and in the
temporal [6], spectral [7], and spatial domains. The mac-
roscopic fluctuation of the spatial distribution of the
Stokes light in SRS was first observed by Henesian, Swift,
and Murray [8] and later by Kuo, Radzewicz, and Ray-
mer [9]. The fiuctuation of the pointing angle of the
Stokes output from a transient Raman amplifier is an ex-
ample of the macroscopic fluctuations of SRS due to
quantum-mechanical uncertainty of the initiation from
spontaneous emission. For large Fresnel number of the
interaction volume, the spatial fluctuation is manifest in
the shape of the intensity distribution. For Fresnel num-
ber of the order unity, the fluctuation is primarily in the
beam-pointing direction rather than the shape, which is
approximately Gaussian. The beam-pointing fluctuation
in SRS was predicted by Walmsley [10]and was observed
by us recently [11]. In this paper, we present in detail the
experimental studies and the theory for treating tran-
sient, three-dimensional (3D) propagation of SRS and the
resulting beam-pointing fluctuations.

The Raman amplifier is an example of a gain-guided
amplifier. Gain-guided amplifiers belong to a class of
non-Hermitian optical systems, other examples of which
include unstable resonators [12] and resonators with
strong output couplings [13]. In these systems, the eigen-
modes of the homogeneous, transverse part of the wave
equation are nonorthogonal, and are called biorthogonal.
This leads to the interpretation that is referred to as ex-
cess spontaneous emission. Ordinary spontaneous noise
refers to the fact that there is one extra photon emitted
per mode due to quantum-mechanical uncertainty for

systems governed by Hermitian wave equations. For
non-Hermitian systems, there is more than one extra
photon per mode emitted, and this is characterized by the
excess-noise factor [14,15] which is always greater than
unity. This interpretation has been used to understand
the power spectrum of semiconductor lasers [16]which is
observed to be broader than that predicted from standard
laser theory which assumes orthogonal eigenmodes. Re-
cently the nonorthogonal mode-expansion approach has
been applied to single-pass x-ray lasers to predict their
transverse spatial coherence properties [17]. The x-ray
laser involves photons initiated from spontaneous emis-
sion and amplified in an open-ended gain-guided medium,
in a fashion similar to that in a Raman amplifier [18].
Since nonuniform, high gain is usually employed in these
processes, gain discrimination between different
nonorthogonal modes is expected to be significant. The
implications of the nonorthogonal modes have been stud-
ied in detail by several researchers [14,15,19,20], yet a
consensus on the understanding of these excess-noise
effects is lacking.

A study of the beam-pointing fluctuations of the
Raman-amplifier output provides some additional in-
sights into the excess-noise effect. To guarantee that the
angular distribution of the output does not change during
a single pulse due to collisional dephasing, a transient
condition must be met, i.e., the pump pulse duration
must be short compared to the inverse Raman linewidth
of the medium. Then the beam-pointing angle is deter-
mined by the relative amplitudes of the eigenmodes. The
amplitudes are correlated in the case of nonorthogonal
modes, in contrast to the case of orthogonal modes. This
correlation directly affects the beam propagation direc-
tion.

To treat the statistics of the beam-pointing angles of
the Raman amplifier, the detailed spatial distribution of
the Stokes field is needed. Three-dimensional propagation
in the steady-state case has been treated previously
[17,21]. An analytic, transient theory for 3D SRS that
accounts for a nonuniform spatial profile of the pump
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and similarly for the y component. In Fourier-transform
space, this becomes

fdr fd'k k~E s( k, L, r) ~'

fdr fd'k ~E s( k, L, ~) ~'
(lb)

where Es(r, r) is the Stokes field at the output face (z =L)
of a Raman cell, and Es(k, L, r) is its 2D, transverse
Fourier transform. This definition relates to fluctuations
of pointing directions in three dimensions. We have
found it convenient to study the pointing fluctuation in
the x-z plane. If one measures only along a "slice" at
y =0, then the mean transverse k value of that field is

i fdr f—dx Es (x,y =O, r)(ajax )Es(x,y =O, r)

fdr f dx ~Es(x,y =O, r)~

We will refer to this as the "sliced-beam" k value, and to
Walmsley's definition, KT, as the "whole-beam" k vector.

To measure the beam-pointing angle relative to the
propagation axis defined by the pump laser, care must be
taken to separate the pointing fluctuation of the pump
laser relative to the laboratory frame. To achieve this, we
have measured the relative beam-pointing angles of two
Stokes beams generated from the same pump beam in
different portions of the hydrogen gas cell. Two-beam in-
terference can be used for this purpose because the
periodicity of the interference pattern is determined from
the difference of the transverse components of the
Stokes-beam wave vectors. By splitting the laser pulse
into equal halves to pump the Raman medium, two in-

dependent Stokes beams with nearly fixed relative orien-
tation can be generated. The two beams are combined in
an interferometric setup similar to a Mach-Zehnder inter-
ferometer to allow measurement of the single-shot in-
terference patterns. The statistical fluctuations of the
beam-pointing angles measured in this manner are stud-
ied for various Fresnel numbers of the interaction
volume.

It is found that the Stokes-beam propagation angle

pulse will be presented here. This complements previous
treatments of transient, 3D SRS that dealt with large
Fresnel number cases and did not provide analytic solu-
tions for the Stokes field [22]. The theory of SRS
developed in this paper using biorthogonal eigenmodes is
applied to calculate the statistics of the beam-pointing
angle using a formalism first developed by Walmsley for
orthogonal modes [10] and extended here for biorthogo-
nal modes.

Walmsley defined the beam-pointing direction via the
mean, transverse propagation vector for a single pulse:
KT=(KT)„e„+(KT)~e~,where the x component is
given by

i —fdr f dx f dy Es (r, r)(B/Bx )Es(r, 1)
(KT)„—= fdr f dx f dy Es(r, r)~

(la)

Auctuates on the order of the diffraction-limited angle for
Fresnel number equal to five, and less for smaller Fresnel
number. This results because the number of (biorthogo-
nal) transverse modes having positive gain scales approxi-
mately linearly with Fresnel number F. This scaling is a
result of gain guiding, and contrasts with the F scaling
familiar in the free-space case. Reasonably good agree-
ment between the data and the theory based on biorthog-
onal modes is found.

II. EXPERIMENT
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FIG. 1. Apparatus for generating two independent Stokes
beams which are combined to produce an interference pattern,
whose spatial frequency is indicative of the relative angle be-
tween the two beams. Interference patterns of Stokes light and

pump light are recorded on a CCD camera.

The apparatus used to generate two independent
Stokes fields and single-shot interference patterns is
shown in Fig. 1. The linearly polarized pump-laser pulse
is split at BS1 into two equal-amplitude beams and sent
into the 1-m-long Raman cell containing hydrogen gas at
40 atm. The two beams are 1 cm apart, nearly parallel to
each other, and their intensity is equal to each other to
within 0.2%. A metal divider is inserted between the two
beams in the Raman cell to ensure two independent in-
teraction volumes. The zero-point motion of the mole-
cules in one interaction volume is not correlated to those
in the other volume [23]. Therefore, for Stokes light ini-
tiated from quantum noise, the two Stokes fields are sta-
tistically independent, even though they are generated
from the same pump pulse. The two output beams are
combined on beam splitter BS2 at a nominal angle of 1—3
mrad to form interference patterns for both the Stokes
light and the pump light. These patterns are viewed sep-
arately using the dichroic mirror DC and colored-glass
filters FL1 and FL2. The lenses L2 and L3 image the
light from near the output face of the cell onto the cam-
era, so the fringes observed are originated from the near
field of the Raman-amplifier output.

The spatial profile of the pump-laser beam is controlled
by collimation using a pair of lenses indicated as L 1. The
Fresnel number of the interaction volume, which is
defined to be the cross-sectional area of the pump beam
divided by the Stokes wavelength and interaction length
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(F=ma, &2/AsL), is varied from 1.1 to 4.3. For each
Fresnel number, the beam spot sizes are measured for
several positions along the center axis of the Raman cell.
For the smallest Fresnel number, corresponding to a
beam waist (half-width at half-maximum intensity) a&&2

equal to 0.49 mm near the center of the cell, the spot ra-
dius at 20 cm from the cell entrance is approximately 6%
larger than the beam waist, while the spot corresponding
to a waist of 0.97 mm, the beam radius at either end of
the Raman cell is no more than 8%%uo larger than that at
the cell center.

The laser pulse is produced by a mode-locked, Q-
switched, and cavity-dumped, neodymium-doped yttrium
aluminum garnet (Nd:YAG) laser [24], and is amplified
at 10 Hz and frequency doubled to yield a 532-nm pulse
with duration (full width half maximum, FWHM)
v.

L =300 ps and energy up to 6 mJ. The steady-state gain
coefficient at 40 atm for the Q (1) vibrational transition in
H2 is 2. 5 X 10 cm/W [25]. The SRS is kept well below
saturation (conversion efficiency ~ 10 ) to allow a sim-
ple interpretation and modeling of the quantum origin of
the beam-pointing fluctuations. The duration of the
Stokes pulses is measured with a streak camera to be
~z =170 ps as shown in Fig. 2. The collision linewidth of
the Q (1) transition at this pressure is I =6.5 X 10 rad/s
[25]. Because I rs = l. 1, the SRS is transient, in the
high-gain but unsaturated case. This guarantees that the
phase of the Stokes pulse, although random from shot to
shot, does not drift during a given pulse, allowing obser-
vation of high-contrast interference fringes [26].

An example of the single-shot spatial interference pat-
terns recorded by the charged-coupled-device (CCD)
camera is shown in Fig. 3(a). The upper half is a picture
of a Stokes interference pattern, the lower half is the in-
terference pattern of the pump field. Each interference
pattern is a single realization of the flux-density distribu-
tion J(x,y), which is the intensity integrated over the
duration of the pulse. Figure 3(b) shows the single-pixel-
wide flux density J (x) at some fixed y coordinate. To col-
lect a suSciently large number of data samples, we store
only a two-pixel-wide flux-density distribution near the
center of the pattern (y =0) for each realization, along
with the pump pulse energy. Figure 3(c) shows the two-
pixel-wide flux density recorded for 128 successive reali-
zations, arranged vertically one after another. Fluctua-
tions in the depth of modulation and locations of the
fringe maxima are easily observable for the Stokes data,
while the pump fringes are quite stable, limited only by

(a)
r ~ p

1
P F

(b)

FIG. 3. Single-shot interference patterns of Stokes light and
pump light recorded by the CCD camera: Stokes patterns in
upper half, pump patterns in lower half (a) interference patterns
from a single shot, (b) flux density J(x ) obtained from a single-
pixel-wide trace of (a), (c) two-pixel-wide samples of interference
patterns from 100 successive shots.

k2

fk dk kiJ+(k)i
k =

I„'dkIJ,(k) I'
I

(3)

interferometer jitter. To minimize the effects caused by
variations in the pump energy and by the mechanical in-
stabilities, simultaneous measurements of the Stokes and
pump interference patterns, along with the pump pulse
energy for each shot, were undertaken. For each Fresnel
number, several thousand realizations of the Stokes and
the pump interference fringes were recorded over some
range of the varying pump energy values. Using the
pulse-energy information of the pump, data ensembles
were constructed from samples that correspond to nearly
constant Stokes gain, typically by restricting the energy
of the pump pulses to be within + l%%uo of some average.

Two examples of the single-shot flux density exhibiting
fluctuations in the fringe spacing are shown in Fig. 4 to
illustrate fluctuation in the fringe spacing, resulting from
the beam-pointing jitter. To obtain the relative beam-
pointing angle of the two beams from each realization of
the flux density J(x), a fast Fourier transform is applied
to J(x). The Fourier spectrum J(k„)has three com-
ponents, a dc peak, a component on the negative
angular-frequency side J (k„),and a component on the
positive angular-frequency side J+(k„).The absolute
square of the positive component is averaged over a
sufficiently large angular-frequency range (k„kz)to ob-
tain a mean spatial frequency for the fringe on a single
shot:
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FIG. 2. Temporal profile of a Stokes pulse.

FIG. 4. Two examples of single-shot interference fringes of
Stokes light. Different periodicities are observable, indicating
fluctuations of the relative beam-pointing angle.
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Q(r, r) = —ill*, Et (r, r)Pz(r, r), (4b)

0.2-

0.0
0

Fresnel number F

FIG. S. Triangles show measured standard deviation of the
mean transverse k value. The error bars are lower-bound esti-
mates of variations due to digitization, pump fluctuations, and
statistical errors. The solid curve shows predictions from the
biorthogonal-mode model that incorporates excess-noise effects,
from Eq. (43).

This quantity contains information about the beam-
pointing fluctuation in the x direction only, and we argue
that it is essentially equivalent to k„=E,—E 2, where

E„iand K„2are given by Eq. (2) for each beam separate-
ly. This is clearly so for plane waves, and will be dis-
cussed in more detail in Sec. IV.

Because the two beams are statistically independent,
we can obtain the standard deviation EE„ofthe trans-
verse k value of a single beam via EE„=5k„/&2,where
Ak is the standard deviation of k, from the two-beam
measurements. The quantity EE„a,zz /~ is plotted
versus Fresnel number in Fig. 5. The plotted quantity is
equal to the standard deviation of single-beam-pointing
angle divided by the difFraction-limited angle defined by
the pump-beam aperture with radius equal to a &&2. Each
data point, shown as a triangle, corresponds to a data set
with between 300 and 700 measurements and steady-state
gain coefficient goL having a precise value (+1%) some-
where in the range from 33 to 37. The theoretical predic-
tions of the fluctuations of the sliced-beam pointing angle
are shown as a solid line. Before proceeding to discuss
the significance of the experimental results, we present
the theoretical treatment of transient 3D Stokes genera-
tion and the statistics of the beam-pointing angles.

where the Stokes field operator is
Ez(r, t)exp(ikzz ic—orat)+H. a., the nonresonant medium

polarization field at the Stokes frequency is proportional
to EL(r, t)Q(r, t)exp(ik&z ice&—t)+H.a., the classical
pump-laser field is EL*(r,t)exp(ikLz ice—t t)+c.c., and

Q(r, t ) is the slowly varying envelope of the medium exci-
tation (in our case molecular vibration) oscillating at fre-
quency co2, =col —

co& and propagating with wave number

kL —kz. Vz- is the transverse Laplacian. The equations
are written in terms of the local, or retarded, time
z= t —z Ic. Group-velocity dispersion is neglected. De-
phasing of the medium excitation is also neg1ected when
the transient condition is met [27]. The coupling con-
stants can be expressed in terms of the molecular polari-
zability derivative Ba/Bq as I~*, = [m/(mh'co2, )]' (Ba/Bq )

and ~2 =NANgK&/c, where m is the reduced mass of the
vibrational mode. The boundary conditions are that the
Stokes field is localized around the z axis, and that it is
equal to the vacuum, or free, field at z =0. The polariza-
tion operator is initially 5 correlated in space,

where N is the molecular density, and ~=0 represents an
instant in local time just before the arrival of the laser
pulse at the points r„r2in the interaction region. The
brackets indicate a quantum ensemble average.

Because there is little depletion or group-velocity
dispersion, the laser envelope is assumed to be factoriz-
able into a space-dependent part and a time-dependent
part,

EL (r, r) =EL (r)EO(r),

where EL(r ) is the spatial envelope of the Stokes field and

Eo(r) is the peak-normalized temporal envelope function,
i.e., Eo(r) has a maximum value of unity. Because the

beam is well collimated, the spatial envelope is assumed
to depend only on the transverse coordinates p=(x,y)
and will be written as EL (p). This allows simplification
of the time-dependent functions in Eqs. . (4a) and (4b)
with the use of the following substitutions:

(7a)

III. QUANTUM THEORY OF TRANSIENT,
3D STIMULATED LIGHT SCATTERING

(7b)

A. Equations of motion

Consider transient Stokes generation in a Raman medi-
um pumped by a pulsed laser field of finite duration and
transverse dimension. The operator Maxwell-Bloch
equations for Stokes generation in the paraxial approxi-
mation are [27,28]

The equations of motion then become

V z. +2iks Ez(r, T)= 2kzaz Et*(p)Q(r, T—),
Bz

Q(r, T)= i~*, EL (p)Es(r,—T) .

(8a)

V r +2iks Es(r, r) = 2ksaz Et'(r, r)Q(r, r—), (4a}
Bz

Equation (8b) can be formally integrated and substitut-
ed into Eq. (8a}, giving
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V r+2iks P s(r, T) i—ksI g(p) f dT'E s(r, T')g~ S S
0

V r+2iks —iksg'(p) 2 s(r) =4vrP(r },
Bz

(13)

2k—sazEI*(p)Q(r, O), (9)

where g(p)=2~*, 1~ziEL(p)i /I is the steady-state gain
constant and I is the collisional dephasing rate of the
Raman transition. Note that the product I g(p) is in-
dependent of I .

In the transient regime, the Stokes light is temporally
transform limited [6,27]. Therefore, to study the spatial
distribution of the Stokes field, one can concentrate on
the Stokes field near its peak intensity. Since the Stokes
field builds up rapidly and smoothly in time with nearly
the same shape for each pulse [6], the integral of the
Stokes field in Eq. (9) can be approximated by

mf Es(p, T')dT'=Ps(p, T )5T, (10)
0

where 5T is an effective buildup time for the transient
Stokes field, where T —= T(r ) is evaluated at the time

at the peak of the Stokes pulse as indicated in Fig. 2.
Since a transient Stokes field consists of a single temporal
mode, the average Stokes intensity profile is proportional
to the square of the temporal mode function [27,28].
Thus an expression for 5T can be obtained from the aver-
age Stokes intensity profile Is(r) by

f [rs(r )]'"iEo(r')i dr
gT 0

[Is(r ) ]'

The average Stokes intensity profile in the transient re-
gime can be obtained from both classical as well as quan-
tum treatments of SRS [27—29], which give in the high-
gain regime the proportionality

Is(r) ~
~
Eo(r) i

where g'(p)=2m~&~2'5TiEi(p)i is the effective transient
gain profile, 4rrP(r) = —2ksxz E 'I(p)Q(r, O} is an effective
noise term, and Es(r) =Ps(r, T ).

Equation (13) represents a steady-state-like equation
that describes the spatial propagation of a transient
Stokes field. The gain medium is described by the same
transverse profile as in the steady-state case, but with the
important correction that the peak steady-state gain con-
stant go=2K, K2 GAEL (0)i /I' is replaced by an effective
value go =2K, K25TiEL (0)i . The ratio go/go= I 5T &1
is consistent with the results of previous theories of tran-
sient SRS [27]. Thus by concentrating at the instant near
the peak of the Stokes pulse, one can use a steady-state-
like wave equation with an effective gain coeScient to de-
scribe the 3D propagation of a transient Stokes field in a
gain-guided medium. This approximation is valid when
the condition I ~L ((g0L is satisfied to ensure that the
Stokes light is transform limited in time.

B. Biorthogonal-mode solution

We have succeeded in putting the transient theory into
a form, Eq. (13), that is identical to the steady-state form
that has been used previously to describe gain-guided
amplifiers [15]. In particular London, Strauss, and Rosen
have applied the method of biorthogonal modes [15,20]
to the steady-state problem of spatial coherence [17].
Their solution for the Stokes field can now be adapted for
the transient case and applied to the problem of beam-
pointing fluctuations.

The Stokes field is expanded in terms of a set of eigen-
mode functions that satisfy the homogeneous, transverse
part of Eq. (13),

1/2
Xexp 2 2goLI f dtiEo(t)i

0
(12) 2 s(r) =g b„(z)g„(p), (14a)

where I is the linewidth of the Raman transition. Using
parameters of the experiment to calculate Is(r), and nu-

merically integrating Eq. (11) we obtain 5T=91 ps.
From Eq. (7b), this value of 5T corresponds to a time

duration 5r such that f, s, dtiEO(t)i =5T. Assuming
m

a Gaussian-shaped pump pulse, this gives 5~=93 ps,
which is indicated in Fig. 2. For a cross check, we ob-
serve that this value is close to the half-width of the
Stokes intensity profile shown in Fig. 2. The half-width
~&i2 of the Stokes pulse is defined such that 7 7&g2 is
the instant the Stokes intensity is half the peak value. In
the high-gain and highly transient limit,

T(r ) —T(r —r&iz}= [(ln2) T{r )/(2goLI )]'

which can be solved for r&&2. For the case that Eo(r) is a
step pulse, this reduces to r&&2=[{ln2) r /(2goLI )]'
where ~ here is the duration of the pump pulse. This is
in agreement with results of previous treatments of tran-
sient SRS [27].

Equation (9) now becomes

[Vr 'ksg (p)]g (p))= 2iksq P {p) . (14b)

fd'p A(p)4. (p}=5i. (15)

&(„—= f d p Qi'(p)g„(p)%5I„,8„„)1

dPg'P l P nP = qI+qn~mn

The operator-valued mode amplitudes b„{z}satisfy

(16)

(17)

b„(z) q„b„(z)=i a2—Q„(z,0),az (18)

The subscript n in the mode expansion is a shorthand no-
tation for a set of two indices n =(j,j'), and the eigenval-
ue is abbreviated as q„—=q~j'. The complex eigenfunctions
P„(p)are called biorthogonal functions and are different
from orthogonal functions. They have the following
properties:
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where

Q„(z,O)= fd p Q(r, O)EL'(p)g„(p) .

The solution for the mode amplitude is

(19)

b„(z,Tm ) =b„(z=0,T )exp(q„z)

+ ~ ~2 f dz' exp [q„(z—z') ]Q„(z',0) .

The mutual intensity of the Stokes field is, from Eqs.
(7a) and (14a),

&&s(ri r )~s(rz rm)) = IEo(r )I 2 P&& ~(z„T(r ))b„(z2,T(r )) )$1'(pi)g„(pz),
I n

(20)

where the shorthand notation is also used to denote
l=(k, k'), and the eigenvalue q&

——qkk. This convention
of n =(jj') and l =(k, k') will be used throughout the
rest of this paper. The correlation functions for the
b„(z,T~ ) are given by

CI„=(2Na)—5T/lr2 ) & b 1(z,r )b„(z,r ) )

=GI [exp[(qI +q„)z]—1]/(q& +q

where

Gi fd Pg (P)el (P)4 (P) .

(21)

(22)

The Stokes power emitted in mode n is proportional to
G„„fd p~g„(p)~

=G„„B„„Fro.m Eq. (14b), it is easily
shown that

G,„=(q('+ q„)&,„, (23)

so the power emitted per mode is proportional to B„„,
which is always greater than unity for biorthogonal
modes, but is equal to unity for orthonormal modes. This
leads to the interpretation that there are B„„photonsem-
itted into mode n in the noise initiation, compared to just
one noise photon emitted per mode from normal spon-
taneous emission that is described by modes which are as-
sociated with orthogonal functions. Thus B„„is referred
to as the excess-spontaneous-noise factor [14,15]. This
interpretation has been recently questioned by Deutch,
Garrison, and Wright [20]. They pointed out that while
the output power per mode is enhanced by the factor B„„,
the rate of spontaneous emission for any biorthogonal
mode is the same as that for the case of orthogonal
modes.

The nondiagonal matrix element BI„,which is the in-
tegral between $1'(p) and g„(p),is not a Kroneker 5.
The correlation function between mode amplitudes bI
and b„is likewise not Kroneker-5 related. Thus quantum
noise excites all the modes in a correlated fashion, rather
than in an independent fashion. This is consistent with
the fact that the photon-number operators for two dis-
tinct biorthogonal modes do not commute with each oth-
er [20]. The nondegenerate eigenvalues q„mean that
different transverse modes grow exponentially at different
rates. The eigenvalues are directly related to the overlap
between the mode functions and the transverse gain
profile. This leads to narrowing of the spatial profile, due
to the discrimination against the higher-order transverse
modes that are amplified less than the lower-order modes
which overlap more strongly with the gain profile.

C. Quadratic-gain approximation

The eigensolutions for Eq. (14b) with an arbitrary gain
profile can be obtained numerically. For a quadratic-gain
profile, which approximates that for a Gaussian profile
for regions near the center axis, the eigenfunctions are
well known [17,20]. The quadratic approximation treats
the outer portion of the medium as purely lossy. This is a
reasonable approximation because the higher-order
modes occupying the outside portion of the medium have
practically very little gain.

Under the quadratic approximation, the transverse
gain profile g'(p) becomes

g'(p) =go(1 —p'/a') (24)

s(r, r ) =Eo (r ) g bjj'(z, r )p)(x)q,'(y) . (25)

The eigenvalue equation for the mode function in the x
coordinate is

d . , 1 x—iksg o
dx 2 a yj (x ) = 2i ksA& y—j(x )

(26)

and similarly for the y coordinate. The solution to Eq.
(26) is

iF )1/4

v'7r2Jj!a
X

exp — HJ (x /w),
2w

(27)

where H, (x/w) is the Hermite polynomial of order j,
F, =ksa go is an effective Fresnel number defined in
terms of the gain length instead of the interaction length,
and w =a/( iF, )'~ is the—complex beam radius. The
eigenvalue is given by

go 2j +2j'+ 1

e

(28)

where j and j' are non-negative integers.
The effective Fresnel number F, can be written as

(2na /AsL)(goL). The term 2ma /As is the Rayleigh
range of the Gaussian beam. For a well collimated laser

where a corresponds to the radius of the Gaussian laser
intensity transverse profile measured at 1/e of its max-
imum. Assuming azimuthal symmetry, the mode func-
tions factorize f„(p)=p(x)y'(y) and the field is given
by
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pk, =&(k —1)/k, pk

+ n/k pka+a* (29b)

where a=a and k j. A similar recurrence relation
applies for the case k (j.

The matrix element Gi„defined in Eq. (22} must be
evaluated properly to ensure that the equivalent noise in-

put has positive intensity for all modes. This can be
achieved by using the actual Gaussian gain profile instead

beam, the interaction length I. is shorter than the Ray-
leigh range. The term goL is the plane-wave gain
coefficient of the stimulated process. For a macroscopic
Stokes pulse that contains 10 photons, goL is around 20.
Therefore the effective Fresnel number F, is always much
greater than unity. The real part of the normalized ei-
genvalue 2q„/go for mode n decreases monotonically
with F, for higher-order modes, and the decrement is
proportional to I/(2F, )'~ . Only a finite number of the
spatial modes experience gain, i.e., those satisfying
Re(q„))0.

The matrix element BI„——
pk pk.j' can be evaluated

analytically with the help of the recurrence relation of
the Hermite polynomials. The matrix element

P„,= f" dx qk(x)q, (x) (29a)

satisfies the recurrence relation

a —a —2y„j=&(k —1)/k y„a+a'+2

+ n/k, yk —1,
' —1.

ca+a*+2
(30b)

The first four biorthogonal-mode functions in the
quadratic-gain approximation are shown in Figs. 6 and 7.
The higher-order mode functions increasingly shift away
from the center axis. The normalized modal gains
2 Re(q~o/gn ) for these modes are listed in Tables I and II.
[The eigenvalue q„=qn is associated with the function
g„(p}=tpj(x)pro(y}.] It is close to unity for the lowest-
order mode and decreases linearly for higher-order mode
functions as the overlap between these functions and the
gain profile becomes less. The area under the curve
~yj(x)~ increases for higher-order mode functions; this
rejects the fact that the excess-noise factor increases for
higher-order modes. The narrowing of the mode func-
tions due to increasing gain can be seen in Fig. 7.

The transverse profile of the average Stokes intensity,
calculated from Eq. (20) with y =0, is shown in Fig. 8.
The narrowing of the Stokes profile for higher gain is due

of the quadratic profile in Eq. (22). The matrix element

Glp p kjp k
' is given by matrix element

ykj
=f dx g'(x)lpk(x)lpJ(x),

which can be evaluated by

(a)

16-

1.2-
I cp0(x) I

0.8

1.2-
I cpl(x) I

0.8

0.4 0.4

0.0
0.0 0.5 1.0 1.5 2.0

0.0
0.0 0.5 1.0 1.5

(c)

2.0-
(d)

2.8-

1.5-
I cp2(x) I

1.0
I cp3(x) I

1.4

0.5 0.7

0.0 '

00 0.5

x/a

1.0 1.5 2.0
0.0

0.0 0.5 1.0

x/a

1.5 2.0

FIG. 6. The first four transverse biorthogonal-mode functions are plotted as a function of the normalized transverse coordinate
x/a for two different Fresnel numbers. The solid curves are for Fresnel number F=0.33, the dotted curves are for F=3.5. The
transient gain gQ is 22.
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TABLE I. The normalized modal gain 2 Re(q, o/go } for the first four mode functions with goL =22
and two different Fresnel numbers.

F=0.33
F=3.5

2 Re(qoo/go )

0.845
0.953

2 Re(q lo/go )

0.535
0.858

2 Re(q2o/go )

0.224
0.763

2 Re(q3O/go )

—0.086
0.668

to greater differential in the normalized model gain at
higher Stokes gain goL, which is shown in Table II.

D. Beam-slice description

where

k', j'
(34)

b,'(z, r )=g b,,'(z, r )pj'(y =0) . (31)

In terms of these reduced mode amplitudes, the Stokes
field is expressed in they =0 slice as

Es(x,z, r ) =Ec (~ ) g b j(z, r )y, (x) .
J

The mutual intensity becomes, in the y =0 slice,

(2 st(x„z,r )Es(x2, z, r })

(32)

fC2

2~ fiT
IEo(r )~'Xcl, mk(xi)V, (x2}

2%ir, 5T

Since we are interested in the beam-pointing fluctua-
tions in the x zplan-e (at y =0), it is convenient to define
reduced mode amplitudes

where Ckk. .' =—CI„. It should be noted that the one-

dimensional description expressed by Eqs. (32}and (34) is

distinct from a treatment of a wave equation that neglects
the y coordinate altogether.

IV. THEORY
OF BEAM-POINTING FLUCTUATIONS OF SRS

S(r, r) = E'(r, r) XH(r, r), (35)

where H(r, r) is the magnetic field. For a linearly polar-

The solution for the Stokes field given by Eq. (32) can
be used to calculate the statistics of the beam-pointing
angles. The direction of the flow of energy associated
with an optical field is described by the Poynting vector

2.0 .
(b)

2.0-

I q)0(x) I

1.0

1.5-
I q)I(x) I

1.0

0.5 0.5

0.0
0.0 0.5 1.0

x/a

1.5 2.0
0.0

0.0 1.0 1.5 2.0

(c)

3.00-

I y2(x) I

2.25-
I q)3(x) I

1 .50

0.6 0.75

0.0
0.0 1.0 1.5 2.0

0.00
0.0 0.5 1.0 1.5 2.0

x/a x/a

FIG. 7. The first four transverse biorthogona]-mode functions are plotted as a function of the normalized transverse coordinate

x/a for three effectiv gain values. The solid curves are for gA =4, the dotted curves are for gA =22. the dashed curves are for

g+ =40. The Fresnel number F is 3.5
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TABLE II. The normalized modal gain 2Re(q,.o/go) for the first four mode functions with I' =3.5
and three different effective gain values.

=4
goL =22
gDL =40

2 Re(qoo/go )

0.889
0.953
0.965

2 Re(q&o/go)

0.667
0.858
0.895

2 Re (q2o/go )

0.445
0.763
0.824

2 Re(q30/g0)

0.223
0.668
0.754

ized field propagating along the z axis, the electric field
vector can be written as

Es(r ~)=eEs(r, r)exp(~'ks~ i~sr) (36)

where e is the unit vector of the polarization of the elec-
tric field. The component of the Poynting vector trans-
verse to the direction of propagation is equal to

(37)

I Ig(x) I

It describes both the direction of the energy flow and the
magnitude of the energy flux.

For Raman generation, the fluctuation of the Poynting
vector is due to both the pulse-energy fluctuation and the
beam-pointing-angle fluctuation. The beam-pointing an-
gle associated with the Stokes field at the output face of
the Raman generator was defined by Walmsley to be
[(KT)„+(Kr)~]' /ks, where (KT)„is given by Eq. (la)
in the Introduction. It is proportional to the mean, nor-
malized, transverse Poynting vector. The normalization
by the pulse energy allows one to characterize the beam-
pointing angle for a single realization and determine its
statistics over an ensemble of realizations.

Walmsley's definition of the mean transverse k vector
given by Eq. (la) relates to the Stokes beam as a whole
(both x and y directions). Its statistics can be calculated
theoretically using the solution given by Eq. (25), and can
be measured experimentally by recording the spatial dis-
tribution (both x and y directions) of the Stokes intensity
for a number of realizations. In contrast, our inter-
ferometric technique measures the beam-pointing fluctua-
tions in the x-z plane, for a fixed value of y. The
definition of the beam-pointing angle corresponding to
this measurement is K„/ks, where K„is given by Eq. (2),

1.0-

and a slice of the Stokes field distribution at y =0 is used.
E can be expressed in terms of the complex mode am-

plitudes b J, appearing in Eq. (31). For purposes of sta-
tistical averaging of normally ordered correlation func-
tions, it is known that the operators b

' can be replaced
by a corresponding set of complex random variables I bj j
having Gaussian statistics [28,30]. This essentially fol-
lows from the thermal-like nature of unsaturated SRS.
For the set of mutually Gaussian variables, the joint
probability distribution P( [b~' j ) is given by

P([b'j )= f[—,exp —g g bk'Ck 'b'
rr det C'

(38)

where C' ' is the inverse of the correlation matrix C',
whose elements Ck =(bk*b&') are evaluated by Eqs. (2l)
and (30b). The transverse k value K„then becomes

gb! 'bjDk
J

g bk" b,'8
J

where B„=P„is given in Eq. (29a), and

dD„= i dx q—rk(x) tp, (x),

(39)

(40)

(4l)

where the characteristic function is, using matrix nota-
tion,

which can be evaluated analytically for the quadratic-
gain eigenfunctions.

The probability density for finding E„having a value
E' is

P(K„')=(5(K„—K„'))= fdgexp( i'„')—(e "),

0.5-
(e "&=f exp ig P(b},ig'K„db . b Db

b Bb
(42)

0.0
—1.5 —0.9 0.3 0.9

I

1.5

X/ci

FIG. 8. The transverse profile of the average Stokes intensity
at y =0 for two difFerent transient gains at Fresne1 number 3.5:
solid curve is for transient gain goL, =22, and dotted curve is for
gA

and f d~b/rr is the shorthand form of gj. ( f d b~'/rr)
The probability distribution function, after some algebra-
ic manipulation, is found to be (see Appendix)

P(K„')= 1

det(C)det(8 )

a
2~ g(ig'K„')

det(C '8 '+i gDB ' i gK„'I)'—
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V. COMPARISON OF THEORY AND EXPERIMENT

Because the quantity k„[Eq.(3)] measured by the
two-beam interference technique is not identical to that
defined as K„i—K,z in Sec. IV using Eq. (2), we sought to
check how closely these two quantities agree theoretically
before comparing to the experiment. Furthermore, be-
cause the numerical computations leading to AE are
rather complicated, we sought an alternative way to cal-

0.8 ~

I'(&x' )

F=0.74
F=1 .84
F=3.5'I

where I is the identity matrix. The matrices 8, C, and D
are all Hermitian, the matrix elements Bk =P„,and Ck~,
Dk are given by Eqs. (29b), (34), and (40).

The integral in Eq. (43) can be numerically evaluated
to determine the probability density P(K'). For an in-

teraction region of moderate Fresnel number, only a
finite number of the eigenvalues have q„apositive real
part. This makes numerical evaluation of P(K,') using
Eq. (43) relatively manageable by neglecting all the
nonamplifying modes.

The probability density function P(K„')for transverse
k value is plotted in Fig. 9 for three dNerent Fresnel
numbers. For a small Fresnel number, F=0.74, the
lowest-order mode dominates over all the higher-order
modes. This is due to the relatively large decrement of
the normalized modal gain, 0.21 (see Table I), and the
high effective gain value gQ of 22. The mode occupation
for the lowest-order mode is found to be greater than
0.95, and this is rejected in the sharply peaked probabili-
ty density function shown in the solid curve. As the
Fresnel number of the interaction region increases, the
modal gain decrement becomes smaller. The presence of
the higher-order modes becomes more important. This
leads to the broadening of the probability distribution
and larger beam-pointing fluctuations. Thus the beam-
pointing fluctuation is caused by the presence of many
spatial modes that are excited with random, but correlat-
ed, amplitudes and phases.

Figure 10 shows as a solid curve the standard deviation
hE, of the transverse k value calculated using the proba-
bility density P(K„')in Eq. (43). As expected, the in-

crease of AE with Fresnel number results from the in-

creasing number of modes contributing to the distortion
of the field wave front.

0.6-

x +9
0.4-

0.2-

culate AE, as a check on the accuracy of our method.
Both of these checks were accomplished by carrying out
numerical simulations of the experimental quantity k„.
We generated random realizations of two independent
Stokes fields by using Eqs. (32) and a random-number
generator to simulate the [b') coefficients, using Eq. (38)
as the probability density. We then calculated the result-
ing interference pattern and treated it in identical fashion
to an actual experimental pattern, i.e., calculated k, from
Eq. (3). In similar fashion to the experiment, we repeated
this procedure several hundred times to obtain the stan-
dard deviation b,K„=5k„/&2,and the results are plot-
ted in Fig. 10 as the dashed curve. The agreement with
the theoretical result in the solid curve is satisfactory, in-
dicating that the theory is likely free of numerical error,
and that the theoretical and experimental quantities of
study are essentially the same.

The solid curve in Fig. 5 is the standard deviation bE
of the transverse k value calculated using the theoretical
probability density function P(K„')in Eq. (43). All pa-
rameters in the calculation are taken to be equal to those
measured. While the trend of the data and theory agrees,
there is absolute agreement only at the large Fresnel
numbers. The systematic disagreement at low Fresnel
number is likely caused by the limited dynamic range of
the data-collection instrumentation, which was limited by
noise at the low-intensity end and by camera saturation
at the high end. This biases the ensemble for which data
can be collected. Simulation studies support this can-
clusion [31]. Another potential source of disagreement is
the use in the theory of a parabolic gain profile rather
than the actual profile.

Fresnet number F

FIG. 10. Standard deviation of the mean transverse k value
K„'vs Fresnel number. The solid curve is calculated from Eq.
(43). The dashed curve is calculated from numerical simulations
of the two-beam interference experiment using Eqs. (32) and (38)
to generate the field and the same procedure involving Eq. (3) as
that used to analyze the two-beam experimental data. The ordi-
nate can be interpreted as the standard deviation of the beam-
pointing angle divided by its diffraction-limited angle.

0.0---
—1.g O. D 3.2

VI. COMPARISON
OF ALTERNATIVE DEFINITIONS

AND METHODS
FOR CALCULATING BEAM-POINTING

FLUCTUATIONS
FIG. 9 Probability density function of the mean transverse k

value K„' for the y =0 beam slice, from Eq. (43), plotted for
three different Fresnel numbers. The transient gain goL. is 22.

It is worth comparing the behavior of the be@m-

pointing angle for a slice of the Stokes beam, as measured
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0.6-

d, K 'ai/),
7L'

0g-

0.2

0.0 I I

2 3
Fresnel number F

FIG. 11. Standard deviation of the normalized beam-
pointing angle vs Fresnel number. The solid curve is calculated
using the single-slice definition, Eq. (2), of the mean transverse k
value; the dashed curve is calculated using the whole-beam
definition, Eq. (1a), of the mean transverse k vector (KT)„.
Both curves are obtained using the biorthogonal, gain-guided
modes. The transient gain goL is 22.

here, to that for the whole beam as treated theoretically
by Walmsley [10]. The method for calculating the beam-
pointing angle for the whole beam [defined by Eq. (la)] is
similar to that presented above for the case of a slice of
the Stokes beam. In this case, the matrix elements 81„,
C&„,and Di„are given by Bl„=Pk—JPk.j', Eq. (30a), and
D&„=Dk13k,.. The prediction of the standard deviation
of the beam-pointing angle versus Fresnel number for the
case of single-slice and whole-beam Stokes output is
shown in Fig. 11. The fluctuation of the beam-pointing
angle for a beam slice at y =0 tends to increase more
than that of the whole beam as the Fresnel number in-
creases. The beam-pointing angle for the whole beam can
be loosely viewed as an average of the single-slice beam
angle over different y coordinates. The beam-pointing
angle for a realization can be positive or negative, and for
large Fresnel number the fluctuations of the beam angle
of different slices are roughly independent. As the
Fresnel number increases, the number of different slices
also increases, and the fluctuations of the beam-pointing
angle averaged over many independent slices will be
smaller than that of a single slice.

The beam-pointing fluctuations predicted by the
biorthogonal-mode solutions of the Stokes field should
also be contrasted to that predicted by the orthogonal-
mode solutions of the theory by Raymer et al. (RWMS)
which treats the SRS problem for a uniform gain profile
[27]. The standard deviation of the x component of the
normalized k vector for a whole beam using the solutions
of the RWMS theory was calculated by Walmsley
[10,32]. Figure 12 compares the whole-beam-pointing
fluctuations versus the Fresnel number as predicted by
the two theories. The biorthogonal-mode theory is ex-
pected to be a more accurate description. Three aspects
of these theories distinguish them: (1) the scaling of the
number of the positive-gain modes with Fresnel number
(see Sec. VII), (2) the correlations of the modes, and (3)
the strength of the noise in each mode. It is interesting to
note that with these different factors present the two
theories give results within 20% of each other.

a (iver)„ai/,

0.3—

0.2—

0.1

0.0
0

I

2
Fresnel number F

FIG. 12. Standard deviation of the x component of the mean
transverse k vector (KT)„vsthe Fresnel number as predicted
by the biorthogonal-mode theory of this paper and the
orthogonal-mode theory of RWMS. The solid curve is calculat-
ed using the solution of the field from the biorthogonal theory;
the dashed curve is calculated using the solution of the field
from the RWMS theory with orthogonal modes [10,32]. The
transient gain goL is 22.

VII. CONCLUSIONS AND DISCUSSION

The beam-pointing fluctuations of a Raman-amplifier
output have been measured using an interferometric
method. The agreement with the theoretical treatment
demonstrates that the beam-pointing jitter is caused by
quantum noise. The observed beam-pointing fluctuation
of light from transient SRS increases with increasing
Fresnel number, and at F=5 the fluctuation is about
50% of the diffraction-limited angle defined by the
pump-beam aperture. The increase in beam-pointing
fluctuations with increasing Fresnel number could have
significant implications in cavityless x-ray lasers, which
have dynamics similar to SRS, but usually have much
larger Fresnel number because of the shorter wavelength.
Such high-Fresnel-number experiments can further test
the validity of the theories.

A treatment of the three-dimensional, spatial propaga-
tion of transient SRS has been developed. The transverse
eigenmodes of a gain-guided Raman amplifier are
biorthogonal, and the mode amplitudes are consequently
correlated. This contrasts with the orthogonal modes of
the RWMS theory, which propagate in a free-space-like
medium, and are consequently independent. The
Gaussian-shaped gain distribution leads to a discrimina-
tion of modes, with those concentrated on the axis having
higher gain. This reduces the number of excited modes,
and thus reduces the beam-pointing fluctuations relative
to the case of a uniformly pumped volume.

The trend of growing beam-pointing-angle fluctuations
with increasing Fresnel number is due to the presence of
more spatial modes being excited simultaneously in the
interaction region. When the Fresnel number is small,
the lowest-order mode has an amplitude that is much
greater than the higher-order modes, due to its higher
gain. The beam-pointing-angle fluctuation is then deter-
mined predominantly by the ratio of the amplitudes be-
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tween the second strongest mode and the lowest-order
mode; this ratio is equal to exp[ —goL/(2F, ')' ]. As the
Fresnel number increases, the normalized modal gain de-
crement decreases as (2F,') ', and the contributions
from higher-order modes give rise to increasing fluctua-
tions in the beam-pointing angle.

It is worth noting that the number of spatial modes
having positive gain grows slowly, approximately propor-
tional to F. In contrast, the number of spatially coherent
(orthogonal) modes that occupy the output plane of a cy-
lindrical region of cross-sectional area ma, &2 and length L
is proportional to F, according to the RWMS theory
[27], which treats the 3D propagation in a uniformly
pumped Raman medium in a manner similar to wave
propagation in free space.

It should be pointed out that the beam-pointing-angle
fluctuation is about three orders of magnitude larger than
that observed for a stable-cavity laser [33]. It is related to
the enhancement effect of the spectral power output of

semiconductor lasers in that both originate from
quantum-mechanical uncertainty, and the eigenmodes
are shaped by the gain coupling of the medium and the
field.

APPENDIX

To obtain Eq. (43), Eq. (41) can be written as

P(K')=(b B b5(K'b B b bD b—)) . (A 1)

Using the properties of the 5 function, Eq. (Al) becomes
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P(K„')= 1 8
2m ()(i'' )

fdic exp( igb D b—+i'„'bB b) (A2)

Substituting Eq. (38) into Eq. (A2), the probability density function becomes

d bP(K„')=,J exp( btC' —'b) Jdg exp( igbtD —b+igK„'btBb) . (A3)

Exchanging the order of integration and rearranging the
terms in the argument of the exponential function, Eq.
(A3) becomes

1 1

2~ det(C')

Defining

T (g) =C'+i (D—i (K„'B,—

which is a non-Hermitian matrix, the identity

d bf exp I
—[b T(g )b ]]= 1/det[T(g)]

X I exp[ —b (C' '+i(D i(K'B—)b].

(A4)

holds for a certain class of the non-Hermitian matrix
T(g). This condition is satisfied for the matrices treated
in this problem. See [31] for more detail. This leads to
Eq. (43).
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