
PHYSICAL REVIEW A VOLUME 45, NUMBER 3 1 FEBRUARY 1992

Classical resonances in quantum mechanics
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%e study the role of classical resonances in quantum systems subjected to a periodic external force. It
is demonstrated that classical invariant vortex tubes determine the structure of Floquet states "cap-
tured" by resonances in the classical phase space. In addition, resonance quantum numbers are intro-
duced. The analysis of simple model calculations leads to a qualitative description of nonperturbative
phenomena relevant for the interaction of atoms or molecules with strong, short laser pulses.

PACS number(s): 42.50.Hz, 03.65.Sq

I. INTRODUCTION

In recent years, the experimental study of atoms and
molecules in strong laser fields has led to the discovery of
several exciting and unexpected effects as, for instance,
above-threshold ionization [1]and high-harmonic genera-
tion [2], which still are not completely understood. In
general, these phenomena occur when the laser field is so
strong that it cannot be regarded as a small perturbation
of the atom. For the theoretician, dealing with strong
laser fields is a diScult task, but taking into account the
fact that most experiments are performed with short laser
pulses, the situation appears even more involved: at the
initial stage of the pulse, the laser field is "weak, '* then
"strong, " and, finally, "weak" again. Also this switching
between different regimes of field strength can give rise to
essential and systematic effects, some of which we are go-
ing to discuss in the present work.

To this end, we will consider periodically time-
dependent model systems with a Hamiltonian of the form

H'(t) =H, +AH;„,(r ),
where Ho describes the unperturbed atom or molecule
and AH;„,(r) describes the interaction with an external
classical laser field of strength A, ; of course, A, changes
during the pulse.

On the classical level, even simple Hamiltonian systems
exhibit chaotic dynamics when subjected to a periodic
force; the question whether and how classical chaos
manifests itself in the corresponding quantum systems is
a subject of intense current research [3]. In this work, we
will explore connections between classical and quantum
mechanics which are important for strong laser physics;
however, we will focus on situations where the classical
dynamics is mainly regular even for large coupling
strength k.

zones of pleUollllnanL, ly regUlar wfiotion--in-the-- phase—
space of classical nonintegrable systems are found in "res-
onances" surrounding elliptic periodic orbits [4]. Gen-
erally, the magnitude of such a resonance increases with
increasing coupling strength and, if it is large enough, it
can support one or more quantum states.

For quantum systems like (1.1) which are periodic in

time, the relevant states are the Floquet states [5—8], i.e.,
the time-periodic eigenstates of the operator

%'=H' ia, , — (1.2)

i = 1, . . . , X (1.3)

1
(p dx Hdt)+ficom, —m EZ .

~N+1
(1.4)

In these formulas, T denotes the periodicity interval and
~=2~/T. The paths y, are topologically inequivalent
basis cycles of the first homology group of the vortex
tubes with Maslov indices indy;, whereas the path y&+,
extends along the vortex tubes in the t direction with
periodic boundary conditions. Basically, the conditions
4 3 se t the correct Quantized vortex tu es Eq. (1.4)-

then yields the quasienergy c. A detailed derivation and
discussion of these quantization conditions can be found
in Ref. [9]. The point which actually is of central impor-
tance in our context is the fact that, provided the classi-
cal phase space is regular, the Floquet states of time-
periodic quantum systems are associated with classical

with axed coupling strength A, . In a semiclassical ap-
proximation, these Floquet states can be obtained by
quantizing invariant time-periodic vortex tubes in the ex-
tended classical phase space [9]. If the unperturbed clas-
sical Hamiltonian 00 defines an integrable system, the
even-dimensional phase space [ (p, x ) ] is completely
stratified into invariant tori; the set of all trajectories
confined to such a torus forms a vortex tube in the ex-
tended phase space [(p,x, t)] [10]. If we further assume
that the system remains integrable under the periodic
perturbation AH;„,(t), the vortex tubes are periodic in

time and fill out the total extended phase space. Analo-
gous to the way the invariant tori of integrable auto-
nomous systems can be quantized semiclassically to yield
approximately the quantum eigenstates [11],a semiclassi-
cal quantization of periodic vortex tubes yields the Flo-
quet states. For a system with N degrees of freedom the
quantization rules are

1ndy;
fr (p dx Hdt)=2rrfi —n +
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invariant vortex tubes in a manner that is analogous to
the association of eigenstates of time-independent systems
with invariant classical tori [11]. Of course, in the gener-
ic case the system does not remain integrable under the
inhuence of the periodic perturbation, and the vortex
tubes no longer fill out the phase space completely. Nev-
ertheless, by the Kolmogorov-Arnold-Moser theorem,
"most" of the vortex tubes continue to exist at least for
small values of the coupling strength A, , and numerically
one finds indications of preserved vortex tubes even for
relatively large k. Our following model calculations will
show that an association of Floquet states with vortex
tubes is possible also for near-integrable systems.

Returning now to the problem of matter interacting
with strong laser pulses, we are thus led to consider the
following scenario: If the field strength A. is very low, the
classical resonances are too small to contain vortex tubes
which fulfill the semiclassical quantization conditions; the
Floquet states closely resemble the eigenfunctions of Hp.
However, with increasing A, , the main resonances support
more and more Floquet states, whose structures are then
governed by the quantized vortex tubes surrounding the
elliptic periodic orbits. Therefore those Floquet states
that are "captured" by resonances have to change their
structure quite significantly.

It is this change of structure and its implications for
laser pulse experiments that we will now investigate in
some detail. In the following two sections we will pro-
vide two experimentally accessible examples for the gen-
eral scenario outlined above. We will first study the in-
stantaneous dynamics at fixed field strength A, and defer
the discussion of laser pulses to the concluding fourth
section.

II. FIRST EXAMPLE: MOLECULAR VIBRATIONS
IN STRONG LASER FIELDS

In this section we consider the classical and quantum
mechanics of vibrations of a molecular bond in the pres-
ence of a strong laser field. As usual [12—16], we model
this situation by a periodically forced Morse oscillator:

Ho(I) =cooI
4D

(2.3)

with ~o =(2Dp /M); hence the angular frequency is

BIO copI0= —
COpBI 2D

(2.4)

When the Morse oscillator is driven with frequency co by
an external force, a resonance occurs if the winding num-
ber

(2.5)

takes on a rational value. Of course, those rationals
which are fractions of small integers yield the most irn-

portant resonances; the most prominent of them, there-
fore, is characterized by y = 1.

In contrast to the unperturbed system, the periodically
driven Morse oscillator (2.1) is classically nonintegrable.
Figure 1 shows a Poincare surface of section for
co=0.016015 a.u. and A, =0.05 a.u. (corresponding to a
photon energy of 0.436 eV and an intensity of 8.77 X 10'
W/cm ). The structures visible in Fig. 1 are determined
by the y =1 resonance: The two innermost closed curves
surround the elliptic fixed point and encircle areas of ac-
tion equal to 2M(n'+ —,') for n'=0 and 1, respectively;

they are sections of vortex tubes obeying the quantization
condition (1.3) with the plane t = T/4. The curve corre-
sponding to n'=2 has dissolved into a chain of higher-
order islands, and a further one which approximately
corresponds to n'=3 already exhibits sharp edges, thus
indicating a nearby stochastic layer which is the bound-
ary of the primary resonance. Since the area of this ellip-
tic island of mainly regular motion is roughly —,2M, one
expects the resonance to support four Floquet states.

Before investigating the quantum mechanics of the
forced Morse oscillator, a clarifying remark seems ap-
propriate: A classical trajectory with an initial value "in-
side" the resonance remains confined to the resonance for
all times, the invariant periodic vortex tubes persist per-
petually. In contrast, in quantum mechanics all Floquet

H"(p, x, t)=HO(p, x) AIJ,oxe " " sincot—,

where

2

Ho(p, x) = +D I 1 —exp[ —P(x —x, )]]

(2 1)

(2.2)
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The classical and quantum dynamics of a 5-kicked Morse
oscillator have also been investigated in detail recently
[17,18].

To be definite, we fix the parameters such that the
Hamiltonian (2.1) describes the local 0-H stretching
modes [19]of a H20 molecule interacting with a classical
laser field of frequency co and strength A, [20]:
M = 1728.53, D =0.1994, P= 1.189, x, = 1.821, and
pa= 1.634, x *= 1. 134 (all data are in atomic units).

After a transformation to action-angle variables (I,o),
the unperturbed classical Hamiltonian Hp can, for
bounded motion, be expressed as

I0-:
I ~

1
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FIG. 1. Poincare surface of section for the classical driven
Morse oscillator (2.1) taken at t = T/4 mod T. (co=2m /T
=0.016015 a.u. A, =0.05 a.u. )
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states are decaying. Analogous to the way the tunneling
decay in the presence of a static electric field is accounted
for by complex energies, the quasienergies are the poles
of the resolvent of % =H i "r)—, in the lower half of the
complex quasienergy plane [21]. Hence, because of tun-
neling effects, in quantum mechanics a perpetual localiza-
tion of probability is impossible.

The calculation of tunneling probabilities obviously is
beyond the scope of the simple vortex tube quantization
or, more generally, beyond that of a simple series expan-
sion in powers of fi. On the other hand, for very short
laser pulses the tunneling-type decay of the Floquet states
can be negligible. To verify that this is actually the case
for low Morse eigenstates, we have calculated the final
population of bound states and the dissociation probabili-
ty of the Morse oscillator (2.2) after the ground state has
interacted with a short pulse

T

A, =A, (t) =A,~,„sin (2.6)

of length t =0.474 ps. The results are displayed in Fig. 2
as functions of the peak field strength A, ,„.In this calcu-
lation, we have taken the continuum into account explic-
itly and have employed the same numerical method as in
a recent related study [22]. As for the classical surface of
section depicted in Fig. 1, the frequency again is
co=0.016015. For this frequency, the energy 4' of four
photons is exactly equal to the difference of the energy of
the ground state yo and that of the fourth excited state y4
of Ho. As can be seen from Fig. 2, the final occupation of
these two states alone accounts for most of the probabili-
ty, whereas the probability of dissociation is less than
10 3 even for A, ,„=O.10 a.u. (peak intensity is
3.51X10' W/cm ). Therefore, in the following quan-
tum calculations we will neglect the tunneling to the con-
tinuum altogether and restrict ourselves to the space
spanned by the bound states of Ho. In this approxima-
tion, the quasienergies are real numbers. Of course,
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FIG. 3. Projection of the innermost quantized vortex tube
(n'=0) shown in Fig. 1 to the [(x,t)] space.

neglecting the small imaginary parts of the actual
quasienergies corresponds to the neglection of the small
dissociation probabilities for very short pulses.

After this digression we now turn to the question
whether quantized vortex tubes surrounding an elliptic
periodic orbit do actually determine the structure of the
quantum mechanical Floquet states. Instead of calculat-
ing these states for fixed moment to of time and then em-

ploying a Husimi coherent-state representation [23], we
follow the example of Ref. [9] and compare the full Flo-
quet states u (x, t) directly with classical objects project-
ed to the [(x,t)] configuration space.

As an example, Fig. 3 shows a projection of the inner-
most quantized vortex tube for the y =1 resonance seen
in Fig. 1, whereas Fig. 4 exhibits the probability density
of the associated Floquet state. Obviously, the oc-
currence of a relatively high probability density at
t =3T/4 is connected to a classical "swallow tail" struc-
ture. In a similar manner, the Floquet state shown in
Fig. 5 is associated with the vortex tube which encloses
an area of 2m%(1+ —,

'
) at fixed time (see Fig. 6).

These two examples demonstrate that the spatiotem-
poral structure of Floquet states can, even for fairly low
quantum numbers, strongly be influenced by classical
vortex tubes. Of course, not all the Floquet states are as-
sociated with resonant vortex tubes in this way. For the
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FIG. 2. Occupation probability of the ground state yo (dot-
ted line), of the fourth excited state y4 (full line), and dissocia-
tion probability (dashes) of the quantum-mechanical Morse os-
cillator (2.2) after the system has interacted with smooth, short
laser pulses with the envelope {2.6). Before the pulses, the sys-
tern was in its ground state yo. (co=0.016015 a.u. ,
tp

=50X 2m /co=0. 474 ps. )
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I
u (x, t) I' of the Floqnet state as-

sociated with the vortex tube depicted in Fig. 6.
FIG. 8. Floquet state for which the bulk of probability fol-

lows the hyperbolic periodic orbit shown in Fig. 7 and oscillates
in phase opposition to the laser field.
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FIG. 6. Projection of the vortex tube with n'=1 to the
I(x, t) j space.

parameters chosen, we find four Floquet states for which
this association clearly holds, as expected from the mag-
nitude of the resonance. In addition, other classical
phase-space structures also leave their traces in quantum
states. For example, in Fig. 7 we exhibit the hyperbolic
periodic orbit belonging to the resonance in question and,
in addition, the trajectory of an orbit with initial value in
the thin stochastic layer surrounding the resonance. The
probability density of the Floquet state shown in Fig. 8
clearly follows the hyperbolic orbit: an indication of
"scarring" [24] in a state with low quantum number. It is
remarkable that for this state the bulk of the probability
oscillates in phase opposition to the laser field.

A Floquet state associated with a quantized vortex
tube is labeled by the quantum number n' which occurs
in the semiclassical quantization rules (1.3). This integer
n' characterizes the nodal structure of the Floquet state.
It is important to note that this "resonance quantum
number" n' is, in general, different from the quantum
number n the very same Floquet state would carry if all
states were labeled by Ho quantum numbers at A, =O and
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FIG. 7. A hyperbolic periodic orbit for the classical Morse
oscillator (2.1) and the trajectory of an orbit with initial condi-
tions in the stochastic layer surrounding the resonance depicted
in Fig. 1.

FIG. 9. Part of the quasienergy spectrum (quasienergies c, in
units of co) for the periodically driven Morse oscillator (2.1),
co=0.016015 a.u. Integers on the left margin are Ho quantum
numbers n, integers on the right are resonance quantum num-
bers n'. At A, =O, the energies of the states n =0 and 4 and,
moreover, those of n = 1 and 3 are exactly degenerate mod co.
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if this assignment of quantum numbers were continuously
extended to nonvanishing field strength. This renumber-
ing reAects the restructuring of states captured by classi-
cal resonances.

The reorganizing effect of a classical resonance is also
quite evident in the quasienergy spectrum: Figure 9
shows some of the quasienergies of the Morse oscillator
(2.1) as functions of the field strength A, , labeled by both
the Ho quantum numbers n and the resonance quantum
numbers n'. The quasienergies at A, =O are given by the
energy eigenvalues of Ho modulo co and are, therefore,
not arranged in any successive order with respect to n in
the Brillouin zone. However, after a certain transition re-
gime, the quasienergies of states associated with resonant
vortex tubes have organized themselves such that they
are nearly equidistant and actually ordered with respect
to n' in the strong-field regime.

This fact underlines the ordering inhuence of a classi-
cal resonance and, at the same time, provides a further
motivation for the introduction of resonance quantum
numbers. In a sense, the reordering of the quasienergy
spectrum of quantum systems in strong oscillating fields
is analogous to the transition from the Zeemann effect to
the Paschen-Back effect found for atoms in static magnet-
ic fields.

III. SECOND EXAMPLE: RYDBERG ATOMS
IN STRONG MICRO%'AVE FIEI DS

The parameters of experimentally accessible mi-
crowave fields are, of course, very different from those of
laser fields. On the other hand, a microwave amplitude
of only a few volts per centimeter is comparable to the
binding field exerted on a highly excited electron in a
Rydberg atom; in this sense, even microwave fields can be
"strong. " Rydberg atoms in microwave fields [25—28],
therefore, are promising candidates for an experimental
study of strong field dynamics.

In this section, we wi11 apply the concept of vortex-
tube quantization and resonance quantum numbers to a
highly excited hydrogen atom interacting with a mi-
crowave field. This system has been studied with great
effort both experimentally [25,29] and theoretically
[30—33] in recent years. A model that has been found to
yield even quantitative agreement with experimental data
is that of a forced "one-dimensional Hydrogen atom":

80
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FIG. 10. Poincare surface of section for the model (3.1) taken
at t=T/4mod T. {co=2.736X10 a.u. , /=9. 724X10—&o a u)
I and 8 are the action-angle variables of the unperturbed system
(3.2).

system, taken at t =T/4modT (T =2'/co). We observe
the primary resonance island surrounded by a zone of
connected stochasticity, the closed curves inside this is-
land again encircle areas of 2M(n '+

—,
' ).

Figure ll shows a projection of the innermost quan-
tized vortex tube, whereas Fig. 12 shows the obviously as-
sociated Floquet wave function. It is noteworthy that
this state with resonance quantum number n'=0 devel-
ops continuously from the Ho eigenfunction with n =72
when the field strength A, is increased.

Figures 13—15 show the Floquet states with resonance
quantum numbers n'=1, 2, and 3. These figures demon-
strate in a striking manner that it is the resonance quan-
tum number which contains the essential information
about the Floquet states. It is only consequent to regard
the state with n'=0 (Fig. 12) not as an excited state of
the Hydrogen atom but rather as the ground state of an
object with a size of about 10000 a.u. Correspondingly,
the states with n') 0 are the excited states of this object.

The following table shows which Ho eigenstates are de-
formed into which resonance eigenstates in the present
example:

with

H =Ho —kx singlet,

x~0

(3.1)

(3.2)

O
5

C3
C3
C3

10

In this case, the winding number y equals the "scaled fre-
quency" I u, where I is the action variable of the unper-
turbed classical Hamiltonian.

Let us choose co =2.736 X 10 a.u. (co/2' = 18.00
GHz) and A, =9.724X10 ' a.u. (5.0 V/cm). Figure 10
then shows a Poincare surface of section for the classical

FIG. 11. Projection of the innermost quantized vortex tube
seen in Fig. 10 to the [(x,t) ] space.
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FIG. 17. Probability density of a Floquet state which still
closely resembles an eigenfunction of the unperturbed system
(3.2). The parameters are the same as in Fig. 10.

magnitude. Nevertheless, these examples share a com-
mon physical ground: In both cases, resonances in the
classical phase space provide a key for understanding
quantum mechanics in the strong field regime. Classical
vortex tubes surrounding elliptic periodic orbits deter-
mine the structure of near-resonant instantaneous Flo-
quet states u (x, t) which, in turn, are no longer charac-
terized by the quantum numbers of the unperturbed sys-
tem but by the new resonance quantum numbers instead.
In addition, the first example shows that the association
of classical vortex tubes with Floquet states, although be-
ing a semiclassical concept [9], may also hold for very
low quantum numbers.

But in the case of short laser pulses we are not primari-
ly interested in the structure of instantaneous Floquet
states for a fixed field strength A., but rather in the solu-
tions of the time-dependent Schrodinger equation

IV. DISCUSSION AND CONCI. USIONS

In the two examples studied in the preceding sections,
the field strength A, differs by more than seven orders of

0—
I I

O. D 0. 5 1.0

FIG. 18. Probability density of a Floquet state in the transi-
tion region; parameters are the same as in Fig. 10.

that it is advantageous to investigate the structure of the
full Floquet states instead of considering merely the
eigenstates of the "one-cycle-evolution operator" [31,36]
that strongly depend on the phase of the external field
(see also the discussion in Ref. [33]). For example, a sec-
tion of the state with n'=0 (see Fig. 12) taken at
r =3T/4 hardly reveals the essential features; further-
more, such a section of the same state would appear com-
pletely different when taken at t =T/4. The strategy of
calculating the full Floquet states removes this arbitrari-
ness. It is also useful for the investigation of states which
are not dominated by a classical resonance: Figure 17
shows a Floquet state with n =66, which, at A. =5 V/cm,
still closely resembles the Ho eigenfunction, whereas Fig.
18 shows a Floquet state in the transition regime. Also in
this case, looking at the state merely at t =3TI4 might
be misleading because the concentration of probability at
this particular instant of time is not found at other mo-
ments.

(4. 1)

It is one of the major advantages of the Floquet picture
that it also allows for the investigation of this problem.
What connects a "static" analysis performed in terms of
instantaneous Floquet states with the dynamical problem
of laser pulses is the fact that the Floquet states respond
adiabatically to a variation of the field strength: If the
laser amplitude changes sufticiently slowly, the initial
state is shifted into the connected Floquet state [37].But
what "suSciently slowly" actually means in a given situa-
tion depends strongly on details. In our examples, the in-
stantaneous Floquet states are deformed from Ho eigen-
states for vanishing A, to resonance eigenstates at large
field strength. Correspondingly, in these cases the
characteristic pulse length t which still allows for ap-
proximately adiabatic evolution is considerably longer
than for nonresonant initial conditions where no such
change of structure is met. If, on the other hand, the
pulse length is shorter than this characteristic time, the
wave function P(t) can no longer follow the instantane-
ous Floquet states adiabatically, but evolves into a super-
position of several of them. This is exactly the physics
that underlies the numerical result depicted in Fig. 2:
The pulse length of tz =474 fs amounts to only SO optical
cycles, an interval which is too short for the wave func-
tion to follow the resonance-induced change of structure
of the instantaneous Floquet states. Instead, it splits into
a superposition of those two Floquet states that develop
from the initially resonant vibrational states. On the oth-
er hand, t is still long enough to enable approximately
adiabatic evolution of these two coupled states. Even for
pulses with a peak field strength of A, ,„=O.1 a.u. , almost
all the probability remains in the effective space spanned
by the two Floquet states at each moment of time. The
occupation of final states after the pulses is mainly deter-
mined by the fact that both components of the "split"
wave function interact again at the end of the pulse and
interfere. The conspicuous excitation function of the
fourth excited state seen in Fig. 2, therefore, actually is
an interference pattern [22,38].

Summarizing, from the Floquet point of view experi-
ments performed with near-resonant, short, strong laser
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pulses appear as "deformation and restructuring" experi-
ments: When the field strength increases during the
pulse, the instantaneous Floquet states are continuously
deformed such that they acquire the vortex tube-
dominated resonance structure. But for very short
pulses, the wave function cannot follow this strong
change of structure adiabatically, but rather splits into a
superposition of several Floquet states, which then may
interfere at later stages of the pulse and thereby deter-
mine the final-state population.

Our first example of molecular bonds in strong laser
fields sheds some light on the problem of selective excita-
tion of molecular vibrational states by ultrashort laser
pulses [20,39]. This topic is of fundamental importance
in laser-assisted chemistry: The possibility of selectively
exciting a definite vibrational state on time scales shorter
than that characteristic for intramolecular vibrational-
energy redistribution opens new ways of systematically
controlling a chemical reaction [40]. The interpretation
of Fig. 2 indicates a possible physical mechanism [22,38]:
If the laser frequency is chosen such that the initial state
splits into a superposition of two Floquet states and if the
laser pulse is shaped such that it leads to a constructive
interference of these two states, an almost complete,
selective excitation of vibrational states is possible even in
the subpicosecond time domain. The present classical
considerations provide a further piece of information to
understand this quantum-mechanical phenomenon: The
splitting of the wave function is made possible by the
resonance-induced change of structure of the instantane-
ous Floquet states. Correspondingly, in order to achieve
a high degree of excitation the laser frequency should be
chosen such that initial and target state are classically
coupled by a resonance with winding number y=1. A
more detailed discussion of the classical mechanics
relevant for selective excitation will be given elsewhere.

Our second example is of interest for the interpretation
of experimental results obtained with highly excited hy-
drogen atoms. It has been observed that initial hydro-
genic states corresponding to resonant values of the
"scaled frequency" (i.e., the winding number} are rela-
tively difficult to ionize [41]. It was then pointed out by
Jensen [36] that in classical mechanics resonances act sta-
bilizing, but a quantum-mechanical explanation was sup-
posed to be difficult because of possible multiphoton tran-
sitions of all orders [33]. But taking into account that
Floquet states are associated with quantized vortex tubes
inside elliptic islands of regular motion, the problem does
not appear that complicated. The Floquet states associ-
ated with the innermost quantized tubes, i.e., those states
with the lowest resonance quantum numbers, have to
tunnel the largest distance in phase space until ionization
is possible. Therefore we expect a hierarchy of stability
of Floquet states that is determined by the resonance
quantum number. This expectation is related to an ob-
servation that can be made in the quasienergy spectra:
The lower the resonance quantum number, that is, the
better the Floquet states inside an island of regular

motion are "screened" from the surrounding zone of sto-
chasticity, the higher the field strength at which relevant
avoided crossings appear, which enable transitions to
other Floquet states [34,35].

An experimental verification of the prediction of a
hierarchical order of lifetimes of Floquet states captured
by classical resonances obviously requires a careful
preparation of individual Floquet states. In principle,
this can be achieved by a slow turn-on of the microwave
field, so slow that the wave function has time enough to
follow the structural change of the instantaneous Floquet
states without "splitting. " This way of selectively popu-
lating individual Floquet states should not be described in
terms of multiphoton transitions, it is rather a matter of
continuous deformation. The time scale necessary to
guarantee an adiabatic turn-on for near-resonant states
can be longer than that used in present experiments [34].
It would, therefore, be of interest to measure the ioniza-
tion probabilities of near-resonant initial Rydberg states
as functions of the turn-on time. For an approximately
adiabatic turn-on of the microwave field, the order of sta-
bility as expressed by the resonance quantum numbers
should show up. In any case, the relative stability that
has already been observed at resonant values of the scaled
frequency appears to indicate another example of "order-
ly microwave ionization" [42].

As a final conclusion, we suggest to exploit the physical
similarity of the two systems we have considered to illus-
trate the role of classical resonances in laser physics.
Selectively exciting a definite molecular vibrational state
would be a big step forward in laser-assisted chemistry
[40], but this goal may be diScult to achieve at present
because it requires accurately shaped laser pulses. On the
other hand, in microwave experiments the pulse shape
can be controlled with high precision [29]. The
resonance-induced change of structure that makes possi-
ble the selective excitation of molecular vibrational states
can also be found in the case of highly excited hydrogen
atoms interacting with a microwave field. It seems,
therefore, tempting to model excitation processes that are
relevant for molecular physics in experiments with Ryd-
berg atoms exposed to pulsed microwave fields. In view
of the importance that selective excitation has for
modern chemistry and to stimulate further research, such
an enterprise should be worth the effort.
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