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Two-level system in a Gaussian field: An approximate solution
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The problem of the evolution of a two-level quantum system in a radiation field of Gaussian shape

with detuning is addressed by seeking an approximate expression for the transformation function

governing the interaction. The transformation operator requires the evaluation of two independent ma-

trix elements: the former is obtained by the Rosen-Zener conjecture; the latter is based on an expansion

using the main parameters involved in the first one. The expressions obtained, which are supposed to
hold in the case of small detunings, have been tested by comparison with a numerical integration. Then

the solutions are modified to take into account decay phenomena to other levels. As a final example, the

expressions dealing with the transition probability in the case of two separated oscillatory fields are

given.

PACS number(s): 32.80.—t

I. INTRODUCTION
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where the time-dependent part of the Hamiltonian has
been written as H(t)= Acottg(t)cos—(cot+5), g(t) is the
shape function of the field, and 0=co—

coo is the detuning
between the radiation frequency and the atomic reso-
nance coo. A general solution of (I) is not possible; how-
ever, solutions have been found to exist in several cases.
Among these it is worthwhile to mention the Rosen and
Zener (RZ) solution for g =sech(srt/r) [I] with the con-

In experiments of high-resolution spectroscopy with
atomic or molecular beams, many times the interaction
occurs between laser radiation and matter according to
the Ramsey or other multizone schemes. In this case for
each zone the problem of a two-state quantum-
mechanical system coupled by a time-dependent field
must be solved. In general the time-dependent
Schrodinger equation reduces, under the rotating-wave
approximation, to the following well-known differential
system for the probability amplitudes C, and C2.
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or to the equivalent second-order differential equation

jecture of a generalization to a wide class of g (t) (which
is unfortunately only an approximation), the solution
when g =const in a time interval, obtained by Rabi [2];
the class of time-asymmetric pulses found by Bambini
and Berman [3], where sechsrt/r is included as a special
case; and the studies on the time symmetrization of the
above class by Bambini and Lindberg [4]. If 0 too is al-
lowed to be time dependent, different solutions are possi-
ble; Hioe and Carroll [5] have discussed this problem and
have found solutions which extend some results obtained
by different authors and are mentioned in [5]. Moreover,
Robiscoe phenomenologically introduced decay constants
in the RZ problem [6] and developed a way to add
correction terms [7] in the RZ conjecture.

Although the case of a pulse with Gaussian-modulated
amplitude and constant detuning, which is essential in
studying laser spectroscopy problems, has not been
solved exactly, nevertheless, Thomas [8] showed that in
this case the RZ conjecture is correct for very small de-
tunings. However, for multizone interaction techniques
it is important to find some approximation for the diago-
nal elements of the matrix connecting the initial and final
values of the amplitudes C. This type of solution does
not seem to have been examined in the literature. More-
over, the corrections arising from the finite extent of the
time interval corresponding to each zone are to be taken
into account to an adequate accuracy level.

To find the interaction expressions in the case of a
Gaussian field, the solutions holding the well-known case
of the hyperbolic secant are used in this work as a start-
ing point. Then expressions are obtained in the case of a
Gaussian field and numerical checks are performed to
make sure that, at least for small detunings, which is the
range of interest in high-resolution spectroscopy, the ex-
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pressions found are satisfactory. Then some considera-
tions are expressed when decays to other levels are intro-
duced in the problem and the analysis is performed for a
Ramsey interaction scheme as an example of multizone
interaction.

With the expressions found for a Gaussian field easier
evaluations of small effects and uncertainty sources (e.g. ,
the first-order Doppler effect) in multizone interactions
can be performed, of particular interest in studying
atomic-beam frequency standards. An interesting
method used to get approximate expressions is the expan-
sion proposed by Magnus in [9]. For a Gaussian pulse,
only the first two iterations can be performed analytically
[8] and they give numerical results to a lower level than
the present development.

II. AN APPROXIMATE SOLUTION
FOR A GAUSSIAN FIELD SHAPE

With reference to the hyperbolic secant field shape,
considering that the problem of interest is a multizone in-
teraction, in the kth zone instead of t, it is suitable to in-
troduce the variable sI, =—t —tk in order to get the field
distribution gt, =sechvrsk /~&, whereas in the Hamiltonian

I

the constants are labeled co+ k and 6k.
With the aid of the transformation zk =(1+thnsk/

rq )/2 [1], the hypergeometric equation is obtained [10].
The two independent solutions of Eq. (2) are

p(zk)=F(a„, b„,c,z~ ). (3a)

a = —b =co~~/2~,

C =C+ =
2
+l Q7 /27T =C y )

where plus and minus refer to C2 and C, , respectively, in

(2).
When the integration is performed from an initial to a

final time, exact solutions can be written for C, and C2,
however, when z (s; ) =z; =0 and z (sf ) =zf —-1, it is useful

and adequately accurate to express them by a series de-

velopment up to the first order in z and (1—zf )'

q(zk)=zk' 'F(ag+1 c,b—k+ I c,—2 c,z—k), (3b)

where I is the Gauss hypergeometric series and, drop-
ping for the sake of simplicity the subscript k when con-
fusion is not introduced,

. t(6, +&t„.] sin+a+ie
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(4)
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— W(c+ )z; C„
C+ C

c+ sin~c+

where

r(c)r(c)Wc= r(c+a )I (c —a) K+C

pulse area, the RZ approximation is expected to be satis-
factory for Qr«1 [8], which is a usual condition in
high-resolution spectroscopy techniques. Therefore in (4)
the substitution

sin~c+ sin~c
O,~=sech
2

1 Q~
:exp

7T 2

2

—2 mrs /~ 2~s,. /r
1 —z =-e f z=ef'

and I is the gamma function. From (5) the following re-
lation is obtained:

W(c+ ) W(c ) = W(c) W*(c)= 1 —sin vm sech Qr/2 .

(6)

This last identity stems from the unitary transforma-
tion imposed by Eqs. (1) and can be also obtained directly
from expression (5) (see Ref. [10]). Moreover, the expan-
sions used in (4) yield solutions satisfying the unitarity
conditions up to the order considered.

When a Gaussian field is considered, namely

g~(r) =e " ', and r in this case too has the meaning of

seems appropriate, as has also been checked in [11].
On the contrary, if we define Ws(c), the analog of

W(c) in the Gaussian case, it is not immediate to find a
substitution W (c) to W(c), even if expression (6) seems

to be of some help.
Therefore the way adopted here has been to start from

series developments of W(c) for different values of a to
yield approximate expressions in terms of the pulse area
~, or the parameter a, and of the Fourier transform of the
hyperbolic secant, having as a constraint Eq. (6) to some

specified approximation level. Then the appropriate
transformation suggested by Rosen and Zener is used.

For instance, by a series expansion of W through the I
functions around c =

—,
' and a =0 one gets
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W(c+,5a)=1—(p'+1(' '5c+ —'g' '5c +—'g' '5c + )5a

+[(y&2 ( y(3)+(y~y(2) ( y(4))5c+ ((y~y(3)+y(&)& ( y(&))5c&+. . . ]5a&+. . .

where g is the logarithmic derivative of the I function. The different order derivatives are computed for c =
—,', and

5c =i Qr/2m
Rearranging (7), the real and imaginary parts are separated

(m5a) + (m5a) 1
( 5 }6 Q~

41

'2
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2

2 '4
~5a 4y")

2

2 + ~ ~ ~

3

(2)+.2 Qr
2 ~3

n5a
2

n5a
2

4
y(4)

(8)

Although the series developments in expression (8)
have been reported up to the first correction in Qv in
both the real and in the imaginary part, the evaluations
have been performed to higher-order terms both in Qv.

and in 5a. The constraint Qr/2«1 is not severe in
high-resolution spectroscopy, whereas the extrapolation
in the range of a from 0 to —,

' is very important.
Considering that, for Qr=0, W( —,', a }=costa and that,

moreover, Qr/2 can be interpreted as the first term of
tanh Qr/2, some suggestions how to extrapolate in (8}
are immediate.

However, two other expansions are useful in checking
the extrapolations of the terms in (8). By direct series ex-
pansion

W(c+, —') = — 1+1 Q~
v'2 2

(ln2)
1 2
2 772

.Q~ 2ln2+l+
2

(9)

and by using the expressions 6.1.28 and 6.1.33 of Ref.
[10],

'2
41n2 Qr +.Qr

(10)

Taking into account developments (8}—(10) a satisfac-
tory approximation to W(c+, a) is

'4

W(c+,a)=cosma+2sin tanh 1 —— sin
~ 2' 2Qv. 2 . 2m.a

2 2 7T 2

+t2 sin 2 7Ta Q~ 5 g'' . pea, . , na—2
3

tanh 1 —
2 (2) sin 1+2sin

where the dependence on tanhQ~/2 has been suggested by expression (6). The comparison between (11)and expansions
(8)—(10) shows in general a reasonable agreement. Moreover the real part of W(c+, a) in (11) appears approximated to
better than 10 for a =

—,
' and Q~&0.25, and for a & —', and Qv. &0.25 the approximation is better than the 10 level,

whereas in the imaginary part for the same couples of values the agreements are 1.5X10 and & 5X10 . In general,
expression (11)does not compare unfavorably with series developments (8) and (9}.

Expression (11) has been written in such a way that the RZ conjecture can be directly applied. In fact, a =coze/2n.
has a very general meaning, and through the relation tanhQ~/2=+(1 —sech~Qr/2)'~, with the + sign according to
QvkO, the substitutions in the Gaussian case are straightforward and the following expression for W (c+,a) is ob-

tained:

8'~(c+,a ) =costa+2 sin 1 —exp
27M 2

7r

'2'
Qw

~ ~ 4
2 2&a

~ 1 — — sin
7r 2

+i2
~3

2 Q~
1 —exp

7T 2

'2 ' 1/2

~ sjn2 1 I 5 sin2 1 + I sin2

Then the solutions of Eqs. (1) and (2) for a Gaussian
field, obtained through the RZ conjecture and its applica-
tion to (11)to get Ws(c, a},are compared to numerical in-
tegration results obtained with an estimated accuracy of
10 . Moreover, expressions similar to (8)—(10) have
been obtained taking into account that series develop-
ments of the Fourier transforms suggest the substitutions

I

(Qr), ~(2/m)(Q~)g. As a result of these comparisons,
the real part of expression (11'}agrees with numerical in-
tegration better than 1X10 for a ~ —,

' and Q~~1,
whereas the imaginary part agreement is better than
4X10 for Q~~0. 25. Also for the Gaussian shape the
situation improves as detuning and field amplitude de-
crease.
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III. MODIFICATIONS INTRODUCED BY DECAY

Phenomenological decay constants y, and y2 to other
levels can be easily introduced through the relation (see
Ref. [13),p. 84)

~y~r&2sr, the hypergeometric Gauss series holds. Ac-
cording to (14)

c+=1 c

but—(1/2) y. f

C, =P, e (12)
C+ WC

and the functions C; satisfy the same di8'erential equa-
tions (1) and (2) provided 0 is substituted with

0'=0+i@f2, y=y~ —y) . (13)

c' =c +y'/4 =~+ . Q~ yv.

2 4
(14)

are introduced. Provided Re(c') )0 which means

In this case, in solutions (3a) and (3b) of the hyperbolic
secant field, the parameters

As it was proved in the special case considered in [6],
under the above indicated condition, the amplitudes C, (t)
behave regularly; the same regular behavior is found also
in the most general case when both the initial amplitudes
are different from zero. Defining in the kth zone with s;
and sf the initial and final values of the variable s, respec-
tively, under the hypothesis ~Re(c' ——,')~ &&1, that is

~ y ~
r &&4n, wh.ich is a safe condition in multizone interac-

tions, the final values of the amplitudes C; can be written
by means of a truncated Taylor expansion:

I I

c' sinmc+

—(1/2)(y)sf —
r&s, ) i(5k+n ) ssln7M

+lCp s; e 1f 2ie k

sinmc'+

I I

W(c'+ )[1—z(sf)] —,W(c' )z(s;) +

c C+
(16)

[~/2N3 p~f yI~'~ ~[&k+«k ] Sinma a ~+ a C

C (zs f)=iC, (s;)e 'f '' e " " — W(c' )[1—z(sf)] + — W(c'+ )z(s;)
sinn c '+ c+ c

I I

c'+ sinmc'+

These analytical evaluations are straightforward but rather cumbersome. Detailed developments are found in [12].
There is a rather high symmetry in (16) because sinmc'+ = sinn c' =cosh''r/2.

According to the hypothesis above, the terms in 1 —z(sf ) and z (s; ) can be disregarded. Moreover,

sinmc+

Q'w Qw yv Qw=sech =sech exp —i arctan tan tanh
2 2 4 2

, Q~
1 —sin sech

4 2

' 1/2

(17a)

Q'T Q7 . f7 Q7.
sech =sech exp —i—tanh

2 2 4 2
(17b)

which expressed in amplitude and phase to the first order
in ye gives

expression shows that both amplitude and phase of
W(c', a ) are linearly dependent on yr.

When considering a Gaussian-shaped field, the follow-

ing approximated expression is obtained:

2

where the amplitude is independent of y~, and the phase
shows a linear dependence.

However, from (5), to the same approximation order

1 Q'~
exp

7T 2
1 Q~=exp

7T 2
. Q~ yz
l

2 277

W(c+, a ) = W(c+, a) 1+ [g(c++a )+g(c+ —a )
4m

—2$(c+ )] (18)

with the choice of the upper or lower sign according to
the plus or minus subscript in c' and c, respectively. This

with the same properties as (17b), therefore after substitu-
tion into the expression of W (c',a) that is, formula
(11'), with the appropriate modifications, the same linear
dependences in amplitude and phase are found.

Then a suitable approximation of the matrix MI link-

ing the amplitudes C.(sf ) to C.(s, ) in the zone k is ob-
tained from (16)
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M

i . —(1/2)yl(sf —sl)Wc' je

—(1/2)(y2sf yls' i ~k++ kle

Q~ .yv Q~X sin+a sech exp —i tanh
2 4 2

—(1/2)(y&sf —
y2 . ) ( k+ k)

le e

Q~ . y~ Q~
X sin~a sech exp —i tanh

2 4 2

—()/2)y2(s/ —s, )Wc'+ e

(20)

The elements of Mt in (20) can be transformed with the same rules for the Gaussian-field case obtaining the following
matrix Mlg.

Mrg =

( 1 /2)y &(sf st )

—(1/2)(y2sf yls' i ~k+~ kie 'e
'2

. Qv y~
l

2 2'

—(1/2)(y )sf —
ya si ~k +Otk

ie ''e
'2

1 Q~
X sin+a exp

7r 2
(20')

1 Qr
Xsinma exp

7r 2
.Qw y~
l

2 2'
—(1/2) y2(s/ —s,. )

Wg c'+ e

IV. AN APPLICATION TO RAMSEY'S METHOD

As an example of high resolution spectroscopy let us consider a Ramsey interaction scheme with a field shaped as the
exactly solvable hyperbolic secant, namely

g, =sech[m(t+tp)/y], —pp &t, &t &0 (first zone)

g2=sech[n(t to)!r],—0&t &tf & pp (second zone)g(t)= ' (21)

and, as usual, 2to )&~. Moreover, let us suppose

tot(, =co+ 2=a)a, but 5,%52 to account for phase shift be-
tween the two zones.

Detailed analytical developments are reported in [12].
For the particular initial conditions C, ( t, )= 1 and.
C2(t; ) =0, the following final values are obtained:

but

Q'v
sech

sech , Q~

=sech 2Q~

1 —sin sech
. 2yv 2QV

4 2

(24)

—(1/2)y, (s/ s, ) ysp insp——.

C, tf —-e '/ 'e 'e

X W(c' }e 'e

r ytp i (5+ntp )—sin ~a sech e 'e
2

According to (18), recalling that c+ =c', and introduc-
ing g(c++a )+f(c+—a) —2$(c+ ) = A+iB, one gets

W(c'+ ) W(c+ ) = W(c+ ) W(c+ )[1+(A +iB)yy/4m].
X [1+( /1 iB)ye/4n]—

=(1—sin na sech Qy/2)(1+22 ye/4m ),
—(1/2)( y2t —y l t; )

C2(tf ) =i sinma sech e
2

[
lp yi( 5+2Qps)

W(
i

)

(22)

W(c' ) W(c'" )= W(c )W(c* )[1—(A iB)yy/4n]— .

X[1—(A +iB)yy/4m]

(25)

=(1—sin na sech Qy/2)(1 —23 ye/4m),
The transition probability is then

C2C2 =sin ma ~sechQ'y/2~ e

e 'W(c' }W(c")+e 'W(c'+ )W(c'+ )
(23)

W(c' ) W(c'+ ) = W(c ) W(c+ )[1—( A iB)yy/4m]— .

X [1+(2 iB)yy/4m ]—
= ( 1 —sin n a sech Qy/2)e

(26)

(27)

where y is the phase of W(c+ ). Moreover,
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e
~

W(c' )~ +e
~

W(c'+ )~ =(1—sin ma sech Qw/2)[e (1—2Ayr/4')+e (I+2Ayr/4m)]

=(1—sin na sech Qr/2)2[cosh2yto —2( 3yr/4n)s. inh2ytc]

=(1—sin era sech Qr/2)2cosh2yto . (28)

This last approximation can be accepted if attention is paid to the presence of sinh2ytp, which compares with
cosh2yto and in many cases yto « 1. Moreover, by ignoring 3 in (28) the approximation is introduced in an amplitude
term and this should be of minor importance in interference problems, whereas expressions (25)—(28) are independent of
8, which appears as a part of the phase factor in W(c', a ).

To the level of approximation discussed the transition probability in the hyperbolic secant case is

C~Cz ——2sin ma sech Qr/2(1 —sin na sech Qr/2)e ' ' ' X[cosh2yto+cos(2Qto+2y+5z —5, )], (29)

r

2 2 Qw
1 —sin ma exp

7r 2

and through the usual transformation for a Gaussian field
2

(CHIC& )G—-2sin ma exp
2 Q~

2
-[~&ff- r, ~, ]

X [cosh2yto+cos(2Qto+2y +5&—51)] (29')

where g and gs are the phase factors of W(c+) and
Ws(c+ ), respectively, and go to zero if Qr~O, giving the
well-known dependence of the transition probability on
the phase shift 52 —5,.

An evaluation of the linewidth in the Ramsey scheme,
taking into account also the field shape, can be obtained
from (25) and (29') assuming r« tp and keeping only
linear terms in Q~. With 51=52 and y =0 the half width
at half maximum for a hyperbolic secant field occurs at
Q, , satisfying the following condition:

' 1/2
2 Q1~ 21n2

y (Q,r)=
2

with a halfwidth at half maximum given by
1/2

1 m 2 2 1
Q1 ————1 ——— ln2

t, 4 2tp

V. CONCLUSION

(31')

(32')

Q, to+y(Q, r, a) =tr/4, (30)

y(Qtr, —,
'

) =

and therefore

Q1& 21n2
2 m'

(31)

1 m 21n2
1Q 1 (32)

where the dependence of g on a is given by (11) retaining
only the linear terms in Qz.

As an example in a monokinetic beam the field intensi-
ty for a complete population inversion at Q=O requires
a =

—,', and from (9) [see also expression (34) of Ref. [12]
where s( —') =2 ln2]

Approximate expressions for the final values of the ele-
ments of the transformation matrix governing the in-
teraction between a two-level quantum system and an
electromagnetic field with a Gaussian shape and a small
detuning have been obtained. The approximation has
been tested by comparison with numerical integration.
The introduction of decay phenomena has been discussed
and the analysis of a Ramsey interaction scheme has been
performed. The solutions given appear suitable for evalu-
ations of high-resolution spectroscopy such as in mul-
tizone interaction schemes as well as a base for the evalu-
ation of uncertainty sources, for example, the first-order
Doppler e6'ect in infrared and optical frequency stan-
darcls.
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