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Statistics of the transient frequency modulation in the switch-on
of a single-mode semiconductor laser
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The variations of the optical kequency during the switch-on of a single-mode semiconductor laser
diode have been studied. Our model relies on stochastic rate equations, and therefore a meaningful
description of the laser frequency in the presence of both noise and transient evolution is difficult.
The relation between an approximately instantaneous frequency that we calculate numerically and
experimentally measured frequencies is discussed. We analyze the frequency variations during switch-
on processes and the statistical properties of the nearly instantaneous frequency that we chose as the
most reasonable to calculate. The range of the frequency chirp during the first pulse of the intensity
is stochastic, but it is correlated with the switch-on time, and therefore its statistical properties
can be deduced from those of the first-passage-time distribution. The correlations permit a single
discriminator to select a subset of pulses with similar peak intensities, delay times, and chirp ranges.
In addition, there are significant differences between the averaged quantities and results for a single
switch-on.

PACS number(s): 42.55.Px, 42.50.Md, 42.50.Ar, 05.40.+j

I. INTRODUCTION

Statistical properties of the transient evolution of the
output of a laser after it is switched on have been con-
sidered in a variety of situations for the past 20 years [1].
These transients involve both dynamical evolution and
stochastic aspects with noise contributing the initial con-
ditions as well as fluctuations during the dynamical evo-
lution. The transients usually have been characterized
either by ensemble averages of the intensity fluctuations
[2, 3] or by the statistics of the switch-on time (passage-
time statistics) [2, 4, 5]. These two characterizations refer
to the evolution of the intensity.

A natural question is how to extend these studies to
characterize the transient stochastic dynamics of the fre-
quency and phase of the field. Recent experimental work

[6] that shows the possibility of direct frequency and
phase measurements makes this question experimentally
meaningful. The coupling and interplay of phase and
intensity fluctuations is expected to cause interesting ef-
fects. A first study [7] along this line has considered the
eKect of transient intensity fluctuations on phase fluc-
tuations after the Q switching of a detuned class-A laser

[8] (He-Ne, dye, etc.). However, the interplay of intensity
and phase fluctuations is more relevant for semiconductor
lasers due to the linewidth enhancement factor [9] n The.
o, factor determines the degree of coupling between the
phase and intensity of the electric field, yielding nontriv-
ial phase and frequency dynamics. The relatively large
value of a for a single-mode semiconductor laser (SSL)
means that the frequency variations during the transient
reflect the evolution of the intensity [10]. And, because
spectral variations within the duration of a pulse can con-
tribute to pulse compression or signal distortion, there
has been interest in this phenomenon in semiconductor
lasers. There have been some studies of time-resolved

spectra and spectral-resolved time evolution, but the ex-
perimental measurements have been of averages rather
than single pulses [11—13].

Transient statistics for semiconductor lasers have been
recently studied through consideration of the distribution
of switch-on times [5, 14, 15], intensity fluctuations in the
nonlinear regime [15, 16], and statistics of the maximum
intensity in the first peak of the relaxation oscillations
[15]. However, we are not aware of any study of the tran-
sient statistics of the frequency of semiconductor lasers.

An interesting feature of a SSL is the high sensitivity
of the laser frequency to changes in the operating point
of the system [10]. In particular, changes in the laser
output intensity cause changes in the lasing frequency
through associated changes in the number of carriers
in the medium. This phenomenon, known as frequency
modulation in general, leads to a nearly monotonic sweep
(chirp) of the frequency during the first intensity pulse
when a SSL is switched on. This frequency chirp has at-
tracted both experimental and theoretical attention since
it has obvious importance in dispersive degradation of
signals in optical communications and in oÃering the pos-
sibility of pulse compression [17]. Most applications in-

volve intensity modulation between a high-intensity state
and a low-intensity one. In this case, both the intensity
dynamics and the associated frequency variations have
been satisfactorily analyzed from a deterministic point
of view [18,19].

However, the problem is far more sensitive to noise
when the initial state is below the threshold for laser ac-
tion [12]. It has been shown [14] that the fluctuations
in both the switch-on time and the intensity are larger
when the initial state is below threshold. In addition,
analyses of steady-state power spectra [20, 21] find large
linewidths for lasers below threshold. These results in-
dicate the importance of spontaneous emission noise as
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the laser is switched on from the off state. At later times,
the evolution of the system is characterized by relaxation
oscillations of the intensity and carrier number. During
the oscillations the laser output can greatly exceed its
steady-state value, emerging in the form of short pulses
of high intensity [22]. As a consequence, the associated
frequency chirping during each pulse can be very large
and, more importantly, due to the intrinsic randomness
of the laser switch-on process it turns out that the chirp
varies from pulse to pulse.

The relatively large fluctuations in the amplitude and
phase caused by spontaneous emission noise before the in-
tensity reaches a macroscopic value clearly indicate that
a deterministic analysis of the system evolution is not
valid. Instead, we have to consider stochastic evolution
equations based on the I,angevin formulation of the rate
equations for a SSL. Choosing units such that the laser
intensity I (the carrier number N) corresponds to the
number of photons (carriers) inside the active layer and
taking a rotating reference frame such that the phase p of
the slowly varying amplitude of the electric field is con-
stant in the nontrivial steady-state solution except for

phase diffusion, these equations read [23]

I = (G —y)I + 4PN + +4PNI(r(t),

i = 2(G —7)+ V'(PNII)4(t)

N = C —7,N —GI —/4pNIgr(t) + y y, Ngrv (t), (3)
g(N —Np)

(4)gl ysI
The meanings and values of the diferent parameters

involved in these equations are listed in Table I. These
equations are derived from the semiclassical equations for
the laser after performing an adiabatic elimination of the
polarization. The gain G includes a saturation term of
the form (1+sI) I, which has been recently proposed
by Agrawal [24].

Spontaneous emission is taken into account by the term
4PN which yields the mean power emitted in the lasing
mode, an intensity noise term /4PNI (r(t) which de-
scribes the fluctuations of this mean power, and a phase
noise term gPN/I (~(t) which describes the phase fluc-
tuations in the electric field associated with the spon-
taneous emission. Obviously, phase fluctuations due to
noise fluctuations are huge when the intensity is small.

Random nonradiative carrier decay is included by
means of the noise term gp, N (~(t). However, the evo-
lution of the carrier number during the transient is dom-
inated by the mean value of the injection current C and
the noise terms are important only around steady state
[14—16].

The diferent noise sources are taken to be Gausssian
of zero mean and correlations given by

((;(t)(, (t')) = 2b;, b(t, —t') i,j = I, p, N .

The intensity and phase noise strengths used here are
equivalent to a spontaneous emission strength gPN for
the complex electric field. This form of the spontaneous
emission strength is a good approximation to the exact
form that has been deduced from first principles for a
system where the matter and the radiation have reached
equilibrium [25]. When the matter-radiation equilibrium
has not yet been achieved, the exact form of the spon-
taneous emission strength is unknown. Hence, assum-

ing the validity of this spontaneous emission strength for
systems in the transient regime cannot be justified in a
rigorous way. Nevertheless, it has been previously used
for studying the transient regime of semiconductor lasers
and the results show reasonable evolution of the intensity
and carrier number [14—16, 26].

The paper is organized as follows. In Sec. II we discuss
how to describe the instantaneous frequency of the elec-
tric field in the presence of both noise and transient evo-
lution. In Sec. III we analyze individual transients, from
which we find that the chirp range along each trajectory
is a stochastic quantity, and we show that the laser fre-
quency is properly described by our approximation. In
Sec. IV we study the statistical properties of the laser
frequency modulation along the transient, paying special
attention to the frequency chirp during the first intensity
pulse. %e find that the statistical properties of the laser
frequency are correctly described in our approximation.
Finally, in Sec. V we investigate the correlations between
the switch-on time, the chirp range, and the maximum
intensity of the first intensity pulse.

II. INSTANTANEOUS FREQUENCY'
AND TRANSIENT SPECTRA

Several studies of frequency dynamics can be found in
the literature [11—13, 17—19], but the precise meaning of

TABLE I. Meanings and values of the parameters in Eqs. (1)—(4) [16].

Parameter

Pe

No
S

Meaning

Gain parameter
Inverse photon lifetime
Inverse carrier hfetime

Current injection
Carrier number at transparency

Inverse saturation intensity
Linewidth enhancement factor

Spontaneous emission rate
Threshold current

Bias current

Value

5.6 x 10
4 x10
5x10

14 x 10'
6.8 x 10

1.25 x 10
5

1.1 x 10
3.76 x 10
34x10

Units
—1s
—1s
—1s
—1s

adimension al
adj.mension al
adimension al

—1s
—1s
—1s
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"instantaneous frequency" is rather elusive. It is clear
from Eqs. (1)—(4) that in the absence of phase noise one
can simply define the instantaneous angular frequency cu

of the electric field as p. This approach has been widely
used for analyzing communication systems [18], and it
has been successful in the description of those systems
which involve sinusoidal or pulsed modulation of the laser
between a high-intensity and a low-intensity state. In
this case, if the induced modulation of the laser is much
larger than the spontaneous emission strength, the noise
terms in Eqs. (1)—(4) can be neglected; this condition is
more easily satisfied if the laser is always kept well above
threshold, even in the low-intensity state, so that the
phase noise strength is always small. Nevertheless, when
spontaneous emission noise is not negligible, this defini-
tion is no longer meaningful. Although the mean value
of ~ ((j)) is well defined, the standard deviation of ~
around its mean value is infinite. This implies that there
is equal probability of finding any particular value of ~
in a single measurement, and that even in steady state
the average of any finite subset of values may deviate
substantially from the time average value.

This problem arises in both the steady state and the
transient regime. It is associated with the nature of
noise for the complex electric-field amplitude which un-
derlies the stochastic rate equations and not with the
strength of the phase noise, although the latter is larger
along the transient due to the low values of the intensity.
The infinite standard deviation of id, which results from
the white-noise property of b-correlated noise sources, is
an artifact of the approximations used to write the rate
equations. Spontaneous emission of macroscopic devices
is properly modeled as white noise in the electric dipole
moment of the medium [27], which has been adiabati-
cally eliminated to obtain the rate equations. The adia-
batic elimination is based on the assumption that all time
scales of evolution are much longer than the relaxation
time for the polarization. At the very least, this proce-
dure turns white noise in the polarization into colored
noise (with its bandwidth limited by the polarization de-
cay rate) for the electric field. Though the resulting noise
has a correlation time much shorter than all other char-
acteristic times of evolution of the remaining variables,
it is only relatively white and the infinite standard devi-
ation of the frequency is avoided in the exact expression.
While a finite (but small) correlation time 7 for the noise
(colored noise) avoids the infinity, the standard deviation
of ~ around its mean value is very large ( r i), thereby
masking any transient evolution. Hence p generally lacks
usefulness as a definition of a measurable instantaneous
frequency in the presence of phase noise.

This does not contradict the idea that lasers are
monochromatic, which is based not on direct frequency
measurements but on field spectral power measurements
[28]. In fact, the field spectrum provides the usual way
to determine the steady-state laser frequency since most
of the field spectral power is contained in a narrow fre-
quency interval, yielding a well-defined peak in the field
power spectrum. The frequency of the laser is taken to
be the location of this peak, whose width is related to the
noise strength. Unfortunately, if one wishes to study the

frequency dynamics during a transient, the usual Fourier
spectrum does not help since it involves the whole time
evolution of the system. The Fourier components do not
give information about the instantaneous frequency of
the electric field.

Some hints for how to define an instantaneous fre-
quency in the face of these limitations can be found by
examining the procedure used for measuring it. One of
the simplest and more common ways to study the fre-
quency dynamics during the transient [11,12] is to mea-
sure the power spectrum of the electric field by means
of an interferometric device —which for simplicity we as-
sume to be a grating monochromator. The output field
produced by the diffraction grating at a given position is
(in the far-field approximation)

where r = r(r) is the time delay between rays com-
ing from two consecutive rulings on the grating and
M is the number of rulings. The diffracted intensity
Ig(r, t) = ~Eg(r, t) ~

has maxima at different points which
are assigned to different diffraction orders for the lasing
frequency. Changes in the lasing frequency are detected
as changes in the position of the maxima in the power
spectrum. The low-frequency resolution of these mea-
surements is limited by (Mr) i, while the free spectral
range (27) i sets a high-frequency limit to the res-
olution. Note that the delays in the travel times from
different rulings make such a measurement a partial time
average.

Measurement with a monochromator is analogous to
making a fast Fourier transform (FFT) of the incident
electric field [29]. The time window for the equivalent
FFT is M7, the total time difference between the ex-
treme diffraction rulings, which yields a low-frequency
resolution (Mr), and the high-frequency resolution is
given by the Nyquist frequency (27) i. The limitations
are just those of the time-frequency uncertainty princi-
ple. Decreasing the time window in order to have better
temporal precision leads to a loss of frequency resolution.
An increase in frequency resolution can be obtained only
by letting the time window increase, but in this case we
lose temporal information and all the Fourier components
appear in the resulting spectrum. Therefore a compro-
mise between the "instantaneousness" of the measured
frequency and its accuracy has to be accepted.

While the field spectrum is the measurable quantity it
would be useful if its characteristics could be understood
in terms of the phase dynamics defined in Eqs. (1)—(4).
Provided that during the transient the field amplitude is
also varying in time, we expect two contributions to the
spectrum, one arising from the field frequency itself and
another one arising from the field amplitude evolution.
Whether the movement of the maxima in the field power
spectrum can be attributed only to frequency dynamics
is not clear and is one of the reasons for our investigation.

In order to analyze this relationship we propose two
approximately instantaneous frequencies which can be
derived from Eqs. (1)—(4). We define the observable in-
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stantaneous frequency (OIF) as

di.j(r),
where j is given by Eq. (2), thereby including both phase
noise directly and amplitude and carrier noise paramet-
rically. To separate the role of the phase noise during
the transient and its contributions to the laser frequency
from the role of the amplitude and carrier noises, we de-
fine another frequency, analogous to the OIF but with
phase fluctuations neglected,

t+T
Fz (t) = dr [G—(r) —y],2' T g 2

which is the time average of the deterministic part of the
equation for j. One should note that Fy (t) is a random
quantity since the gain G is a function of I and N which
evolve stochastically according to Eqs. (1) and (3).

In these equations, T stands for the time window used
for the FFT, and t for the time at which the measure-
ment begins. The time averaging guarantees that the
OIF defined by Eq. (7) always has a finite standard de-
viation around its mean value. This standard deviation
increases as T decreases so that we lose precision as the
time window is shortened.

These approximately inst;antaneous frequencies are
useful for interpretations of the stochastic dynamics be-
cause of the following properties which are demonstrated
in the following sections. The OIF corresponds to th.e
time-dependent maximum of the FFT over short-time
windows. It coincides with F2 (t) when the laser inten-
sity is large enough so that phase fluctuations can be
neglected in comparison with G —p [see Eq. (2)].

I I i i I 1 I t I I

the larger the maximum values of the carrier number and
intensity. In addition, the minimum value of the carrier
number after the first peak is lower for the trajectory
with a larger overshoot of the intensity. Nevertheless, the
difference in the minimum values of N is much smaller
than the difference in the maximum values; this is a con-
sequence of gain saturation v hich causes a clustering of
the trajectories after the first intensity peak.

In Fig. 1(c) we have plotted f:—(2tr) [y(t + At)—
irt(t)]/At, which is the numerical approximation to the
frequency that can be obtained with digitized data, . It
must be emphasized that the finite size of the fluctuations
of f around its mean value is an artifact of the method
of integration due to the finite size of the integration
step At. In fact, as At ~ 0 the size of the fluctuations
diverges. Nevertheless, provided that the fluctuations
at any time are scaled in exactly the same way, they
are representative of the real process. As a consequence,
we can see that there is a noise-dominated regime for f,
corresponding to times before t'. Moreover, two different
stages can be distinguished in the noisy regina. The
first one corresponds to times before the threshold time
1th ——67.4 ps, which is the time at which X reaches its
threshold value. In this time interval, noise contributions
4o phase dynamics are huge and dominant. For t,iines f,

such that t&i, ~ t ( t*, phase noise contributions are

III. ANALYSIS OF INDIVIDUAL
SWITCH-ON EVENTS

0 I I 1 I
I I I I

Results for two different switch-on transients, A (solid
line) and 8 (dashed line), obtained by numerical integra-
tion of Eqs. (1)—(4) are shown in Figs. 1, 2, and 3. In
Figs. 1(a) and 1(b) we have plotted the laser intensity I
and the carrier number N, respectively, versus time for
these two transients. These results can be directly com-
pared with those in Ref. [15] (calculated without gain
saturation) in order to study the effects of the saturation
term that we have included here. The effects of the gain
saturation are twofold, it leads to a reduction of the max-
imum intensity reached in the relaxation oscillations and
it decreases the number of relaxation oscillations. The
same qualitative effects have been observed with differ-
ent types of gain saturation [16,30].

The growth of the carrier number —and hence the
gain —is almost linear and deterministic until the laser
switches on (the switch-on time t* is defined as when
the laser intensity becomes a chosen fraction of its final
value) [2]. Therefore we find that the influence of the
noise terms in the carrier number evolution is negligible
unless the steady state is considered, in agreement with
previous work [16, 16].

Finally, it can be seen that the later the switch-on time,
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FIG. 1. Time evolution of (a) intensity, (b) carrier num-

ber, and (c) frequency f—:(2tr) Ap/At as obtained from

the numerical simula. tion of Eqs. (1)—(4) for two different,

switch-on transients: A (solid line) and 8 (dashed line). The
switch-on times (where the intensity first crosses 1% of its
final value) are t' ~ 120 and 105 ps for transients A and 8,
respectively.
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still important, but they are progressively reduced as the
intensity grows.

The randomness of the frequency chirp in the tran-
sient can also be observed in Fig. 1(c). When the in-
tensity switch-on is later, the chirp is larger. This de-
pendence stems from the fact that the maximum carrier
number (and hence the maximum deterministic gain) in-
creases as the switch-on time increases. Therefore, the
maximum value of f in the region of measurable inten-
sity, which roughly corresponds (except for fluctuations)
to the maximum deterministic gain, also increases. The
minimum value of f which comes after the first peak in
the intensity is much less sensitive to the switch-on time
due to the clustering of the trajectories for the intensity
and carrier number caused by gain saturation and the
resulting strong damping of the relaxation oscillations.

In Figs. 2 and 3 we have plotted different field power
spectra for each transient, calculated over different time
windows for the FFT. The plots in Fig. 2 correspond to
taking the time window equal to the whole time inter-
val studied (7=163.84 ps). As already noted, this time
interval is so large that we lose information about the
temporal variation in the instantaneous frequency of the
electric field; we obtain a broad spectrum with contribu-
tions from all the field frequency components. We ex-
pect the overall width of the spectrum to correspond to
the range of the frequency chirp. The spectra have the
shape of a plateau with higher power concentrated in
the low-frequency side. This asymmetry in the power
spectrum arises from the evolving field amplitude, since
the high-frequency range corresponds to times close to t,',
where the intensity has not yet reached a large value. We
observe that the trajectory with later intensity growth
presents a wider spectrum, which can be understood as
the signature of a larger frequency chirp [compare with
Fig. 1(c)j.

This same conclusion can also be drawn from spectra
taken over shorter time windows, such as those in Fig. 3.
These spectra have been calculated by dividing the to-
tal time interval into eight nonoverlapping intervals of
length T=20.48 ps, so the frequency resolution is +25
GHz. The power in the FFT for each trajectory in each
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of these time intervals is plotted. It can be seen that the
variations in the positions of the maxima in the power
spectra are larger for the trajectory growing later, thus
indicating a larger frequency chirp, but the limited fre-
quency resolution prevents precise measurements. The
half-width at half maximum (HWHM) for each of these
spectra stays more or less constant for the first five inter-
vals and then it decreases to lower values, though once
again a precise quantitative measurement is not possible
because of limited frequency resolution.

The vertical solid (dashed) line in Fig. 3 corresponds
to the value of the OIF for transient A (B) on each time
interval. Its position corresponds to the maximum of the
power spectrum for each window of time and for each
transient. Therefore the OIF defined in Eq. (7) accu-
rately represents the evolution of the maximum in suc-
cessive short-time spectra. The frequency F2 (t) is not as
accurate for times before the switch-on time. For com-
parison, we list in Tables II and III the values of fz (t) and
FT (t) for transients A and B, respectively. We see that
there are substantial differences for times t ( 81.92 ps,
and that for t ) 102.40 ps, the two frequencies coincide.
Therefore, we again encounter the two different regimes
for the frequency already discussed, namely, times ear-
lier or later than the switch-on time $' [compare with
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FIG. 2. Power spectrum for the switch-on transients in
Fig. 1, obtained by the FFT of the electric field over the total
time interval T = 163.84 ps.

FIG. 3. Power spectra for the switch-on transients in
Fig. 1, obtained by the FFT of the electric field over a short-
time window (T = 20.48 ps), and starting at times (a) 0 ps,
(b) 20.48 ps, (c) 40.96 ps, (d) 61.44 ps, (e) 81.92 ps, (f)
102.40 ps, (g) 122.88 ps, and (h) 143.36 ps.
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TABLE II. Values of fz (t) and FT(t) on each time interval
for transient A (see text).

t (ps)

0.0Q

20.48
40.96
61.44
81 ~ 92
102.40
1. 22.88
143.36

T (ps)

20.48
20.48
20.48
20.48
20.48
20.48
20.48
20.48

fT(t) (GHz)

—107.77
—88.49
—27.34

6.46
54.54
97.92
55.31

—16.73

FT(t) (GHz)

—135.05
—87.16
—39.80

7.06
53,46
97.62
55.27

—16.74

Fig. 1(c)]. The sixth time interval [Fig. 3(f), t=102.40
ps] contains the switch-on time for both trajectories [see
Fig. 1(a)], and after this time fT(t) and FT(t) coincide.
This, along with the reduction in linewidth of the spec-
tra, is a clear indication that phase fluctuations in this
time interval play a secondary role. In fact, due to the
rapid growth of the intensity, the phase noise strength is

strongly reduced and, in these time intervals, the phase
evolves as a deterministic function of I and ¹

IV. STATISTICS

Two thousand switch-on events corresponding to
Eqs. (1)—(4) have been numerically calculated. Results
for the averaged intensity (I) and carrier number (N)
are shown in Fig. 4 along with their standard deviations
around their means. In comparison with the results of
Ref. [15], where no gain saturation was considered, the

gain saturation reduces the maximum intensity reached
during the relaxation oscillations, and it reduces the peak
of the fluctuations of the intensity. This peak is a well-

known feature of transient dynamics and is referred to
as "anomalous intensity fluctuations [1—3]." However,

the anomalous fluctuations are not affected by gain sat-
uration during the transient until the intensity reaches
a macroscopic value; earlier, they coincide with the case
without gain saturation. This is not surprising since it
has been well established [1,'2] that the anomalous fluctu-

ations appear as a consequence of the randomness in the
distribution of switch-on times. Provided that gain sat-
uration in the initial regime is not important (sI (& 1),

the intensity fluctuations are not affected by the inclu-
sion of the saturation term unt, il times later than the
switch-on time.

For each trajectory we have calculated nine field power
spectra by means of a FFT: one covering the whole time
window studied (overall spectrum, T = 163.84 ps) and
eight short-time spectra (eight nonoverlapping intervals
of length T=20.48 ps).

The averaged overall spectrum is plotted using a solid
line in Fig. 5, and it shows contributions above the noise
level only for frequencies ranging from —20 to 100
GHz, which can be taken as an estimate of the average
chirp range. Outside this interval, the spectral power
drops several orders of magnitude in a narrow frequency
range.

We have already noted the asymmetric form of the
central portion of the power spectra of the individual
transients, assigning it to the evolving field amplitude.
In addition, the wings of the average power spectrum
are more asymmetric, and the high-frequency wing de-

creases to the noise level in a smoother way than the
low-frequency wing. This reflects the fact that the dis-

persion in the maximum frequency reached along each
trajectory is much larger than the dispersion of the mini-

mum frequency. Once again, this is a consequence of the
evolving field intensity, since the maximum frequency is
reached at approximately the switch-on time, when the
intensity is small and saturation effects are not yet im-

portant, so that the relatively small fluctuations of t* in-

duce larger frequency fluctuations. In contrast, the min-
Imum frequency is obtained after the first intensity peak,
where the clustering of the trajectories induced by the
gain saturation strongly reduces the fluctuations due to
the different switch-on times (compare with the results
in Ref. [15]). Therefore the fall of the power spectrum on
the low-frequency side is much sharper than the fall on
the high-frequency side, and this asymmetry in both the
spectrum and its wings prevents a simple definition of the
chirp range in terms of the full width at half maximum
of the power spectrum.

The stochastic character of the chirp range can also
be clearly seen in Fig. 5, where we have plotted, using a
dash-dotted line, t,he relative power fluctuation R at each
frequency,

t (ps)

0.00
20.48
40.96
61.44
81.92
102.40
122.88
143.36

T (ps)

20.48
20.48
20.48
20.48
20.48
20.48
20.48
20.48

fT(t) (GHz)
—139.83
—93.02
-41.71

2.72
53.86
75.83

5.49
—13.83

FT(t) (GHz)
—135.08
—87.26
-39.88

7.02
53.03
76.33
5.45

—13.75

TABLE III. Values of fT(t) and FT(t) on each time inter-

val for transient B (see text).

E(f) being obtained from the FFT of the electric field.
These fluctuations are essentially constant except for two
narrow frequency intervals corresponding to the sudden
falls in the averaged power spectrum. The R reaches
maximum values at f;„—50 GHz and f ~ 100
6Hz. For these frequencies, large relative fluctuations
are observed which describe the important differences in

the contributions to the power spectrum from different

trajectories, and hence the stochastic nature of the chirp

range. Also, the peak on the low-frequency side is much

narrower than the peak on the high-frequency wing, in

agreement with the previous discussion.
In Fig. 6 we have plotted the average of the short-
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veals that the largest frequencies in the two cases coincide
within our frequency resolution. However, the results for
the smallest frequencies are very different. The discrep-
ancy is due to the huge differences in spectral power be-
tween those frequencies, since the spectral power corre-
sponding to the smallest frequency in the short-time win-
dow spectra is three orders of magnitude lower than the
spectral power corresponding to the largest frequency.
The local minimum frequency with spectral power within
one order of magnitude of that of the maximum frequency
appears in the last time interval, after the first intensity
peak, and it is located between 0 and —50 GHz. There-
fore, the large-time window spectrum detects only the
lowest frequency after the first peak of the intensity, ne-
glecting the low-frequency components present at earlier
very low intensities, and as a consequence it reflects only
the quasilinear sweep of the frequency along the first in-

tensity peak, i.e. , the chirp range.
For studying the extent to which these spectra can be

understood in terms of the frequency dynamics defined
by Eqs. (1)—(4), and to discern the phase noise contribu-
tions to the spectra, we have calculated the mean values
of f7 (t) [Eq. (7)] and FT(t) [Eq. (8)], as well as their stan-
dard deviations from these mean values. The results are

shown in Fig. 7. The mean values of the two frequencies
are nearly coincident, and yield a minimum frequency of
—135 GHz at t = 0 (—17 GHz at t = 143.36 ps) and a
maximum frequency of 90 GHz at t = 102.4 ps. These
values are quite similar to those obtained from the short-
time spectra for each interval. The agreement is shown
in Fig. 6, where the dotted vertical line indicates the av-
eraged value of the OIF fT (t).

The differences between the frequencies fT(t) and
FT(t) are evident in their standard deviations. fT (t) has
a large standard deviation around its mean for times be-
fore the mean switch-on time ((t') 100 —120 ps). The
standard deviation has a maximum at t = 20.48 ps, and
then it decreases continuously until (t'). This maximum
may be an artifact of the procedure used, since we start
our simulations from a fixed initial condition of (nearly)
zero intensity, and so we do not consider the fluctuations
in the initial condition. As a consequence, we underesti-
mate the deviations from the mean value in the first time
interval, so the maximum may disappear when they are
accounted for, although we believe that it does not affect
the discussion about the definition of an instantaneous
frequency. In contrast, Fz(t) has a very small standard
deviation around its mean until (t'), where it suddenly
increases and, from this time on, the fluctuations of both
frequencies are equal. Comparison with the linewidths
(taken as the HWHM) of the short-time spectra clearly
establishes that the OIF, f7 (t), gives a close approxi-
mation to these spectra, while FT (t) yields unrealistic
linewidths for times before (t').

An a priori criterion for choosing one frequency or the
other, in the sense of determining which one yields a real-
istic linewidth, is usually provided by the field-field cor-
relation function C(ti, tq) = (E(ti)E"(t2)) . For a cor-
relation function which decreases exponentially with the
time difference ~ti —tz~, the HWHM corresponds to the
inverse of the correlation time deduced from the field-
field correlation function divided by 27r. In the present
case, the correlation function can be explicitly calculated
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FIG. 6. Power spectra averaged over the 2000 transients
obtained by the FFT of the electric field over a short-time
window (T = 20.48 ps), and starting at times (a) 0 ps, (b)
20.48 ps, (c) 40.96 ps, (d) 61.44 ps, (e) 81.92 ps, (f) 102.40 ps,

(g) 122.88 ps, and (h) 143.36 ps. The dashed vertical line

shows the averaged value of the OIF, f~(t), defined by Eq. (7).

FIG. 7. Mean values of the frequencies fT (t) (o) and

Fz(t) (+) defined by Eqs. (7) and (8), respectively. Also plot-

ted are the standard deviations of fT (t) (A) and Fg (t) (x).
The starting times t and the time window T correspond to
those used in the calculation of the short-time spectra. Lines

are guides to the eye.
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for times t~, t2 & f . In this time interval the intensity is

very small, so saturation effects are not important, and

since the carrier number is quite far away from its steady-
state value, noise terms in Eq. (3) can be neglected. In
addition, it is obvious that in this time regime phase noise
will be important. With these approximations, Eqs. (1)—
(4) can be rewritten as

10

10 ——

1.0

[g(N —Np) —p] E+ +PN((t),
2

N =C —p, N, (10)
0 ~ 10 —=

where E = ~Ie'v' is the complex amplitude of the electric
field. ((t) = Q(t) + i(2(t) is a complex Gaussian white

noise of zero mean and correlations given by

0.01 0-

gba
\

I

((;(t)(,(t')) =26;, b(t —t'), i, q =1,2.
The solution to Eqs. (9) and (10) then reads

N(t) = N(0)e ~'+ —(1 —e ~'),
fe

(12)

FIG. 8. Field-field correlation function for times before t',
normalized to its value at y = 0 (i. e. , at equal times): (a)
x = —3, (b) x = —2, (c) x = —1, (d) x = 0, (e) x = 1, (f)
x =2, and(g) x=3.

E(t) = e ~'I~ h(f),
t

A(t) = (1+ in) dt' (g [N(t') —Np] —7), (14)

t

h(t) = E(0) + dt'AN(t')((t')e-"' I '
0

(15)

where E(0), N(0) stand for the initial values of the elec-
tric field and the carrier number, respectively. In the
simulations we have considered E(0) 0, and now we

can calculate the field-field correlation function. Taking
into account that for all times of interest y, t « 1, after
some algebra we find

C (y) = 4p e' " e +" (ki[erf(z —
~y~) + erf(A)]

~a,(.-"' —.-l.-~y~l') }
(16)

where erf(z) stands for the error function [31] and
we have defined z = (p/2) ~ (ti + tq —2t)/2, y

(P/2) I (ti —tg)/2, A—:(P/2) ~ t, P
—= g[C —7,N(0)],

t—:(g[Np —N(o)]+7)/p, &i—:(~/2I )'~'(Np+7/g) and

kg =—g-'.
This correlation function presents a very interesting

behavior, as depicted in Fig. 8, where we have plotted
(C~(y)~, normalized to its value at ti —t2, [C (0)~, as
a function of y, keeping constant z. For short times
[Figs. 8(a) (z = —3), 8(b) (z = —2), and 8(c) (z = —1)],
the maximum modulus of the field-field correlation func-
tion appears at y = 0. For increasing time difference,
the correlation decreases quite rapidly, in a fashion that
closely resembles a decreasing exponential of the time
difference, as can be seen from the linear behavior of
~C (y)~. The exponential loss of correlation for increas-
ing time differences indicates that, in this time interval,
the evolution of the electric field is dominated by noise.
Nevertheless, as one of the times is allowed to reach the
switch-on time [Fig. 8(d) (z = 0) for y ) 2.5], an in-
crease in the field-field correlation is observed. This is
due to the buildup of the electric field from the sponta-

neous emission, which leads to noise amplification and,
as a consequence, to increasing correlation among fields
at diferent times. For greater z [Figs. 8(e)—8(g)], the
field-field correlation increases faster than a simple expo-
nential for moderate values of y, this being the signature
of deterministic amplification of the spontaneous emis-
sion.

The complicated dependence on the time difference

(y) prevents us from taking a simple definition for the
linewidth in terms of the correlation time. Nevertheless,
we can estimate the linewidth and its behavior by con-
sidering the time difFerence necessary for reducing (or
increasing) the modulus of the correlation function by a
factor of 2 with respect to its value at zero time differ-
ence. %'ith this definition, we obtain correlation times of
4.25, 6.4, 10.6, 27.6, 51, 33.15, and 31 ps for curves a—g,
respectively, which correspond to linewidths (defined as
the inverse correlation time divided by 2z) of 37, 25, 15,
6, 3, 5, and 5 GHz, respectively. Though the identifica-
tion of this quantity with the standard deviation in the
OIF is quite arbitrary, the general trend in both cases is
the same (compare with 4 in Fig. 7): it decreases from
a high value to a minimum and then increases again, be-
ing always of the order of several GHz. In contrast, the
behavior of the standard deviation of FT(t) is completely
different, so the inverse correlation time compares much
better with the standard deviation of fT(t) than with
that of FT (t). The good agreement persists throughout
the domain of validity of C (y) (t, t' ( t') and even con-
tinues for somewhat larger times.

The different behavior of the standard deviations of
the two frequencies [Eqs. (7) and (8)] is a clear signature
of the influence of phase noise on the dynamics of the
system, and we can distinguish the two different regions
along the transient previously noted. In the first one,
ranging from t = 0 to t = (t'), the laser linewidth is
dominated by phase fluctuations. As time increases, the
growing intensity makes phase fluctuations less impor-
tant and for t ) (t*) the transient anomalous fluctuations
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determine the laser linewidth.
Finally, in order to obtain a better determination of

the chirp range, we have calculated the maximum value
of f—:(2m) ib, p/b, f in the region of measurable inten-
sity, as well as the minimum value of f after this maxi-
mum, for each trajectory. Averaging, we obtain a maxi-
mum frequency (f „) = 99.0 GHz with a standard de-
viation of 10.1 GHz. The minimum frequency obtained
in this way is (f;„)= —17.8 GHz with a standard de-
viation of 1.4 GHz. These results are in good agreement
with those obtained from the average of the spectra taken
for the total time interval. Very similar results are ob-
tained by averaging the maximum and minimum values
of (4m) ia(G —r), thus confirming that the chirp range
is nearly independent of the phase noise. The reason is
that at the peak the intensity reaches such high values
that the phase noise strength is very small, hence the fre-
quency in this time interval behaves like a deterministic
function of the variables I and ¹

V. CONNECTION BETWEEN CHIRP RANGE
AND SWITCH-ON TIME

From the previous analysis it is clear that the laser fre-
quency at the first peak of the intensity is determined by
the gain, and that phase noise is not important in this
time interval. The deterministic dependence of the fre-
quency on the random variables I and N then establishes
the chirp range for each trajectory. These two variables
form a closed system whose evolution has been shown

[15, 16] to be properly described by a quasideterministic
approximation [32] which allows us to successfully ex-
plain different aspects of the transient dynamics of t,his
system. In particular, it has been shown in Refs. [15]
and [16] that after the switch-on time, the role of the
spontaneous emission noise in the evolution of I and N
can be modeled by a random effective initial condition.
Since in this time interval the frequency can be taken as
a deterministic function of both the intensity and carrier
number, which in turn can be understood as determin-
istic functions of a random variable (either the random
initial condition or the first passage time), we expect a
close relation between the frequency chirp range and the
switch-on time for each trajectory.

We have investigated this possibility, taking the chirp

range tobe f~» —f~;„,where f~» and f~;„stand for the
maximum and minimum values of the frequency in the
region of measurable intensity. The results are shown in
Fig. 9, where we have plotted the chirp range versus the
first passage time t' for each trajectory for different val-
ues of the reference intensity [I„=1000 (e), 5000 (o), and
10000 (x)]. These values amount to —0.4%, 2%, and
4%, respectively, of the asymptotic steady-state value of
the intensity. A linear relation between the chirp range
and t' holds to good approximation, although some scat-
tering of the data is evident. The scattering is reduced
as the reference value for the intensity is increased, and
for I„=10000 it is already nearly negligible. As a con-
sequence, for reasonably small values of the reference in-
tensity, there is a linear relationship between $* and the
chirp range. The chirp range for each trajectory increases
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FIG. 9. Chirp range vs first passage time for different val-
ues of the reference intensity: I„=1000 (e), I„=5000 (o),
and I„=10000 (x), which correspond to 0.4%, 2%, and
4'7& of the final steady-state value, respectively.

linearly with the switch-on time. Hence, the statistical
properties of the distribution of chirp ranges can be im-
mediately deduced from those of the first-passage-time
distribution.

On the other hand, it has been shown that in the ab-
sence of gain saturation the maximum peak intensity de-
pends linearly on the first passage time [15]. Since it
is not clear to what extent this result depends on gain
saturation, we have checked this relation in the present
case. The results are plotted on Fig. 10, and it can be
seen that a linear relation between the maximum peak
intensity and t' is still obtained. The slope is positive,
but it is much smaller than in the case without satura-
tion, indicating that the slope strongly depends on the
saturation parameter 8.

The deterministic relation between chirp range, maxi-
mum peak intensity, and first passage time implies that
the chirp range has to be reduced by increasing the sat-
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FIG. 1D. Maximum value of the intensity during the first
peak of the relaxation oscillations vs first passage time for
different values of the reference intensity: I, = 1000 (~), I, =
5000 (o), and I„=10000 (x), which correspond to 0.4%,
2%, and 47' of the final steady-state value, respectively.
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uration parameter, in agreement with experimental ob-
servations [13]. In addition, it permits a variety of prac-
tical applications in which the selection of one of these
three variables automatically fixes the values of the oth-
ers. Hence a single discriminator set to select pulses of a
particular delay time (particular pulse height) automat-
ically acts to select a subset of pulses with a particular
chirp range and a particular pulse height (delay time).

VI. SUMMARY AND CONCLUSIONS

We have studied the frequency dynamics of single-
mode semiconductor laser transients. We have discussed
different ways to analyze and explain the changes in

the approximately instantaneous frequency of the elec-
tric field and their relation to the experimentally mea-
sured spectra. We have shown that experimental opti-
cal power spectra for a single transient can be explained
in terms of the OIF, fT(f), defined in Eq (7).. The
changes of the maximum in the field FFT power spectrum
taken over relatively short-time intervals correspond to
the frequency dynamics of the OIF which is governed by
Eqs. (I)—(4). When the power spectrum is taken over
time windows long enough to include the first peak of
the intensity, the width of the spectrum corresponds to
the chirp range during the peak.

The influence of phase noise during the transient has
been explored, and we find that it is not important dur.—

ing the first intensity peak. In this time interval, fT(t)
and FT (t) coincide because the intensity reaches such a
high value that the phase noise strength in (3) is negli-

gible in comparison with the deterministic drift of j.As
a consequence, the chirp range during this pulse is es-
sentially independent of phase noise. Nevertheless, since
the frequency of the electric field becomes a deterministic
function of the laser intensity and the carrier number, the
chirp range is a stochastic variable. The randomness of
the chirp range is specially evident in the relative power
fluctuation of spectra taken over long-time windows. It
is also manifest in the short-time window spectra, but in
this case the poor frequency resolution makes it dificult
to detect. As a consequence of the randomness of the
chirp range, the spectral properties of a single transient
can difkr appreciably from the average spectral charac-
teristics.

Finally, we have studied the correlations between the
chirp range and the first passage time for each transient.
A linear dependence of the chirp range on the first pas-
sage time is demonstrated. In addition, the maximum
intensity of the first pulse during the relaxation oscilla-
tions is linearly correlated with the switch-on time. The
correlations permit a single discriminator to select a sub-
set of pulses with similar peak intensities, delay times,
and chirp ranges.
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