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Numerical results are presented showing the generation of gap solitons by external pulses incident
on a nonlinear periodic medium. It is shown that the required energy strongly depends on whether
the effective index of the periodic structure is well matched to the refractive indices of the surrounding

media.
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1. INTRODUCTION

Gap solitons were discovered in 1987 while studying
the properties of periodic media with a Kerr-like non-
linearity [1]. Since this discovery the time-independent
properties of gap solitons have received the most atten-
tion. This work has led to the understanding that sta-
tionary gap solitons can be created by sufficiently power-
ful cw radiation incident on a nonlinear periadic medium.
Subsequent fully time-dependent analyses have shown
that this picture is incomplete: An instability can occur,
preventing the system from ever settling in a stationary
state [2, 3]. Rather, if the incoming cw radiation is suf-
ficently intense, the systems exhibit self-pulsing, which
can turn chaotic at yet higher intensities.

In the present paper the dynamical properties of non-
linear periodic media are studied differently: The incom-
ing radiation is pulsed, and the pulse length is of the
order of the round-trip time of the system preventing it
from settling even if the instability were absent. Pulsed
inputs have been considered before [4], but there the am-
plitude and the phase of the pulse were carefully chosen
so as to generate a gap soliton with prescribed parame-
ters. In contrast, here the input pulse is not preselected
in this way—in fact, it is just a Gaussian with uniform
phase. It is especially this phase function which makes
the numerical simulations here quite different from the
results presented before [4] (this distinction is similar to
that observed in the switching characteristics of solitons
and of simple square pulses in nonlinear Sagnac interfer-
ometers [5]). If the peak power of the incident pulses is
low, then the periodic nonlinear stack behaves as if it was
linear and, since most of the energy falls inside the rejec-
tion band of the periodic structure, most of the energy is
reflected. For higher incoming powers a gap soliton can
form near the front of the system. It subsequently moves
to the back (cf. Ref. [2]), releasing most of its energy in a
single burst. As previously discussed by Winful [6], this
leads to significant pulse reshaping and, under suitable
conditions, to pulse compression.

In these investigations it is important that a signifi-
cant fraction of the incoming indeed does enter the sys-
tem and contributes to the formation of the gap soliton.
Similarly, to facilitate detection it is important that once
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a gap soliton has formed and has traveled to the back of
the system, a substantial fraction of the energy leaves the
periodic medium so that it can be detected. In this pa-
per special emphasis is given to these matters. Though
it is at present unknown what determines the parame-
ters of the gap soliton which is formed when an arbitrary
pulse is incident onto a nonlinear periodic medium, the
present work shows that the choice of refractive indices
and thicknesses of the outer layers are crucial in opti-
mizing the energy transfer between gap solitons and the
surrounding media.

The outline of this paper is as follows. In Sec. II some
key properties of linear periodic media are reviewed. In
Sec. III results of numerical simulations are presented.
The results from Sec. II are used here to understand the
energy transfer through the stack. Finally, the results
are discussed in Sec. IV.

II. PROPERTIES OF LINEAR PERIODIC MEDIA

In this section I review some of the key properties of
linear periodic structures. Such a geometry is shown
schematically in Fig. 1. It is true that such structures
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FIG. 1. Schematic of the periodic stack considered here.

The incoming energy comes from the left in this figure and is
thus incident through medium 2. As mentioned in the text.
using coupled-mode theory only the lowest Fourier component
of the index distribution is included. Note that @ is defined
in Eq. (3).
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have been widely studied, particularly in the context of
thin-film optics, where they are used in highly reflective
coating and in edge filters [7], as well as in that of in-
tegrated optics, for determining the properties of corru-
gated waveguides. For corrugated waveguides one often
has ny = ny = 7 (see Fig. 1). In addition, the modulation
depth is often small enough for coupled-mode theory to
be used, leading to analytic results for, say, the reflectiv-
ity. But in thin-film optics such simplifications are often
not allowed—indeed the modulation depth can be of or-
der unity [7], so that numerical techniques must be used,
and the n; often differ from 7.

Here I discuss a situation in which the modulation
depth of the stack is small enough for coupled-mode the-
ory to be used, but n; # ny # n. In addition, while the
stack is taken to have an integer number of periods, the
material and thickness of the first layer, and therefore
that of the last layer too, are not fixed. This is expressed
by the parameter ¢ in the distribution of the dielectric
constant:

e(z) = e+ AeU(z/d + ¢/27) , (1)

where the factor 27 was introduced for future conve-
nience, and, with N an integer, where the periodic step
function U is defined through

_J+lif—f+N<z<+i+N
U(z) = {—1 otherwise. &)

For convenience I also define
n= \/E_ (3)

(see Fig. 1). If ¢ = %w, the stack begins with a full
layer of the high-index material and, since the number of
periods is integer, ends with a full layer of the low-index
material. If ¢ = %ﬂ' this is reversed. For ¢ = 0, m, the
stack is symmetric with outer layers having either the
high index (¢ = 0) or the low index (¢ = 7). The choice
of the first and last layers is known to be of considerable
importance when 7 # nj,n, [7], but plays no role when
the index difference between the surrounding media and
the stack is small.

As mentioned, coupled-mode theory is used to ana-
lyze the properties of media with refractive index as in
Eq. (1). Since this is a first-order theory, only the lowest
Fourier component of the index distribution is included,
and coupled-mode theory is thus, strictly speaking, valid
only when the modulation depth is small. Nevertheless, it
is applied in Sec. IIT to a stack with An = Ae/2n = 0.30.
Though the validity of coupled-mode theory for such a
large modulation depth is questionable, it has the advan-
tage of yielding analytic results which are qualitatively
correct. Use of coupled-mode theory has the additional
advantage that it is equally applicable to thin-film stacks,
waveguides, and optical fibers.

To use coupled-mode theory the electric field is written
as

E(z,t) = [8+(;c,t)e--'(wot—kox)
+E-(z,t)e ot £ (y, z)+cc., (4)
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where kg = m/d, wq is the associated angular frequency,
and c.c. denotes complex conjugation. The functions
£+ are assumed to be slowly varying and are thus en-
velope functions. The function f(y,z) only depends on
the transverse coordinates and represents the particular
mode considered. In the case of a thin-film stack thisis a
uniform function. The modes for optical waveguides and
fibers are well known too [8]. Using standard techniques
one can find a set of coupled equations for the envelope
functions,

0E, .n0E,

—r it o} —ip -
+1 p +zc ey +kreE_+6EL =0,
()
0E_ a0 +ip _
—ig +zz T +keTPEL+6E- =0,

where the detuning § = k— ko, where k is the actual wave
vector of the light. The coupling coefficient & strongly
depends on the geometry. For a thin-film stack, for ex-
ample, it is given by

e (6)

T 4é

where the factor 4/7 is added to obtain the amplitude
of the lowest Fourier component of the distribution of
dielectric constant in Eq. (1). The coupling coefficients
for waveguides and fibers have been given, among others,
by Marcuse (8].

It is well known that periodic structures exhibit Bragg
reflection, which is associated with a band gap, or re-
jection band, centered around the frequency wg. Using
Egs. (5) it can be shown that the width of this band is
2kc/n. The emphasis in this section is on frequencies just
outside the gap. These are characterized by |§] > k—the
remaining frequencies (|6] < «) fall within the gap and
are strongly reflected. These frequencies are briefly dis-
cussed at the end of the section.

Taking the radiation to be incident through medium 2
(Fig. 1), one can use standard coupled-mode theory to
find the amplitude reflection rs outside the rejection
band,

ros_ + rireet¥sy + 15y + sge~ %

s =5 + r1e*¥sg + riresy + rospe=i¢ (7)
where the r; are the appropriate Fresnel coefficients
and

so = sin[sinh(¢)xL] ,
(9)

s+ = sin[sinh(y)kL £ )] .

Finally, the parameter ¢ determines the detuning; it is
defined through
cosh(y) = 6/k . (10)

In the form given here these equations are only valid
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for frequencies such that § > . But the reflectivity for
6 < —k can be found from those at |§| by replacing 3 by
% + im. Then s — —so and s3 — s3. To obtain results
for frequencies inside the the gap (6| < ), ¥ should be
replaced by —iv. I return to this below.

Equation (7) shows that if ny = n, = n, so that
ri = ry = 0, the reflectivity |rg|? does not depend
on ¢. Further interpretation of Eq. (7) is facilitated
by an effective-medium approach in which the periodic
stack is replaced by a uniform medium characterized by
a frequency-dependent effective index ng, optical phase
length A, and phase shifts ; upon reflection off the in-
terfaces with the surrounding media, leaving a geometry
similar to a plane-parallel cavity. Indeed, rs can then
be found from an equation which is very similar to the
standard expression for the reflectivity of such a system
[9]. The effective index ng of the stack is given by

n 1 l@_E — -.—1 +e eV (11)
E=%Edz "1-ewe? '

where E is a plane wave satisfying Eq. (5). For large
detunings ¥ > 1 [see Eq. (10)], and ng = f, as required.
The equivalent phase length is

A = kLsinh(y) . (12)

For large detunings, again, xsinh(¢) ~ é and the well-
known expression for the phase shift upon traversing a
uniform medium is obtained. Finally, the phase shifts
incurred upon reflection off the interfaces with the sur-
rounding media are given by

1+ retive ¥

e = —
1+ r;e~ive—¥

(13)

which, as expected, vanish for large detunings.

With these definitions the reflectivity rs in Eq. (7) can
be recovered from an expression which differs from that
for the reflectivity of a plane-parallel plate [9] only by
extra phase shifts ¢; and by the presence of a complex
conjugation (indicated by the star) in the denominator:

rh — ,Jlet(ZA—&p: +¢2)

s = 11— r’l(r'z)*ef(zﬁ—kpx+¢2) ’ (14)
where the ] are just the Fresnel coefficients
o= BEZ M (15)

ng+n;

Because of the similarity of Eq. (14) to that for a stan-
dard plane-parallel cavity, the reflectivity of the linear
stack is now more easily interpreted. The effective op-
tical phase A [Eq. (12)] of the stack, which is strongly
frequency dependent, results in fringes, which occur when
A goes through a cycle of 27. These fringes narrow with
increasing stack length L. The stack’s reflectivity also
depends on ng. If the n; = ny = ng, then both r} van-
ish, and the stack has the same index as the surrounding
media, resulting in a vanishing reflection, independent of
L. Clearly this can only occur if ny = np. This special
case is now discussed first.

As mentioned above, if ny = ny = ng, then the reflec-
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tivity of the stack vanishes. This condition can only be
satisfied if ng is real, which requires that ¢ = 0 or 7, and
that [see Egs. (10) and (11)]

(16)

where the top (bottom) sign applies when ¢ = 0 (7).
Note, again, that Eq. (16) does not depend on L since the
effective index of the stack exactly matches the refractive
indices of the surrounding media, leading to a suppression
of interface reflections [Eq. (15)]. Equation (16) shows
that for a given stack (¢ fixed) surrounded by media of
given refractive index the reflectivity vanishes either for
positive or negative values of §—the grating response is
thus asymmetric. Such behavior is well known in thin-
film optics, where it is used in the design of edge filters [7].
Note also that in the limit in which n; = 7 the reflectivity
minimum shifts to very large detunings leading to the
well-known symmetric response for a waveguide grating.
But for large index contrasts |6g| — «, and the reflectivity
vanishes at frequencies just outside the rejection zone.

To understand the behavior of the reflectivity at fre-
quencies just around &g it is not very useful to consider
Eq. (14), as it contains the rapidly varying fringes. Of
more interest is the envelope of the reflectivity, without
these fringes. To find the envelope notice from Eq. (14)
that if #{ = 75, = »' and the exponent equals unity, the
reflectivity vanishes. This implies that the envelope of
the reflectivity g can be found by setting the exponen-
tial factor equal to —1 in Eq. (14). This substitution and
the fact that ' is real then lead to

_ 27
T4 ()2

Substituting Egs. (10), (11), (15), and (16) into this ex-
pression shows that to lowest order the envelope of the
reflectivity R, is parabolic:

1 (6 -~ 60) 2
R, = 2 )
&

—] -1

K
with the parabola narrowing as 6g/k — 1 (recall that
the edge of the gap is at § = k). Thus if the embedding
media at the front and at the back of the system are iden-
tical, and if the stack is symmetric, the envelope of the
reflectivity vanishes at a frequency outside the central
rejection band. For large contrast ratios this frequency
is very close to the edge of the gap [Eq. (16)], and the
minimum is very narrow [Eq. (18)}, while for small con-
trast ratios the reflectivity vanishes far from the rejection
band, and this minimum is now very wide. As discussed
in Sec. III an intermediate situation is optimal for the
generation of gap solitons.

Now consider the situation in which the media at the
front and the back of the system have different indices of
refraction (n; # ng). It is now impossible to match the
effective index to that of both of the embedding media at
the same frequency. However, matching may be achieved
by adding a buffer layer with an optical thickness of \/4

TE (17)

(18)
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and refractive index \/ngn; (7). This is used in Sec. III.
Notice that if the stack is not symmetric (¢ # 0 or ) the
effective index of the stack is complex [Eq. (11)]. Proper
matching is then impossible with dielectric materials.

As mentioned the properties of the stack for frequen-
cies inside the gap can be found from the results pre-
sented above by replacing ¥ by —iy. This renders the
effective index and the optical phase length to be com-
plex (in the gap the field has exponentially growing and
decaying solutions). While matching to dielectric mate-
rials is impossible, the reflectivity inside the gap is found
to depend on the choice of the n; and ¢: On the side
of the gap closest to §p the reflectivity decreases; on the
other side it increases.

III. NUMERICAL RESULTS

Although the theory presented in the preceding sec-
tion strictly speaking only applies to linear systems, it
has been found to be useful in the analysis of nonlinear
stacks too. It shows a way to optimize the energy transfer
between the stack and the surrounding media, allowing
a minimization of the external energy required to launch
gap solitons and, once a gap soliton is generated, to de-
tect a substantial fraction of the energy it carries.

To understand why the linear properties of the stack
are important it is good to recall that gap solitons can
exist because the nonlinearity shifts the gap of the linear
periodic structure, so that certain frequencies are rejected
at low intensities, but transmitted at high intensities [10,
11]. The required intensity is minimized when the fre-
quency content of the incoming pulse, and therefore that
of the gap soliton, is close to the high-frequency (low-
frequency) edge if the nonlinearity is positive (negative)
since then the required shift of the gap is smallest [11].
Since gap solitons consist of frequencies which are inside
the gap at low intensities, but outside at high intensi-
ties, the stack’s response to frequencies close to the edge
of the gap is of particular importance. It was shown in
Sec. II that for these frequencies the indices of the stack
and the surrounding media can be matched. In the linear
limit, therefore, these frequencies more easily penetrate
the stack, so that less external energy is required for gap-
soliton formation. A similar argument holds when con-
sidering the opposite process: how to optimize the energy
transfer from an existing soliton inside the structure to
the surrounding medium when it reaches the back of the
structure. Again, the indices of the structure for frequen-
cies just around the gap should match for this process to
occur efficiently.

The influence of the index matching described above
is illustrated with two sets of numerical results. The first
set shows the power-dependent transmissivity to cw ra-
diation of a nonlinear stack. The second set of numerical
results show the transmission characteristics for incom-
ing pulses. The parameters for the stack used here are
identical to those of Cada et al. [13], who in recent ex-
periments studied the behavior of a periodic nonlinear
medium, but in a different context. Their stack has 30
periods, each period consisting of a layer of GaAs and
AlAs. They use 885-nm radiation, which is just below
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the band gap of GaAs. Though these choices may not
be optimal for studying gap solitons they are used here
for illustrative purposes. Though the refractive indices of
GaAs and AlAs differ significantly, coupled-mode theory
is used for analysis since the results presented are illus-
trations and since the use of a more general theory is not
expected to change the results quantitatively.

In the simulations to study nonlinear periodic media
the linear equations Eq. (5) have to be augmented. It is
well known [6] that in the presence of a Kerr nonlinearity
the coupled-mode equations read [cf. Eq. (5)]

08,  .nlOE, —ip
+1i F. -I—zc e +KkeTWE_ 4+ 6&4
+T|E412E4 + 2TE_ |26, =0,
(19)
06 n0E +ip
—i +zc B + KkeTEL + 6E_

+T|E_ |26 + 2T &4 %6~ =0,

where for a thin-film stack the nonlinear parameter T is
given by

47 n(®
r=tme (20)
where n(?) is the nonlinear refractive index (in m2/W),
and Z is the vacuum impedance (377 ). For waveguide
and fiber geometries I' is known as well [6, 12].

In the calculations to be presented the rejection band
is centered around A = 930 nm. Furthermore, ngaas =
3.59, naias = 2.97 [14], so that from Eq. (3), 7 = 3.295,
and the layer thicknesses correspond to an optical path
length of A/4. Since the stack consists of 30 periods, L =
4.3 pum and the round-trip time equals 94 fs. Further-
more, from Eq. (6), k = 1.27 um~! so that the grating’s
strength kL = 5.4. Finally, n(? = 43 x 10~3cm?/W
(15], giving T = +3.5 x 107'2mV~2. Since the nonlin-
earity is positive, gap solitons are most easily generated
near the high-frequency end of the rejection zone. The
frequency of the incoming radiation is therefore chosen
accordingly.

Figure 2 shows the intensity-dependent transmissivity
for radiation with a detuning of § = +107 THz, corre-
sponding to a wavelength A = 885nm, of the stack de-
scribed above. Since branches with a negative slope are
unstable against amplitude fluctuations, these have been
indicated by dotted lines. Figure 2 shows the transmis-
sivity for three different situations. The solid lines refer
to a stack with a GaAs substrate and cover. The fig-
ure exhibits a low-intensity branch which exists for in-
coming intensities below about 36 GW/cm?, and a high-
intensity branch which is perfectly transmitting at about
13 GW/cm?. It should be mentioned that previous work
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FIG. 2. Power-dependent transmissivity for the stack dis-

cussed in the text in three different situations. Dotted curves
indicate branches which are unstable against amplitude fluc-
tuations. Solid lines: with GaAs substrate and ¢ = 0. Since
n; = ny = # in this case, the dependence on ¢ is weak. Short-
dashed line: with air as substrate and cover, and ¢ = 0,
leading to poor index matching. In fact, the lower branch
extends to about 150 GW/cm?. Long-dashed line: with air
as substrate and cover, and ¢ = 7, leading to good index
matching: The stack becomes transmissive at relatively low
incoming intensities.

[2, 3] indicates that this upper branch may be unstable
against the formation of sidebands. Since n; = ny; = 0,
the linear properties are only weakly dependent on ¢
[see the discussion following Eq. (10)], and the reflectiv-
ity vanishes at frequencies far from the rejection band
[Eq. (16)]. The remaining curves give results for the
stack with air (vacuum) both as substrate and as cover.
Though this may be somewhat unrealistic, these curves
were added because they clearly demonstrate the impor-
tance of the parameter ¢. Equation (16) shows that
since n; = ny < 71, the reflectivity vanishes for fre-
quencies above the gap if ¢ = =, and below if ¢ = 0.
Since the frequency is near the high-frequency side of
the gap, these remaining curves show dramatic differ-
ences: If ¢ = 0 (short-dashed curve) the transmissiv-
ity is very poor, the low-transmission branch extends to
about 140 GW /cm?, while if ¢ = 7 (long-dashed curve),
only about 15GW /cm? is required to reach the high-
transmission regime.

Figures 3-7 show results of numerical simulations of
pulse transmission. These are of particular interest since,
at least with the presently available nonlinear materials,
most of the gap-soliton experiments would have to make
use of pulsed sources. In interpreting the results below
using the cw results presented above it is important to
keep in mind that for radiation inside the gap, the grat-
ing, in effect, has a high-quality @, so transients die out
very slowly on the time scale of a round-trip time. Since
for the results presented below the pulse length is only a
few round-trip times, the system does not get the time to
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settle in the steady states shown in Fig. 2. The required
intensities for gap soliton formation are therefore found
to be higher than the curves in the figure would imply.

All figures presented show the incoming (dotted lines),
reflected (solid lines), and transmitted (dashed lines) en-
ergy flows as a function of time obtained from a numeri-
cal simulation of Eq. (19) [16]. Since the quantities given
in the figures are energy flows and thus proportional to
n|€4|?, the area under the dotted curves (incoming radi-
ation) equals the sum of that under the solid and dashed
curves (reflected, transmitted radiation). The various
figures differ by the choice of ¢, by the choice of sub-
strate and cover, as well as by the possible application
of buffer layers to enhance the energy transfer. However,
the shape and length of the energy pulse, and the inten-
sity of the incoming pulse remain fixed: The incoming
pulse is Gaussian and has a full width at half maximum
(FWHM) of 200 fs, corresponding to 2.2 round-trip times
and has a peak intensity of 40 GW/cm?. Also, the de-
tuning of the center frequency of the pulse § = +107 THz
as above.

Figure 3 shows the quantities mentioned above as a
function of time when the stack has a GaAs substrate
and cover and ¢ = 0 and corresponds to the solid line in
Fig. 2. No index matching occurs and the energy trans-
fer between the stack and the surrounding media is thus
poor, resulting in a low value for the transmitted energy.

Figures 4 and 5 show the results for the stack with
air (vacuum) both as substrate and as cover (cf. Fig. 2)
and ¢ = 0,7. Just as in Fig. 2 these show dramatic
differences: If ¢ = 0 (Fig. 4) the transmittance is very
poor, while for ¢ = = (Fig. 5) a large fraction of the
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FIG. 3. Incoming (dotted line), transmitted (dashed line),
and reflected (solid line) radiation as a function of time for a
stack with parameters given in the text. The stack is embed-
ded in GaAs and no buffer layers are applied. In addition,
@ = 0. In this case only about 5% of the energy of the incom-
ing radiation is transmitted. Since n; = nz = @ in this case,
the dependence on ¢ is small.
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FIG.4. Incoming (dotted line), transmitted (dashed line), ~ [1G: 6. Incoming (dotted line), transmitted (dashed line),

and reflected (solid line) radiation as a function of time for
a stack with parameters given in the text. Though perhaps
not realistic, 1 = n, = 1 here. Furthermore, ¢ = 0. Only
about 0.2% of the incoming radiation is transmitted because
the reflectivity vanishes at the low-frequency side of the gap.

incoming energy is transmitted and appears in a burst
which is more intense than the incoming radiation. Also
notice the time delay: The transmitted radiation peaks
1% round-trip times after the incoming radiation does so,
indicating the slow energy transfer through the stack.
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FIG. 5. Incoming (dotted line), transmitted (dashed line),
and reflected (solid line) radiation as a function of time for
a stack with parameters given in the text. Though perhaps
not realistic, n; = n, = 1 here. Furthermore, ¢ = 7. Now
the reflectivity vanishes at the high-frequency side of the gap
resulting in an efficient energy transfer between the gap soli-
ton and the surrounding media (about 69% of the incoming
energy is now transmitted).

and reflected (solid line) radiation as a function of time for a
stack with parameters given in the text with a GaAs substrate
and an air cover, and ¢ = 7 ensuring index matching at the
air interface. In this case about 43% of the incoming energy
is transmitted.

It should be mentioned that results similar to those in
Figs. 4 and 5 are obtained in the (quite unrealistic) case
in which n; = ny = a2, except that the transmittance is
high if ¢ = 0 and low if ¢ = 7. The index ratio of about
3 appears to be optimal: Equations (16) and (18) show
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FIG.7. Incoming (dotted line), transmitted (dashed line),

and reflected (solid line) radiation as a function of time for a
stack with parameters given in the text with a GaAs substrate
and an air cover, and ¢ = 7 ensuring index matching at the
air interface. In addition, a buffer layer with a refractive index
of 1.9 and optical path length of A/4 was inserted between the
stack and the substrate. About 69% of the incoming energy
is now transmitted.
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that if the index ratio is made larger the reflectivity van-
ishes at frequencies closer to the gap, but this minimum
is too narrow to transmit enough of the radiation. But
if the index ratio is smaller, the reflectivity vanishes at a
frequency too far from the gap resulting in a small over-
lap with the frequency spectrum (though the minimum is
quite wide now). Of course these conclusions depend in
part on the pulse length and center frequency. Neverthe-
less, the optimum was found to be around 3 throughout.

I now consider the more realistic situation in which
the substrate and the cover differ: ny = 1 (air cover),
while n; = 3.59 (GaAs). As mentioned in Sec. II it is
now impossible to match the indices at both the front
and the back of the stack without a buffer layer. This
is clearly seen in Fig. 6, in which no buffer layers are
added and ¢ = 7, ensuring index matching at the front
of the system. It shows that though some of the incoming
energy is transmitted, it is less than in Fig. 5. The reason
is the index mismatch at the substrate interface. This can
be directly confirmed from Fig. 6: The reflected energy
exhibits two distinct peaks. These are due to the energy
reflected of the front surface and that reflected at the
substrate interface.

The energy transfer can be improved by adding a buffer
layer between the substrate and the stack. Since good in-
dex matching occurs with air, the effective index of the
stack is about unity, the index of the buffer should be
V1 ~ 1.9, and the optical path length A/4 [7]. The
result, with ¢ = 7, is shown in Fig. 7 and clearly demon-
strates an improvement in the energy transmission, and
an overall response which is almost identical to that in
Fig. 5.

IV. DISCUSSION AND CONCLUSIONS

It is clear from Sec. II that an analysis of the linear
properties of the stack is crucial in order to optimize the
energy transfer between gap solitons inside the structure
and the surrounding media. This is perhaps somewhat
surprising since solitons are profoundly nonlinear. How-
ever, as pointed out in Sec. III to lowest order the non-
linearity shifts the linear gap [11, 10], so that the linear
properties remain important. To achieve efficient energy
transfer it is of particular importance that the effective
index of the linear stack be properly matched to those of
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the surrounding media. In Sec. III this was accomplished
by an index ratio of about 3 and the proper choice for ¢.
It is, however, not clear at present how to make the best
choice. Apart from the stack parameters, one can also
vary the parameters of the incoming pulse. Most impor-
tant of these is the pulse shape, length, power, center
frequency, and, possibly, chirp.

While in all numerical examples in Sec. III the stack
was taken to be symmetric (¢ = 0, or ), this is of course
by no means required. For other values of ¢ the stack
is asymmetric, and according to Eq. (11) the effective
index is then complex. As mentioned, proper matching
with lossless materials is then impossible, so that energy
transfer between gap solitons inside the stack and the
surrounding media is never very efficient. Numerical sim-
ulations have shown that the results in general, and in
particular the transfer efficiency, are between those for
the two symmetric stacks. For this reason results for
asymmetric stacks were not presented.

The results in Sec. III clearly show pulse reshaping
and compression effects, particularly when a substantial
fraction of the incoming energy is transmitted. This was
earlier pointed out by Winful [6]. For incoming pulses
which are more powerful than in the figures presented in
Sec. II this compression becomes more pronounced, lead-
ing to a transmitted signal consisting of a single, very
narrow and intense peak. For yet more powerful pulses
both the reflected and the transmitted energy is concen-
trated in a number of different peaks. I expect to return
to this situation in a future publication.

In conclusion, I have shown that gap solitons can be
generated using external pulses which are incident on a
nonlinear periodic medium. In order to minimize the
required field strength it is important that the effective
index of the stack be properly matched to the refractive
indices of the surrounding media.
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