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Quantum-noise measurements of Raman amplifiers using an interferometer
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We have measured the quantum noise added to a signal by a Raman amplifier. This was done using a
modified Mach-Zender interferometer with an amplifier placed in each leg. Quantum noise added by the
amplifiers manifests itself by degrading the visibility of the ensemble-average output fringe patterns. The
amount of noise added by the amplifiers is deduced from the degradation of the visibility. The experi-
mental results are compared with both ideal, single-mode amplifier theory and Raman theory. We find
that the Raman amplifier operates near the quantum limit with only a few input photons per mode re-

quired to dominate the noise added by the amplifiers.

PACS number(s): 42.60.Da, 42.50.Kb, 42.65.Dr

I. INTRODUCTION

The role of amplifiers in physics has been studied and
discussed considerably. This is appropriate since the mi-
croscopic phenomena frequently studied emit signals that
must be amplified for observation. One must then be
concerned about whether the output of the amplifier
yields an accurate representation of the microscopic phe-
nomena or if it has been significantly altered during
amplification.

Theoretical work has shown that bosonic linear
amplifiers necessarily add quantum noise to the output
signal [1-4]. (A linear amplifier is a device whose output
modes are linearly related to its input modes). For the
output field to satisfy the commutation relations, noise
must be added during the amplification, or put another
way, noise is fundamentally required by the Heisenberg
uncertainty relation. For large gain the amount of noise
that a linear amplifier will add to a signal will be at least
what one would expect from the amplification of one
quantum per mode at the input of a noiseless amplifier.

Past studies have shown that some real amplifiers can
approach the minimum amount of noise required by
quantum mechanics. For example, amplifiers based on dc
superconducting quantum interference devices (SQUID’s)
[5,6] have noise characteristics that approach the quan-
tum limit. Other experiments using laser gain tubes have
shown that the measured noise power [7,8] is consistent
with the quantum limit. The frequency noise in a four-
frequency laser gyro has also been found to be consistent
with a laser gain tube operating near the quantum limit
[9]. Recent results indicate that fiber amplifiers are ap-
proaching the quantum limit [10]. In a highly sensitive
projection system using both a laser gain tube and a
phase-conjugating mirror, the quantum limit was ap-
proached with only five photons required per resolution
element [11].

In Raman scattering a pump photon is scattered off a
molecule, leaving it in an excited state and emitting a
red-shifted photon, referred to as a Stokes photon. This
process can occur spontaneously, or it can occur via
stimulation from an input Stokes field and thus act as an
amplifier of the Stokes field. Experiments in Raman
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scattering have tended to fit into two distinct categories:
Either they rely on spontaneous Raman scattering for ini-
tiation, where there is no input signal [12,13] to amplify,
or they have such a large input signal [14] that spontane-
ous Raman scattering (noise) is insignificant. The regime
where both spontaneous emission and the input signal
have a signal effect at the output of the amplifier occurs
when the input signal has only a few photons per mode.
Probing this regime is interesting not only because it al-
lows one to rigorously test the full quantum theory of Ra-
man scattering [15,16], but also because it explicitly
demonstrates how good the Raman amplifier is.

In the regime of Raman scattering where both quan-
tum noise and the input field are important, recent work
studying the spatial modes of a Raman amplifier [17] has
shown that approximately 30 photons per mode in the in-
put signal are required for the input signal’s spatial mode
to dominate the output spatial signal for 50% of the
shots. Although this experiment indicates that there is
not an excessive amount of noise introduced in a Raman
amplifier, a comparison of the theory with experiment ap-
pears to be difficult.

In this paper we present results from an experiment us-
ing Raman amplifiers in each leg of a modified Mach-
Zender interferometer [18]. In this experiment small sig-
nals were input to the interferometer, which were then
amplified within the interferometer. The quantum noise
added to the signal during amplification manifested itself
by degrading the ensemble-average fringe pattern from
the interferometer, which was quantified by measuring
the fringe visibility.

We also present theoretical calculations of the fringe
visibility. For simplicity, we first do the analysis using
ideal, single-mode amplifiers. This will show how the
noise introduced by an amplifier degrades the visibility of
the output fringe pattern with a model that can be ana-
lyzed analytically. Additionally, we show what condi-
tions the amplifier must satisfy to minimize the number
of noise photons. Following this, the analysis is extended
to Raman amplifiers, with similarities between the ideal,
single-mode and Raman amplifiers noted. A description
of the experiment performed to measure the fringe visibil-
ity is given in Sec. III. Finally, in Sec. IV, the results of
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the calculations for the ideal, single-mode and Raman
amplifiers are compared with the experimental results.

II. THEORY

To study the noise added by an amplifier, we consider
the experiment diagramed schematically in Fig. 1. A
generator provides a signal for a Mach-Zender inter-
ferometer with amplifiers in each leg. The amplified
fields from each leg of the interferometer are combined at
the exit-beam splitter with a slight angle between the
combined fields to produce a fringe pattern on the screen.

The output field from an amplifier can be thought to
consist of a superposition of the field due to stimulated
emission from the input signal along with the field due to
amplified spontaneous emission [19]. As one would ex-
pect, the amplified spontaneous emission (noise) [20] from
two separate amplifiers is uncorrelated in phase [21], and
therefore the relative phase difference between the com-
bined fields is random from shot to shot, leading to ran-
dom positions of the peaks and troughs in the output
fringe pattern. Since the peak and trough positions are
random from shot to shot, the ensemble average of such
fringe patterns yields a smooth profile.

On the other hand, amplification of the input signal by
stimulated emission preserves the phase of the input field.
Therefore, the amplified fields resulting from stimulated
emission of the input signal have a well-defined phase
difference between the two legs that is dependent on the
interferometer. This leads to fringe patterns that are sta-
tionary from shot to shot. Thus the ensemble average of
the fringe patterns due to the field from stimulated emis-
sion retains well-defined fringes.

In general, the ensemble average of the output fringe
patterns will consist of a smooth profile with a fringe pat-
tern on top [22(a)]. The fringe pattern is attributed to the
amplified signal, while the smooth profile is attributed to
the noise. The larger the field arising from the input sig-
nal relative to the amplifier added noise, the larger the
peaks will be compared to the smooth profile. To obtain
a quantitative measure of the degradation of the fringe
pattern due to the amplifier added noise, we calculated
the visibility V-

— <"f>max_—<f>min
<j>>max—{‘—<f)min ’

where (T ) max is the intensity of the peak of the ensemble
fringe pattern and (T, is the intensity of the trough of
the ensemble fringe pattern. A smooth intensity profile is
one where () ,,,=(T) i, and, as can be seen from Eq.
(1), has a visibility of 0. On the other extreme, a “per-
fect” ensemble fringe pattern is one in which (I)_, =0
and (T),,, is nonzero. Such a fringe pattern has a visi-
bility of 1. For this to happen the phase information of
the input signal has to be preserved on every shot, which
means that the amplified signal must completely dom-
inate any noise added during amplification. As we will
see, this limit is approached asymptotically when the in-
put signals become large.

In the following section we will calculate the visibility

(1)
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FIG. 1. Mach-Zender interferometer with an amplifier in
each leg. The quantum noise added to the signal during
amplification degrades the output fringe visibility.

using ideal, single-mode, linear amplifiers to demonstrate
the technique. Following this, the technique will be ex-
tended to Raman amplifiers. In Sec. IV we will compare
the predictions of both these theoretical treatments to
our experimental results.

A. Ideal, single-mode, linear amplifier

In this section we will consider an idealized amplifier
whose output electric field can be expanded in some set of
modes such that only one mode is significantly populated.
Rather than concern ourselves with the specifics of the
modes chosen, we will simply assume that the operator
characteristics of this field are described by bosonic
creation and annihilation operators.

With these ideal, single-mode, linear amplifiers, we will
calculate the visibility of the interferometer diagramed in
Fig. 1 to demonstrate the role of quantum noise in this
experiment. Using a formalism similar to that presented
by Caves [1], we will describe the single-mode field with
creation and annihilation operators that have the free-
propagation time dependence [exp(*iwt?)] folded out. In
particular, we will choose the model where the amplifier
output mode is linearly related to the input mode by

b,=M,a,+N,, @)

where Ea is the annihilation operator describing the out-
put field of the amplifier, M, is related to the gain of the
amplifier, @, is the input-field annihilation operator, and
ﬁa is the operator governing the growth of noise in the
amplifier, which depends on the amplifier internal modes.
(This is not the most general form for an ideal, single-
mode amplifier, but one that readily demonstrates the
analysis of the interferometric method used to measure
noise.) The subscript a designates the amplifiers in Fig. 1
and can take the values I, II, or G for amplifier I,
amplifier II, or the generator, respectively. Note that
these subscripts do not imply complete independence, for
example, [31,3I1]9&8,,,,. We will assume that the noise
field has random phase, and therefore

(N,)=0. (3a)

Additionally, we assume that the internal modes of one
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amplifier are independent from the internal modes of
another. This assumption along with Eq. (3a) leads to

(NN} =(RIN;) =0, a#B (3b)

and similarly for all other combinations of the noise
operator and its Hermitian adjoint for a#p3.

Since photons are bosons, the input- and output-field
operators of the amplifiers must satisfy the Bose-Einstein
commutation relations

[ag,al]1=1, (4a)

[6,,b11=1. (4b)

a?

One can see that if there were not a noise term in Eq.
(é), the output-field mode would not satisfy the commuta-
tion relation Eq. (4b). Combining Eqgs. (2) and (4), one
finds

(N, NI1=(1—IMm, %), (5)

twhere we have used the independence of the internal
modes of the amplifier from the external, input-field
mode.

Equation (5) provides one condition on the noise opera-
tor, but does not distinguish between low- and high-noise
amplifiers. To see what condition leads to, for example, a
low-noise amplifier, we calculate the expectation value of
the number of photons emitted from one of these
amplifiers:

(biby=IM, Xala, ) +(NIN,) . (6)

The first term on the right-hand side of Eq. (6) is inter-
preted as the amplified signal; the second is the number
of amplified spontaneous emission photons or noise [20].
Rearranging Eq. (5) and inserting it into Eq. (6), one ob-
tains

RN

(blb)=IM Xala )+ (N NI+ |M |>*—1. (7)

The last three terms in Eq. (7) correspond to the number
of noise photons emitted by the amplifier. To achieve low
noise, we wish to find the condition necessary for this
amplifier to emit the minimum number of noise photons
allowed by quantum mechanics. Noting that (1/\7'&]/\? L)
>0, we see that the condition for the minimum number
of noise photons is

(N,NTY=0. (8)

When this condition is satisfied and the amplifier is
operated in the high-gain regime (M, >>1), one can see
from Eq. (7) that the average number of output-noise
photons is equal to the average number of output-signal
photons when there is an average of one photon in the in-
put signal. This is why the noise is said to be equivalent
to at least one photon per mode at the input to a noiseless
amplifier.

No specific operating mechanism has been indicated
here to satisfy the minimum noise condition of Eq. (8),
and so from this analysis it is unclear exactly what
operating conditions in the amplifier are required to
achieve the minimum number of noise photons. Howev-

R. C. SWANSON, P. R. BATTLE, AND J. L. CARLSTEN 45

er, in the following section on Raman scattering, we will
observe that an analogous condition arises and can be
traced to specific operating conditions.

Now, with this model of an ideal, single-mode
amplifier, we calculate the fringe visibility of the inter-
ferometer diagramed in Fig. 1 [22(b)]. To do this we start
with the annihilation operator of the output field of the
generator, and then follow the transformation of the
operator through the interferometer to the output screen.

The output field from the generator is described by the
annihilation operator EG. This field is split by the input-
beam splitter to the interferometer. We will assume the
reflection and transmission coefficients are constant over
the bandwidth of the mode. Then the input-field opera-
tor to the upper (lower) leg of the interferometer is writ-
ten t;bg (riBG ), where t; (r;) is the transmission
(reflection) coefficient of the input-beam splitter [23].
(Since we will employ normal ordering of the field opera-
tors to calculate the intensity, the vacuum-field contribu-
tion from the other port of the beam splitter does not
contribute and can be ignored.)

Using Eq. (2), the output-field operator from the upper
amplifier is

by=M,(1,b;)+N, , 9)

and the output field from the lower amplifier is found by
replacing the subscript I with II and inserting r; for ¢,.
The final output-field operator [l?,m(x )] from the inter-
ferometer can be written

b (x)=rohy +1,by e (10)

where x is a transverse coordinate of the field and ¢, and
ro are the transmission and reflection coefficients of the
output-beam splitter, respectively. The phase factor ¢(x)
results because a small angle was placed between the
combined fields at the output-beam splitter.

The intensity pattern is calculated using the quantum-
mechanical expectation value for the normally ordered
product:

(T(x)=K (b (x)b,(x))

o~

=K(ro|XB 16, +11o|XB 16,y
+rotg “ﬁi’\u >ei¢(X)+r3to(3¥lgl e Ty
(11)

where K keeps the units correct and may include tem-
poral information about the pulse, but is unimportant for
the discussion at hand. We assume good spatial overlap
of the fields from each leg of the interferometer. In Eq.
(11) one sees that replacing the complex transmission and
reflection coefficients with their absolute values shifts the
positions of the maximum and minimum intensity profiles
along the x coordinate. Since the location of the max-
imum and minimum intensity profiles is unimportant in
the visibility calculation, we make this simplification
without affecting the results of our calculations. The ex-
pectation value for the maximum intensity is found by
choosing the position where the phase is such that con-
structive interference results. Similarly, the minimum in-



45 QUANTUM-NOISE MEASUREMENTS OF RAMAN AMPLIFIERS . . .

tensity is found by choosing the position where destruc-
tive interference occurs:

(1) max =K (r3(b 1) +13(b [1by)

+rotod B Iy Y +roto(B 3By )) .  (12a)
<f>mm_K(r(2)(i;IBI ) +t%<b}-IbH)

The visibility is then calculated to be
J

rotoriti(MfM11+MfIMI)(<Z’\EEG>)

1935

_ roto({b 1by )+ (B {ib;))

P35 15) 1346 hby) 1
The visibility is large when the cross correlation between
the two amplified fields is large and is small when the
cross correlation is small relative to the correlation of the
output fields of the amplifiers with themselves. This is
what one expects since only the input signal will sample
both legs of the interferometer and can contribute to the
cross correlation between the two amplified fields.

To see the effects of the amplifier noise, we substitute
Eq. (9) into Eq. (13). Using Egs. (3) and the fact that the
noise operator is independent of the input-field mode, the
following form for the visibility is found:

Note that noise terms do not appear in the numerator
since terms such as (N Iﬁn) are zero. The noise terms
are present only in the denominator where, as one would
expect, they diminish the output visibility. The term
(b gbg ) is simply the expectation value of the number of
input photons to the interferometer. In Eq. (14) one can
see that if zero photons are input into the interferometer,
the visibility vanishes, again the result one would expect.
The visibility increases as one increases the number of
photons input to the interferometer because there is more
signal to compete with the noise.

We consider a specific example of a balanced inter-
ferometer to observe the behavior of the visibility as a
function of the number of photons input to the inter-
ferometer. To balance the interferometer, we let the
gains be equal in the two amplifiers and let both the
input- and output-beam splitters be equal:

M =My=M, (15a)
“vINI):(ﬁIINH)

=(N'N)=(NN ") +|M|*—1, (15b)
L=ty=t, (15¢)
r=ro=r, (15d)

where we have again noted the result of Eq. (5) in Eq.
(15b).

Inserting the above conditions into Eq. (14) leads to a
simpler expression for the visibility:

(6Lbg)
V=-ri=s — :
(bLhbs)+(1—|M| 72+ (NN T))/2¢%2

If the term (NN t) is large, which as we saw above indi-
cates a noisy amplifier, then the visibility is diminished.
Not surprisingly, the condition for maximum visibility
from the interferometer is the same we required for
minimizing the number of noise photons:

V_ ~+ A .
(rtz)ti2|MI|2+ri2t(2)|MHi2)(<bz;bG))+r(2)<ﬁ¥ﬁl)+t(2)(ﬁ¥lﬁll>

(NN TYy=0.

If one chooses a single-mode amplifier with the
minimum noise requirement of Eq. (17), uses beam split-
ters with 50:50 transmission-to-reflection ratios, and goes
to high gain (.e., |M|2>>1), the visibility expression
reduces to the simple form

_ (bGbs)
(bLhg)+2

(17

(18)

Note that with two photons input to the interferometer
(and therefore an average of one photon to each
amplifier), the visibility is 0.5. The visibility as a function
of the average number of photons input to each amplifier
is shown in Fig. 2. This plot shows that even with an in-
put signal of only eight photons (or four photons on aver-
age per amplifier), the output visibility is 0.8, indicating

VISIBILITY

ol t v v b by b by byl
o 1 2 3 4 S 6 7 8 9 10

PHOTONS PER AMPLIFIER

FIG. 2. Theoretical visibility from the interferometer shown
in Fig. 1 with ideal, single-mode amplifiers. The horizontal axis
indicates how many photons on average are input to each
amplifier. Note that very few photons are required to achieve
high visibility.
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that the noise can be dominated with quite small inputs.

In the next section we apply the formalism used above
to the more complicated situation using Raman
amplifiers.

B. Raman scattering

Now we replace the ideal, single-mode, linear am-
plifiers in Fig. 1 with Raman amplifiers and repeat the
analysis. This analysis will show that the procedure used
above works on a real system and, in fact, is essentially
the same. To treat this problem we will employ the fully
quantum-mechanical model of Raman scattering [16,24].
This plane-wave model assumes that a pencil-shaped re-
gion of a Raman-active medium is pumped with a large
classical field. Additionally, the pump laser is assumed to
remain undepleted as it passes through the Raman medi-
um. The slowly varying, negative-frequency Stokes-field
operator is written

E z,n=E 0,7+ fOTdT'E $0,7)B y(z,7,7')

+8Nlz7), (19)
where E {7)z,7) is the field operator at position z in the
Raman cell and at retarded time 7=t —z /c, E (=)0, 7) is
the input Stokes-field operator to the Raman cell, and
N }:( 7) is the noise operator that is independent of the
input-field o %Jerator. The exact expressions for the noise
operator ﬁ (z,7) and the kernel B,(z,7,7') are not im-
portant for the immediate discussion; however, they are
given in the Appendix. As in the example with ideal,
single-mode amplifiers, the subscript a can take the
values I, II, and G to designate amplifier I in the inter-
ferometer, amplifier II, and the generator, respectively.

Before proceeding, we pause to note the similarities of
Eq. (19) for the Raman system and Eq. (2) for the ideal,
single-mode amphﬁer discussed above. The output-field
operator E ("Xz,7) is analogous to b Slm11arly,
E (=)(0,7), the Stokes field at z =0, is analogous to fi as
the input-field operator. There is also a clear analogy be-
tween the noise operators for the ideal, single-mode
amplifier in Eq. (2), N 2;, and the noise operator in the
Stokes field in Eq. (19), NT «2,7). Also, like the ideal,
single-mode amplifier, the Raman Stokes-field equation
satisfies bosonic commutation relations [25]. So, as with
the ideal, single-mode amplifier, the quantum noise added
by the Raman amplifier is required by the commutation
relations and the Raman amplifier can be thought of as a
quantum-limited amplifier. With these similarities it
should not be surprising to find that the analysis using
Raman amplifiers closely follows the procedures above.

It is interesting to note that the antinormally ordered
noise-operator correlation function is (see Appendix)

(ﬁzv‘ﬁ (z',7"))=0

for all values of the variables. For the ideal, single-mode
amplifier, we found that this was the condition that led to
the minimum number of noise photons; thus one would
also expect that the Raman amplifier would emit the
minimum number of noise photons.

(20)
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With the Raman system, however, we know the
operating conditions of the amplifier and can gain an un-
derstanding of why the Raman amplifier should emit the
minimum number of noise photons. The result of Eq.
(20) is dependent on the condition that the Raman system
remains primarily in its ground state. A molecule that
participates in Raman scattering is initially in its ground
state and, after the two-photon Raman-scattering pro-
cess, it is left in an excited state. Thus the condition that
the Raman system remains primarily in its ground state
means that very few molecules of the active medium are
in the final state after the emission of the Stokes photon.

One can get a physical understanding of why the noise
is low in an amplifier that has nearly all of its molecules
in the state that is “ready” to emit photons rather than in
the final state the molecules are in after emission of a
photon by considering a two-level system that has a pop-
ulation in both states. In a two-level system the upper
state is “ready” to emit a photon and the ground state is
the final state after emission of a photon. With more
molecules in the upper state than in the lower state, an
input-signal photon at the transition frequency is more
likely to amplify via stimulated emission than to be ab-
sorbed, a necessary condition for amplification. Howev-
er, any signal photons that are absorbed by molecules in
the lower state are potentially lost from the signal.
Therefore, one would expect that the fewer molecules in
the lower state (i.e., molecules that are available to absorb
the photons of interest), the less noise the amplifier will
emit. One then expects that the lowest-noise characteris-
tics will be achieved when the system is completely in-
verted so that no molecules are in the final state of the
amplifier transition [26].

Since the Raman amplifier we consider is assumed to
have insignificantly few molecules in the final state of the
amplifier transition, one expects that the minimum num-
ber of noise photons will be emitted.

Now, with this model of stimulated Raman scattering,
we proceed to calculate the expected fringe visibility for
the apparatus shown in Fig. 1 following a routine very
similar to the one used in the previous section. Note that
it is assumed that the input field to the Raman generator
is the vacuum field, which does not contribute when the
field operators are normally ordered. Similarly, the
vacuum-field input at the beam splitter does not contrib-
ute in normal ordering, and so it will be ignored.

The output field of the Raman generator is written
E (Lg,7), where Lg is the length of the Raman gen-
erator Assuming that the beam-splitter coefficients are
constant over the Raman linewidth, the input field to the
upper (lower) amplifier in Fig. 1 is t,—E S ALg,T)

[r; E ALg,7)], where t; (r;) is the transmission
(reﬂectlon) coefficient of the input-beam splitter. Using
Eq. (19), the output field from the upper amplifier is
E\7(L,7)=tE(Lg,7)
+ fo’dT' t,E G (Lg,7)By(L,7,7")
+N L, , @21

where L is the length of the Raman amplifiers (assumed
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to be identical in length). The output field from the lower
amplifier in Fig. 1 is the same as Eq. (21) with I’'s changed
to II’s and ¢,’s changed to 7;’s.

The output fields from the two amplifiers combine at
the exit-beam splitter to give

E D (x,r)=roB L)+t E L, m)e ) (22)

Here ¢, (ry) is the transmission (reflection) coefficient of
|

(T(x,7))=

-2;’%;@ (<), 7B () (x, 7))

_277% |r0| (E

+rotd (EVT(L,DE UL, 7)Ye T4 +r¥t (BT
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the exit-beam splitter of the interferometer. As in the
analysis above for the single-mode amplifier, the output
field is now a function of the transverse coordinate x be-
cause the beams have been combined with a slight angle
between them.

The intensity pattern in units of photons per second
emitted from the pumped pencil-shaped region of Raman
medium can now be calculated using the normally or-
dered product:

(L,DE LD+t |XE UL, DE (L)

(L,DE{U(L,7))e*™], (23)

where c is the speed of light and 7wy is the energy of a Stokes photon. Since replacing the complex transmission and
reflection coefficients with their absolute values leads only to an unimportant shift of the fringe pattern along the x
coordinate, we make this simplification. The quantum-mechanical expectation values for the maximum and minimum

intensities are then found to be
Ac

(T(1)) par= Zﬂhws[r%,<ﬁ‘;’(L,T)E}*’(L,T)Htg()@‘I;’(L,T) (F(L,7))

+roto{ B \TUL,7)E UL, 7)) +toro E T UL, ME UL, 7)) ], (242)
(F(7)) = 21:; PCE L, DB L)) + 12 B L, 1B AL, 7))

—rotod B UL, DE (L, 7)) —toro B \TUL,DE (UL, 7)) ] . (24b)

Note the similarity between Egs. (24) and (12) in the
ideal, linear amplifier section.

From our experiment the fringe pattern from the inter-
ferometer was imaged onto a linear diode array. The
diodes in the array integrated the intensity over the dura-
tion of the pulse. Therefore, to obtain theoretical predic-
tions appropriate for the experiment, Egs. (24) were in-
tegrated over the pulse. Consequently, the expression for
the visibility ¥, can be written

]

pulse
V. =

pulse f

pulse

(B1) and7— [

pulse

(f(f))max-f-f 1 (T(7)) pind T
pulse

(T(7)) pud T

(25)

Note that Eq. (25) is similar to Eq. (1) except that the
effects of the pulse duration are now included.

Thus using the “real” Raman amplifiers in the experi-
mental setup diagramed in Fig. 1 is very similar to using
ideal, single-mode amplifiers. To find quantitative values
for the visibility, numerous integrals had to be evaluated.
Additionally, we were particularly interested in the
slightly different experimental setup shown in Fig. 3. The
only changes that were needed to calculate the expected
visibility from the interferometer shown in Fig. 3 were
the inclusion of more beam splitters, which was straight-
forward and is discussed in the Appendix. In the next

[

section we describe the experimental details of the
fringe-visibility experiment diagramed in Fig. 3. The
comparison of the theoretical and experimental results
are presented in Sec. IV.

RAMAN GENERATOR
Lﬂ/j/ﬁ RN
OPTICAL DE::E7:>

SINGLE MODE A
No:YAG LASER |

| N

! ,_/U
ETALON

ey

Y
-

FIG 3. Nearly cyclic interferometer with a Raman amplifier
in each leg. One path in the interferometer is shown with a
dashed line, the other solid. The output fringe patterns are im-
aged onto a linear photodiode array with 25-um resolution for
data collection.
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III. EXPERIMENT

In this section we describe the experiment performed
to measure the output visibility from an interferometer.
The experimental apparatus is diagramed in Fig. 3. Be-
fore proceeding into the details, one should note that the
experimental apparatus diagramed in Fig. 3 is essentially
the same as the Mach-Zender interferometer shown in
Fig. 1. A generator provides a signal to an interferometer
with amplifiers in each leg. The output fringes are im-
aged onto a linear diode array for data collection. The
only difference from Fig. 1 is that in Fig. 3 the inter-
ferometer has a cyclic geometry for improved stability
over the standard Mach-Zender interferometer.

With this in mind, we proceed with a detailed descrip-
tion of the experiment diagramed in Fig. 3. A pulsed,
near-single-mode, frequency-doubled Nd:YAG laser (532
nm) with a 21.6-ns full width at half maximum Gaussian
temporal profile was used to pump the Raman amplifiers.
The Raman scattering was done in 10 atm of H, on the
vibrational Q,(1) transition at room temperature. For
this system the dephasing time for the Raman medium
was 1/I'=0.7 ns [27], considerably shorter than the
pump duration, which meant that collisional effects were
important.

An étalon was used to monitor the pump-laser stability
to ensure that no mode hops occurred during data collec-
tion. Additionally, an energy meter that was interfaced
to a computer (not shown in Fig. 3) provided energy mea-
surements of every pump-laser shot. The output Stokes
signal that was input to the interferometer was varied by
placing pump attenuators in front of the Raman genera-
tor (not shown in Fig. 3).

After the pulse exited the generator, the residual pump
was removed from the beam with a modified Pellenbroca
prism, and then additional pump energy needed for the
amplification in the interferometer was added to the
beam. No temporal delay was introduced between the
Stokes pulse and new pump pulse. The optics necessary
for beam manipulation between the generator and inter-
ferometer transmitted approximately 68% of the Stokes
signal.

To achieve equal gain in the two amplifiers, the input-
beam splitter to the interferometer had a 50:50
transmission-to-reflection ratio at the pump wavelength
to within a percent. The pump intensity input to the
amplifiers was always large enough to achieve high gain
(the signal was amplified by approximately ten orders of
magnitude for small input signals), but not so large as to
lead to pump depletion.

Both the input- and exit-beam splitters of the inter-
ferometer had a 78:22 transmission-to-reflection ratio at
the Stokes wavelength (680 nm). For the total output
field of the interferometer to obtain equal contributions
of amplified signal from each leg, the Stokes field that was
transmitted (reflected) as it entered the interferometer
was reflected (transmitted) at the exit-beam splitter.

In the near-cyclic design of the interferometer shown
in Fig. 3, most of the optics in the interferometer were
common to both beam paths. Consequently, slight shifts
in the optics positions affected both beam paths identical-

ly and therefore did not affect the relative phase between
the two beams. The cyclic design greatly increased the
stability of the interferometer, which was critical since
the beams traversed approximately 70 m in each leg of
the interferometer. One beam path is shown as a dashed
line in Fig. 3 to differentiate it from the other. Note that
each beam was amplified in a separate Raman amplifier
placed in a multipass cell. The multipass cells limit the
amplification to a single spatial mode. After the beam
was amplified, it encountered a modified Pellenbroca
prism before entering a second amplifier. This removed
the residual pump energy from the pulse so that no addi-
tional amplification occurred in the second amplifier. To
ensure that the amplification of the two pulses was in-
dependent, the beam path between the two amplifiers was
made long enough that the two pulses never overlapped
inside an amplifier. The residual pump beams removed
from the beam by the modified Pellenbroca prism were
monitored with fast photodiodes (not shown in Fig. 3) to
make certain that no pump depletion occurred during
amplification.

For additional beam manipulation at the expense of
only a slight loss of stability, identical ‘“‘pickoff”” beam
splitters were used. These optics had transmission-to-
reflection coefficients ratio of 50:50 at the Stokes wave-
length and mark the ends of the cyclic region of the inter-
ferometer in Fig. 3.

The output fringe patterns were imaged onto a linear
photodiode array with 25-um resolution that was inter-
faced to a computer, allowing the fringe pattern from
every shot to be recorded. Ensembles of these fringe pat-
terns could then be formed and the resulting visibility
measured.

The visibility of the ensemble fringe pattern is a func-
tion of the input signal, which is dependent on the
pump-field input to the Raman generator. To clarify the
significance of our results, we used the quantum-
mechanical theory of stimulated Raman scattering [16] to
calculate the number of photons emitted from the Raman
generator for various input pump energies.

Then, including the effects of the transmission of the
optics between the Raman generator and interferometer
(68% transmission) and the two beam splitters a beam en-
counters before reaching an amplifier [28], the average
number of photons reaching an amplifier was calculated.
Finally, we estimated the number of Stokes temporal
modes that had a significant population of photons to be
the ratio of the pump linewidth to the Stokes-gain-
narrowed linewidth. Because of gain narrowing [29], this
ratio becomes smaller at large gains in the generator. For
example, the ratio ranges from 22.3 for spontaneous Ra-
man scattering at extremely low gain to around 4 at large
gains. In this manner the input signal was transformed
to units of number of input photons per mode per
amplifier.

IV. RESULTS AND CONCLUSIONS

In Fig. 4 we present the ensemble average of 284 fringe
patterns when no input Stokes signal was put into the in-
terferometer. As one would expect, there is no well-
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FIG. 4. Ensemble average of 284 fringe patterns when no in-
put signals were input to the interferometer. This fringe pattern
is washed out since the two output fields from the interferome-
ter are uncorrelated. The measured visibility is 0.06.

defined fringe pattern. However, as the input signal to
the interferometer is increased, the fringe pattern devel-
ops. For example, in Fig. 5 an ensemble of 832 fringe
patterns with an average of 0.13 photons per mode per
amplifier shows well-defined fringes on top of a smooth
background. As noted above, the fringe pattern can be
thought to arise from the stimulated signal, and the
smooth background is the result of amplified noise in the
amplifiers.

As the input signal is increased further, the amplified
signal becomes more dominant, as shown in Fig. 6 with
an input of 0.59 photons per mode per amplifier and Fig.
7 with an input of over 100 photons per mode per
amplifier where the noise is quite well dominated.

The measured visibility of Fig. 4, which consists entire-
ly of noise, is nearly zero (¥ =0.06). The visibility of the
fringe pattern in Fig. 7 where the noise is quite well dom-
inated approaches 1 (¥ =0.95). The effect of the Gauss-
ian envelope has been folded out of the visibility measure-
ments. These plots demonstrate how the output visibility
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FIG. 6. With an average of 0.59 photons per mode input into
each amplifier, the ensemble-average fringe pattern has a visibil-
ity of 0.30. There were 644 shots included in this ensemble.

is quantitatively related to the relative amount of noise in
the output pulses of the amplifiers.

Figure 8 shows the experimentally measured visibility
(X’s) as a function of the average number of photons per
mode input to the amplifiers. The solid curve in Fig. 8
represents the theoretical results from Raman theory.
For comparison, the results for the same interferometer
using ideal, single-mode amplifiers in place of the Raman
amplifiers are shown as a dashed line. Note the similarity
between the results when using ideal, single-mode
amplifiers and the results when using Raman amplifiers.
As one would expect, the visibility goes up as the number
of photons per mode input to the amplifiers increases.

One may note that the experimentally measured visibil-
ity in Fig. 8 appears to rise more steeply than the theory.
This may be due to slight variations in the pump tem-
poral width that occurred during the data collection.

Additionally, the experimental data appear to ap-
proach asymptotically a maximum visibility somewhat
lower than what theory predicts, which could be caused
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FIG. 5. Small fringes are visible on this ensemble of 832
shots with an average of 0.13 photons per mode input into each

amplifier. The measured visibility of the ensemble average was
0.09.

FIG. 7. Quantum noise is almost completely dominated, as
shown by the deep fringe pattern. Over 100 photons per mode
were input into each amplifier on average, resulting in a mea-
sured visibility of 0.95. There were 188 shots included in this
ensemble.
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tons per mode in each amplifier in the interferometer shown in
Fig. 3. The X’s indicate experimentally measured points, the
solid line shows results from Raman-scattering theory, and the
dashed line indicates the results one would expect if ideal,
single-mode amplifiers were used. Note that very few photons
are needed in each amplifier to achieve good visibility.

by an imbalance in the interferometer. To test the inter-
ferometer we periodically measured the visibility with no
pump supplied to the amplifiers, thus making the
amplifiers passive. These measurements yielded an aver-
age visibility of 0.96, very near the asymptotic value the
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experimental data appear to approach.

In conclusion, the above data indicate that the noise
added in Raman amplification is in agreement with what
is predicted theoretically by the theory of Raymer and
Mostowski [16]. Since the noise emitted by the amplifiers
is fundamentally required by the Heisenberg uncertainty
relation, the Raman amplifier is an example of a
quantum-mechanically limited linear amplifier. And
finally, the interferometric method outlined above is a
practical method to measure the noise characteristics of
light amplifiers, providing easily interpretable results.
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APPENDIX

In this appendix we give the complete expression for
the Stokes-field operator equation as well as the needed
expectation values of operator products that arise in the
analysis. Additionally, the expression used to calculate
the visibility of the experiment diagramed in Fig. 3 is
presented. Finally, we provide details not given in the
text necessary to duplicate our results.

The full expression for the Stokes-field operator equa-
tion is [16,24]

E 7 (z,r)=E 0,7+ fozdz' 0 lz',004,(z,2",7)+ fo’df'ﬁ (=)0,7')B 4 (z,7,7")

(A1)

where E (a_)(z,r) is the negative-frequency field operator at position z in the Raman cell, E (=)%0,7) is the input
negative-frequency field operator to the Raman cell, 1) Z(z’,O) is the initial atomic polarization operator at position z’
and F L(Z',T') is a quantum Langevin operator needed to maintain operator consistency when collisional dephasing is
included [24]. By comparing Eq. (A1) with Eq. (19), one can see that the second and fourth terms of Eq. (A1) corre-

spond to the noise operator in Eq. (19). The kernels in Eq. (A1) are [16,24]

A (2,2",7)=—iKE,,(T)e T[4k Ky(z —2")po(T)]

B (z,7,7")=(Kk Kz )l/zEpa(T)e “HTmTEX (1)

Colz,2',7,7)= =ik, E,o(T)e """ L ({4K ky(z —2")[p (1) —po(7)]}1/?) .

Here «, and «k, are constants that depend on the strengths
of the transitions [30], T is the Raman-medium dephas-
ing rate, z is the coordinate labeling the position along
the pumped, pencil-shaped region of the Raman medium,
7 is the retarded time (7=t —z/c), and I, and I, are
modified Bessel functions. E,,(7) is the classically treat-
ed pump field (assumed to be large) and p,(7) is defined
by

PolT)= foTlEpa(T”)|2dT" .

In our analysis we normally order the field operators to
calculate the expectation value of the intensity pattern.

12y (A2)
I 4 _ ’ 172
({2 [pal D) =Pal T} ) (A3)
(Po(T)—po(T)]?
(A4)

With this ordering the only nonzero noise-operator corre-
lation functions are

(0 1(2",0004(2",0)) =(AN)18(z'—2")8,, 4 , (AS)

T ’ ’ I n rr —— 2F r__ 1 S 1"
(Flz',mFglz,m) = —8(z' =287 =718 5

(A6)

Here A is the cross-sectional area of the pencil-shaped re-
gion pumped in the Raman cell and N is the density of
molecules in the Raman medium. Equation (AS5) states
that the initial polarization fluctuations at one location in
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the Raman medium are uncorrelated with the polariza-
tion fluctuations at another location. Similarly, Eq. (A6)
states that the quantum-statistical collisional effects in
the medium are uncorrelated position to position and
time to time. The Kroneker & functions simply indicate
that these fluctuations are also uncorrelated between
different Raman amplifiers, as one would expect. Recall
that the noise operators in the ideal, single-mode, linear
amplifier were also uncorrelated between different
amplifiers.

The antinormally ordered correlation functions of the
operators governing the growth of the noise are

(0,(2,00 };(z’,O))=0 ,
(F,(z',7)F }(z",7"))=0 .

(A7)
(A8)

One can see that Egs. (A7) and (A8) lead to the result
[Eqg. (20)] that the expectation value of the antinormally
ordered noise operator given in Eq. (19) is 0. As was not-
ed in the text, these results assume that the Raman medi-
um remains primarily in its ground state throughout the
interaction with the radiation fields.

In the analysis presented in the discussion above, the
derivation of the expressions for the visibility were for the
ideal Mach-Zender interferometer presented in Fig. 1.
Here we present the fairly straightforward changes in the
formalism needed to model the experiment diagramed in
Fig. 3.

Since the interferometer shown in Fig. 3 is nearly cy-
clic, both beam paths experience most of the optics in the
J

lroto[f (E{7(L,7E {U(L,7) >dr+f

pul se

V

interferometer, which makes the interferometer fairly in-
sensitive to vibrations and thermal variations. Additional
beam splitters, which we refer to as “pickoffs,” allowed
easy beam manipulation, but also led to a loss of signal
input to the amplifiers that needed to be accounted for.
Another loss of signal that needed to be included in the
formalism came from the optics necessary for beam align-
ment between the generator and interferometer. The loss
from these optics was treated as an attenuation beam
splitter between the generator and interferometer. In-
cluding the losses from the beam splitters into the formal-
ism for calculating the total output field from the inter-
ferometer gives

E io—t )(x,T)=t0rp1E (1~)(L,T)+r0rp22 (H— )(L’T)eiaﬁ(x) ,

(A9)

where 7, (r,,) is the reflection coefficient of the pickoff
optic in front of the upper (lower) amplifier in Fig. 3.
Similarly, the input field to the upper (lower) ) amplifier is
found to be t,r,t, B G (Lg,7) [t4t;t,E T (Lg,m)]
where t,; [t,,] is the transmission coefficient of the
pickoff optic in front of the upper (lower) amplifier and
t, is the transmission coefficient that accounts for the
loss between the generator and interferometer. All the
beam-splitter coefficients are assumed to be constant
across the Raman linewidth. Thus the inclusion of the
extra optics affects the output fields only by scale factors.

Using normal ordering, the visibility was derived as in-
dicated in Sec. III to get

E{(L,NE L, 7))dr

pulse = r oy f
0
p2 puls

Inserting the full expressions for the amplified and gen-
erator fields as given in Eq. (A1) into Eq. (A10) leads to a
plethora of terms that need to be evaluated to find the
visibility. Since there are no serious complications in-
volved in the evaluation of Eq. (A10) when the full ex-
pression for the Stokes field is inserted and because the
calculation is rather arduous, the details will not be given
here.

The calculation of the visibility is reduced to the evalu-
ation of several integrals. The integrations over the spa-
tial coordinate can be done analytically [32], but in gen-
eral, numerical techniques are required for the temporal

(E(_’ L,nE (L, ‘r))d‘r+r21t(2,f

(A10)
TAL,7E UL, 7))dr

integrations.

To obtain quantitative predictions using the above for-
mulas, the additional parameters listed below are needed.
The effective cross-sectional area pumped by the pump
laser was calculated [14] to be 4.25X 1073 cm?, and the
effective length of the Raman generator (amplifiers) was
(were) calculated to be 1665 cm (1860 cm) [14]. To model
the high gain in the amplifiers in the interferometer, the
pump energy input to the amplifiers was taken to be ap-
proximately 0.37 mJ The plane-wave gain coefficient
[27] (@=2.5X 1072 cm/W) was used to calculate [30] the
coupling constants.
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