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Generation of harmonic radiation by hydrogen atoms in intense laser fields
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A variational principle for the time-dependent Schrodinger equation with an anisotropic Gaussian
wave packet as a trial wave function is used to calculate the nonperturbative response of a hydrogen
atom to a strong linearly polarized laser field. This method leads to equations of motion for the position
expectation value and allows one to study a classical (fr=0) limit as well as the first quantum correc-
tions. These corrections are shown to be responsible for a strong enhancement in the generation of the
third and fifth harmonic by the bound-state part of the electronic wave function for field intensities of
the order of 10' W/cm and a laser frequency corresponding to three-photon ionization. For a low-

frequency field a strong nonperturbative enhancement of harmonics of orders 9 to 15 is observed. It is

concluded that the plateau at even higher harmonics observed recently in experiment and in numerical

calculations is caused by the ionizing parts of the wave function that are not represented in the present
calculation.

PACS number(s): 42.65.Ky, 32.80.Rm

I. INTRODUCTION

Multiphoton ionization and the study of the generation
of harmonic radiation in intense laser fields has become
an active area of both experimental and theoretical
research [1]. Many theoretical approaches are based on
numerical solutions of the time-dependent Schrodinger
equation (TDSE) in coordinate space, typically using a
Crank-Nicholson scheme [2,3]. A complete treatment of
the ionization problem including the projection of the
time-evolved wave function onto discretized continuum
states has been performed within a one-dimensional mod-
el [4]. It has been shown that the numerical approach is
capable of describing the generation of high harmonics
[5], above-threshold-ionization spectra [6,7], as well as
ionization rates as a function of laser intensity.

The numerical solution of the TDSE requires large
amounts of computer time. Many-electron targets, such
as, e.g., Xe atoms, can be treated in an independent-
particle model such as the TD Hartree-Fock approxima-
tion. Due to the large computational effort involved in
solving the one-electron problem, however, calculations
were restricted to the frozen-core approximation in
which the inner orbitals are not responding to the exter-
nal field [5].

We have performed nonperturbative calculations,
which do not rely on a discretization of coordinate space.
The method is based on the TD variational principle
(VP), which has been used in the past to study atomic
responses to strong TD external fields [8,9]. Using the
TDVP with an isotropic Gaussian wave packet (GWP) as
a trial function, we studied the ionization of hydrogen
atoms in very intense laser fields [10]. This study was re-
cently extended by allowing the GWP to become aniso-
tropic during the interaction with the laser field. This ad-
ditional freedom in the GWP is particularly important at
intensities of 10' —10'6 W/cm . Ionization rates and
electron emission spectra are presented elsewhere [11].

This paper focuses on the response of the GWP to the
external field at intensities for which the GWP does not
ionize, but for which the generation of harmonic radia-
tion can be calculated from the oscillatory motion of the
packet.

Two different ideas about the generation of harmonic
radiation in a gas that is exposed to intense laser irradia-
tion have been developed. We follow those studies, in
which the response of an individual atom to the external
field is investigated [12,13]. An alternative classical mod-
el has been proposed for the limit of high intensities and
low frequencies of the laser field [14]. There it is shown
that harmonic generation can be produced by free elec-
trons released as bursts during tunneling at the time of
the peak in the external field. This latter model ignores
the bound-state contributions, which are the subject of
this study. Cornrnon to both approaches is the source of
the release of harmonic radiation: the strong oscillations
in the position expectation value imply accelerations that
lead to the emission of electromagnetic radiation.

The purpose of this paper is to clarify two issues. The
calculation of the response of a purely bound wave func-
tion to the external dipole field demonstrates up to which
order one can expect to generate radiation from this part
of the wave function alone. This issue is obscured in the
numerical approach to the TDSE. The second purpose is
to study systematically the importance of quantum
corrections to the Pi=0 limit for this problem.

II. THEORY

Starting with the TDSE for the hydrogen atom in a
linearly polarized external field in dipole approximation,
we have (atomic units fi=m, =e = 1 are used throughout)
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In the TDVP we replace this equation by the
equivalent action principle, which for a trial wave func-
tion normalized at all times reads

. aS= r, t i——H t r, t dt.
Bt

(2)

The anisotropic GWP to be used in the TDVP (2) con-
tains twelve real parameters:

P(r, t)=

3

exp —g [A (r —
q ) +ip r )

j=1
[(2n ) w, w2w3]"

(3)

where the parameters A~=(1 —2iu w )/4w~ ) are com-
plex valued.

The real-valued w are the width parameters associated
with the three Cartesian coordinates ( r, =x, r 2

r3 z ) and the uj are the components of the corre-
sponding expansion momentum. They measure the rate
of delocation of the GWP along the directions of the x, y,
and z axes. The q and p are the components of the posi-
tion and translational momentum vectors for the center
of the packet, respectively.

The interaction between the electron and the laser field
is given in dipole approximation for the linearly polarized
case by

w =u.j
fi

, + Q(q, w),
4w 3 Bwj

(5)

a av, „,
P, = Q(q w)

Bqj
'

Bq,

Here the fi dependence has been displayed explicitly in
order to indicate how the classical (trt=0) limit is ob-
tained in this calculation. The Q function measures the
potential energy of the trial GWP in the Coulomb field of
the nucleus and is given by

V;„,( t ) =eo(t )x sin(cot ),
E, sin'(mt/2t, ) if t &t,""'= E, ft t, .

L

eo(t) contains the peak amplitude of the dipole field Eo
as well as a form for the envelope of the laser pulse. We
use ten cycles to bring the laser field to full strength.

Using the trial wave function defined in Eq. (3) one can
calculate the Lagrange function appearing in the action
integral (2), perform the variations, and arrive at ihe fol-
lowing equations of motion for the variational parameters
(j=x, y, or z) [11]:

Q(q, w) = —f ds

2 2 2
1 qx qy qz

e p
—— + +

w~ +s wy +5 wz +s
[(w +s)(w +s)(w +s)]" (6)

Q(q, w)= ——erf
Z q

q V2w
(7)

For a linearly polarized dipole field oriented along the x
direction the two components q and q, will remain zero
at all times. Thus it is possible to compare the effective
potential appearing in the equation of motion for q„with,

where Z is the atomic number. The partial derivatives of
this integral can be expressed analytically [11] and were
calculated at each time step by means of a Rornberg in-
tegration [15]. The system of ordinary differential equa-
tions (5) was solved by either an extrapolation or the
Runge-Kutta method with variable time step [15]. The
initial conditions chosen at t =0 correspond to all
momentum parameters set to zero, i.e., pj=u =0, the
center of the packet located at the nucleus (q =0) and
the three width parameters are chosen such that the ini-
tial isotropic GWP minimizes the energy (wo
=3&2m/8=0. 94 a.u. ). This yields a ground-state energy
of E1,= —0.42 a.u.

At t =0 the GWP is isotroPic (w„=wr =w, =w ) and
the effective interaction potential (6) can be expressed «r
this case in terms of the error function [10]

e.g, the classical potential used in a one-dimensional
model atom studied extensively in the numerical ap-
proach [4,6,7]:

V„(x)=- Z
x +1

(8)

Figure 1 provides such a comparison and also indicates
how the effective Coulomb interaction is modified by a
change in the (single) width parameter. Changes in the
width parameters w, and w =w, will occur due to polar-
ization of the atom in the laser field. It can be seen that
an increase in the width parameter softens the interaction
in the vicinity of the Coulomb center, but leaves the
long-range behavior of the Coulomb interaction intact. It
is also evident that the short-range behavior of the model
potential (8) overestimates Coulomb binding, while our
GWP approach slightly underestimates it, which results
in a too strongly and too weakly bound ground state in
each model, respectively.

One ought to be careful in comparing potentials (7) and
(8). Q(q, w ) is an effective potential for the motion of the
position expectation value. Therefore, it is not a classical
potential, but contains contributions from averaging over
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FIG. 1. x component of the effective atomic binding force for
the q„motion for fixed choices of the width parameter
wp=w„=w„=w, in a.u. 0, wp=0. 8'0 wp=0. 94 6 wp=1. 5,
0, w0=3. Dashed line, one-dimensional model of Javanainen
et al. [4-7],Eq. (8).

We concentrated in our calculations on cases similar to
those treated by the numerical solutions of the TDSE.
The intermediate laser frequency case of w =0.2 a.u. was
chosen first, as we have obtained reasonable ionization
rates at 3 X 10 W /cm laser intensity while restricting
the trial state to the isotropic GWP [10). This calcula-
tion revealed that oscillations in the width parameter
built up gradually. This delocalization of the GWP re-
sulted in a softening of the effective potential for the q„
motion and led to much larger amplitudes and eventual
breakaway of the q„parameter from the origin.

A classical calculation results from setting A=O in the
system of equations (5). This is equivalent to the restric-
tion of the GWP to maintain a constant width. Such a
calculation does not result in ionization for this intensity,

the GWP.
The generation of harmonic radiation in nonperturba-

tive situations can be calculated from the time evolution
of the position expectation value, which is related to the
dipole matrix element. A detailed discussion is given in
Ref. [12]. The position expectation value of our trial
wave function is simply given by ( r( t ) ) =q( t ). Time
series of q„(t ) were recorded and a harmonic analysis was
performed using standard routines [15]. Overlapping and
nonoverlapping analysis of the power spectrum agreed
well in most instances and both are given in the graphs.
A more accurate way to calculate the generation of har-
monic radiation would be through the dipole correlation
function (r(t)r(t') ) (see [19]). It can be argued, howev-
er, that for the experimentally available results the factor-
ization of the correlation function represents a good ap-
proximation.

III. RESULTS

but q„oscillates with fixed amplitude for large times.
This is evident from the graph of the effective force act-
ing on q„due to the Coulomb interaction for the
w0=0. 94 a.u. case in Fig. l and the value of Eo
[Eo=QIo/I„(a.u. ) where I,=3.5 X 10' W/cm ]
Note that this (R=O) calculation is not to be confused
with a classical trajectory calculation, in which one
would propagate an ensemble of test-particle trajectories.
Many such trajectories do ionize [16] due to sequential
absorption of photons while a test particle is close to the
nucleus. This type of calculation would be termed (R=O)
semiclassical as it involves the use of classical statistical
mechanics in order to simulate quantum mechanics [17].
An analysis of ensembles of classical trajectories to com-
pute the generation of harmonic radiation has been per-
formed recently [20].

From our previous calculations [10,11] one can con-
clude that the GWP variational calculation with varied
width parameter is able to describe ionization due to tun-
neling at intensities large enough that tunneling occurs in
a coherent way [18] or where ionization by escape over
the potential barrier is possible. At lower intensities
more flexibility m. the wave fmation. is required m. order
to accommodate the possibility of small parts of the wave
function tunneling through the barriers that appear alter-
natingly to the left and right of the Coulomb center. It is
this range of intensities that we are interested in here, but
we are only aiming for a description of the oscillations of
the trapped part of the wave function and not of the ion-
ization process which occurs at a slow rate.

Figure 2 shows results for the time evolution of some
of the variational parameters in the anisotropic GWP cal-
culation for Io =2 X 10' W/cm and a turnon of the field

over 10 cycles. The q motion is dominated by oscilla-
tions with the external electric field, but a superimposed
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FIG. 2. Time evolution of the GWP parameters q„(t) (solid
line), w„(t ) —wp (short dashes), and w„(t ) —wp =w (t ) wp

(long dashes) for the case of co =0.2 a.u. and Ip =2 X 10' W/cm
after the laser field has reached full strength.
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motion with the third harmonic is clearly visible. The os-
cillations of the two independent width parameters w

and w~=w, shown as deviations from the initial value
wo=0. 94 a.u. carry twice the laser frequency, such that
the GWP is broadened at each peak of the external field.
Note that the w =w, parameter does not decrease below
wo while q passes through zero, but the w parameter
does.

In Figs. 3(a) and 3(b) power spectra are shown for the
generation of harmonic radiation in units of the external
laser frequency. The power spectra were generated from
recordings of the position expectation value of the GWP
over 30 to 60 cycles of the laser field after it has reached
full strength. The classical result (fixed width of the
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FIG. 3. Power spectrum for the case of co=0.2 a.u. and
Io=2X10' W/cm . Solid lines, nonoverlapping, dashed lines,
overlapping analysis [15]. (a) Calculation with frozen width pa-
rameter (u~=0, wo=0. 94 a.u.); (b) anisotropic GWP calcula-
tion.

GWP) in Fig. 3(a) displays a strong first harmonic and a
third harmonic suppressed by almost three orders of
magnitude. The fifth harmonic is weaker than the third
by four orders and, in fact, is barely visible in the noise.
A classical calculation with the potential (8)—which in
some sense can be compared to our effective potential
with fixed width —shows that even the third harmonic is
suppressed very strongly. This may explain the results
found from a solution of the TDSE with this potential,
which indicate a small presence of higher harmonics [5].

In Fig. 3(b) our results from the calculations with the
anisotropic GWP are presented. The third harmonic is
weaker than the first one only by slightly more than one
order of magnitude. The fifth harmonic is three orders
weaker than the third and is clearly vI.sible. The seventh,
however, is buried in noise. A mechanism for the strong
enhancement of the third and fifth harmonic is visible
from Fig. 2: the width parameters oscillate from their
equilibrium value at twice the laser frequency. As a
consequence the Coulombic restoring force is softened
while the packet is away from the center position. Such a
lowering of the potential barrier leads ultimately to the
fact that ionization can be achieved at a weaker external
field than in the classical calculation. At short distances,
however, the w, width parameter falls slightly below the
ground-state value giving rise to a stronger attraction.
This modulation of the restoring force, which acts in ad-
dition to the external sinusoidal laser field, is responsible
for the enhancement of the third and fifth harmonics.

These results can be compared to calculations where
the TDSE was converted to a set of radial equations that
were integrated numerically [13]. Harmonics up to order
23 were seen there, but the power spectrum is given only
on a relative scale. The third harmonic in this calcula-
tion is suppressed by almost four orders of magnitude
with respect to the first, but then the fifth comes in very
closely. This change in the relative strength of the third
harmonic could be related to the different turnon in the
laser field. We do observe an enhancement of orders 7 to
13 in our calculation if only five cycles after turnon are
used as opposed to the 40 cycles that were used for the
analysis shown in Figs. 3(a) and 3(b).

In Figs. 4(a) and 4(b) we provide power spectra for
co =0.05 a.u. and two intensities Io =5 X 10' and 2 X 10'
W/cm . Fast ionization of our model atom sets in at
IO=4X10' W/cm due to absorption of at least ten pho-
tons. Apart from an expected behavior of the strengths
of the harmonics of order 1 to 5 we observe a strong ap-
pearance of harmonics of order 9 to 15 superimposed on
a broad structure. This behavior is comparable to what is
observed in calculations of harmonic generation in Xe
atoms in similar fields [12]. In this case, however, such
structures and higher harmonics as well are due to the
response of a Spo orbital.

In Fig. 5 we show the behavior of the peak heights in
the power spectrum as a function of laser intensity Io.
The first and third harmonics demonstrate the I" depen-
dence as predicted by perturbation theory up to intensi-
ties of the order of 10' W/cm, beyond which they rise
more steeply. The fifth and seventh harmonics show such
a dependence at intensities larger than 10' W/cm . Very
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FIG. 4. Power spectra as in Fig. 3(b) for the cases of co=0.05
a.u. and Io =5 X 10' W/cm (a) and co=0.05 a.u. and
I =2X10' W/cm (b).

nonperturbative behavior is displayed by the higher har-
monics in the range 10' —10' W/cm .

Another point of interest is the region close to 4 X 10'
W/cm . For these intensities we notice that once the
GWP ionizes quickly, only the first harmonic is clearly
visible, i.e., the higher harmonics that rise steeply up to
this point do not persist once the packet is set free rapid-
ly. It will be interesting to study this regime in the nu-
merical approach and to track the dependence of the
strength of the harmonic peaks as a function of laser in-
tensity.

IV. CONCLUSIONS

We have studied in this work the generation of har-
monic radiation due to the acceleration that a H(1s) or-

bital experiences in a laser field. Equations of motion for
the position expectation value were derived from a
TDVP. It has been shown that the freedom to vary the
width parameters of the 6WP results in a strong
enhancement of harmonics of order 3 to 7 for fields where
three photons can ionize the atom. We do not see a pla-
teau in the power spectrum extending to very high har-
monics. This suggests that the conjecture that the ap-
pearance of very high harmonics in the numerical TDSE
calculations stems from the ionized parts of the wave
function is true. The generation of harmonic radiation
has been linked in the literature to the appearance of
above-threshold ionization peaks [6]. Our bound-state
wave function is not flexible enough to describe ioniza-
tion at these intensities, yet it predicts the generation of
harmonic radiation. The role of ionizing versus bound-
state parts of the wave function contributing towards em-

itted radiation should be studied in the future by numeri-
cal calculations in which the position expectation values
are calculated only over a finite range of space.

For low-frequency laser fields our calculation reveals a
broad structure in the power spectrum and a strong non-
perturbative enhancement of harmonics of order 7 to 15
at intensities between 10' and 10' W/cm . This is in ac-
cord with recent numerical calculations for Xe atoms
[12].

The one-electron calculations described above were
performed on a personal computer. Therefore, many-
electron calculations in an independent-particle model
without the frozen-core approximation are feasible and
are planned to be the subject of future work.
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