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The theory of a two-mode nondegenerate parametric amplifier in a cavity is reformulated in terms of
quadrature-phase-amplitude variables. The corrrespondence with a genuine classical stochastic linear
process is found (non-negative-definite diffusion matrices) for the case of a cavity device immersed in
thermal or ordinary (nonsqueezed) vacuum sources. A special kind of squeezing, i.e., quadrature squeez-
ing [B. L. Schumaker, Phys. Rep. 135, 318 (1986)], is found to be characteristic of the internal steady
state for the case of a cavity model subjected to an additional phase-sensitive noise source coupled to one
of the two internal modes. Finally, the usual squeezing spectrum of the output field is calculated in both
cases by means of an input-output formalism based upon a symmetric ordering scheme of noncommut-
ing operators, well adapted for the quadrature-phase description of the fields involved in the interaction.

PACS number(s): 42.50.Dv, 42.50.Kb

I. INTRODUCTION

In the past few years there has been active research on
the role of stochastic differential equations for the
analysis of the reduction (squeezing) of noise in optical
devices generating ‘“‘nonclassical” states of the radiation
field. More recently the related problem of the input-
output relationships for quantized light emerging from
resonant cavities has been the subject of several studies
[1].

The reduction of quantum noise carried by one of the
two conjugate quadrature components of the light field
may be interpreted in terms of negative diffusion
coefficients in a formally classical (c-number) set of
Langevin-type equations. This set of equations which en-
compasses the quantum dynamics is obtained via a
Fokker-Planck equation for the well-known quasiproba-
bility P-distribution function, following the conventional
steps of the quantum-classical correspondence theory
[2-4], one of the cornerstones of quantum optics, and is
extensively developed in the quantum theory of the laser
and nonlinear-optical processes [5,6].

This formalism makes use of the intracavity creation-
annihilation mode operators and their classical phase-
space images (the mode-amplitude complex variables) as
the basic variables. The failure to obtain positive-definite
diffusion matrices does not diminish the usefulness of this
class of stochastic equations: There is a well-established
theoretical recipe, the phase-space representation theory
based upon the so-called positive-P distribution [7], by
which the dynamics may be reformulated as a unique set
of stochastic differential equations with positive diffusion
coefficients in an extended double-dimension phase space.
Moreover, a well-established albeit not intuitive recipe
for the calculation of the output squeezing spectra in
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terms of the internal cavity spectrum has been developed,
which rests upon a particular scheme of ordering (normal
and time ordering) of two-time second-order correlation
functions for the basic intracavity mode operators.

The positive-P formalism is especially relevant when
explicit nonlinearities are present in the equations of
motion since the obtained nonlinear c-number Langevin
equations are easier to handle than the equivalent quan-
tum counterpart, i.e., the Heisenberg-Langevin operator
equations.

It has long been emphasized [9] that the variables to be
used for the description of quantum noise emerging from
two-photon optical devices (i.e., parametric oscillators,
two-photon lasers, etc.) should be the quadrature-phase-
amplitude operators instead of the creation-annihilation
photon operators. While the latter are tailored to ac-
count for one-photon optical devices, the former are the
natural variables when the field consists of pairs of corre-
lated photons.

In this paper we adopt this point of view as applied to
linear (subthreshold) two-mode parametric amplifiers.
The systematic use of quadrature-phase operators has a
threefold advantage. First, the problem of negative
diffusion does not appear in the classical correspondence.
Second, and most important, this formalism gives a
definite and simple recipe to calculate the out-of-the-
cavity squeezing spectrum, leading to a clear picture of
the important problem of the relation between intracavity
and output spectrum of noise. Third, the same recipe is
used to account for squeezed input fields entering the
cavity amplifier. Furthermore it might be automatically
extended to other two-mode two-photon quantum-optical
devices.

The paper is organized as follows. In Sec. II the non-
degenerate two-mode parametric amplifier within the
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nondepleted pump approximation is considered. Since
the problem to be considered is basically a linear one, the
dynamics can be directly stated in the frame of linear
quantum Heisenberg-Langevin equations for the quad-
rature-phase-amplitude operators. Two different kinds of
coupling of the internal modes to the outside reservoir
fields are considered: the usual ordinary vacuum or
temperature-dependent thermal field and a phase-
sensitive reservoir [10], which may be used as a physical
realization of a broadband squeezed multimode vacuum
to which the cavity is eventually coupled through a
second cavity mirror.

In Sec. IIT the isomorphism with a genuine classical
stochastic process is discussed. The choosing of
quadrature-phase amplitudes is shown to lead to well-
behaved (positive-definite) diffusion matrices.

Finally, in Sec. IV, the spectrum of squeezing is calcu-
lated outside the cavity by means of an input-output for-
malism tailored to the quadrature-phase physical picture
of the process. Our main emphasis is the method itself.
A well-defined scheme to calculate the out-of-the-cavity
squeezing spectrum is proposed which is free from the
difficulties associated with time-ordering problems
present in the usual scheme of mode-amplitude operators.
This provides also an intuitive and physically appealing
way for the explanation of why full squeezing may be
measured outside an ideal parametric amplifier in spite of
the limited amount of intracavity squeezing.

Furthermore the same recipe allows the inclusion of
broadband squeezed inputs and interesting results are ob-
tained when it is applied to a cavity device coupled to a
second broadband squeezed reservoir. The analysis
shows that in this latter case, the output spectrum corre-
sponds to an internal state with nonstationary
quadrature-phase noise.

II. HEISENBERG-LANGEVIN EQUATIONS
FOR THE TWO-MODE
QUADRATURE-PHASE AMPLITUDES

A. Cavity amplifier coupled
to an ordinary vacuum field

The model to be considered is a system of two
resonant-cavity modes at frequencies 1+v, coupled by a
nonlinear intracavity medium through the action of a
pumping field considered as a classical coherent field at
frequency Q. We write the model Hamiltonian as

H=H,+H,+H, (2.1)

where

H,=H,+H'(1)=#Q+v)ata, +#Q—v)ata_
+iﬁga1at exp(—2iQ¢)+H.c. (2.2)

is the free field plus the intermode coupling Hamiltonian.
The free-bath and system-bath Hamiltonians are added as

4
H,=73 ﬁwlac{acla + i€ 24C 24 (2.3)
a
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and

Hy, =3 fik\,cqaly + 3 fikyperea’ +Hee,  (2.4)
a a

where it has been assumed that the system modes decay

into nonoverlapping distinct uncorrelated baths referred

to by the subscripts 1 and 2, and hence it is required that

either of the cavity linewidths are small compared with

both the cavity spacing and the signal-idler detuning v.

Starting with the exact Heisenberg evolution equations
for the system and bath modes, a set of Heisenberg-
Langevin quantum equations may be derived assuming
that the correlation times of each of the independent
baths to which the system modes are coupled are
sufficiently short so that the interaction with the baths
may be considered as Markovian.

The method to derive these equations is widely known
(see, for example, Refs. [2-4], and references therein) and
we do not repeat it here. The only point is that here we
deal with two mutually interacting modes, with an in-
teraction Hamiltonian quadratic in the mode creation-
annihilation operators, which is sufficient to ensure that
the resulting Heisenberg-Langevin equations are linear.
To be explicit we obtain

o= —lviy a0+l 04T 0, @sa)
da_ + ~
ar =(iv—y_Ja_@)+y_al()+T _(2) (2.5b)

where y+=1rg(a)+)lk1(a)+)|2 is the decay constant for
the side mode at frequency w,=Q+v, the density of
bath modes around w, being g(w, ), and an analogous
expression may be obtained for y _. The noise operators
['.(¢) may be formally written in terms of initial bath
operators:

f+(t)=-i2klaexP['—i(wla_Q)t]cla(O) (250)
a

and a similar expression may be written for ' _(z). As-

suming a dense distribution of bath modes around the

side-mode frequencies w, =Q+v, the correlation func-

tions for these Langevin forces may be readily approxi-

mated as the well-known white-noise 8-correlated func-
tions [11]:

(T L _(¢"))=(T ()T (") =(T_()F _(t")) =0,
(2.6a)

(DLNT L) =expl —iv(t —t) 2y 17,8t —1') ,
(2.6b)

(CLOT L)y =expl —ivit — 1) ]2y L(1+7,)8(t — )
(2.6¢)

where 7. denote the temperature-dependent spectral
density of photons at the side-mode frequencies. Here we
assume a reservoir field in an ordinary vacuum or
thermal state coupled to the cavity through a single
transmitting mirror, the photons that escape away from
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the cavity being the only source of losses for the internal
field.

Without loss of generality we can assume that both de-
cay constants are equal: y,=y_. The Heisenberg-
Langevin equations [Egs. (2.5a) and (2.5b)] have been
written in terms of the slowly varying operators
a,(t)=exp(iQt)a,(t), which eliminates the high-
frequency oscillation at the “carrier” frequency . We
may then rewrite these equations in terms of the slowly
varying quadrature-phase amplitudes (relative to the os-
cillation at “modulation” frequency v) [9]:

Z,=Z (explivt)=[A @, (t)+A_a ' (t)]explivt) ,
(2.7a)
Z,=2Z,(t)explivt)

=[—ik,a, (t)+ir_a  (1)]explivt) (2.7b)

where A, =V(Q+v)/2Q. Although the constants A,
deserve some discussion (in connection with the definition
and experimental relevance of quadrature-phase ampli-
tudes [9,10]), we will, for the sake of clarity, maintain at
the beginning the exact formulas that follow from this
definition and, eventually, the approximation v/Q=0
will be systematically adopted (see Sec. IV), which is valid
for modulation frequency displacements v of the cavity
modes far below the optical range.

It is easy to transform the above Heisenberg-Langevin

equations into the following ones, involving the
quadrature-phase-amplitude operators:

dz, .

- —v(1—0)Z,—iyo(v/Q)Z,+T'(t), (2.8a)

dz, )
—d[—=—y(1+0)22—zy0(V/Q)Zl+F2(t) (2.8b)

where 0 =(g /y)[1—(v/Q)*]” /% is the pumping param-
eter, and g has been assumed to be real for reasons of sim-
plicity.

Taking into account Egs. (2.6a)-(2.6c) with 7
=n_ =n, the transformed noise operators I';(¢) (i =1,2)
are found to have zero averages, and correlation func-
tions are given by

(rieHr(n=—(riuHryn)

=—iy[1—(v/Q)(1+2m)]8(t —t') , (2.9a)
(T (Te")=— (T, ()T ("))
=iy[1+(v/Q)(1+27)]8(t —1"),  (2.9b)
(ri(e)r,0)y =<l (1)
=y[(1+27)—(v/Q)]8(t —1t") , (2.9¢)
(TyT)y =(T()l (¢")
=y[(1+27)+(v/Q)18(t —1") , (2.94)
(LT (¢"))=0. (2.9¢)

We note in turn that a 2X2 complex diffusion matrix
may be defined by
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(DADTL()) =Dy 82 —1") (2.10)

(where the “sym” denotes symmetric averages), and
therefore becomes the following Hermitian matrix:

y(1+27) iy(v/Q)(1+27)
D, = , 1D

§ —iy(v/Q)(1+2m) y(1+27)
that is, a positive-definite Hermitian matrix, with positive
eigenvalues:

A=y(1+27)(1+v/Q) . (2.12)

It may also be easily proved [11] that these correlation
functions just ensure the time invariance of the equal
time commutator algebra for the quadrature-phase am-
plitudes:

(Z,(0,Z}(0]1=[Z]),Z,()]=i , (2.13a)
(Z,(),Z}(D]=[Z,(1),Z}()]=v/ , (2.13b)
[Z,(1),Z,(D]=0. (2.13¢)

Some comments about Egs. (2.8a) and (2.8b) are in or-
der. First of all it has to be taken into account that be-
cause of operator ordering, the change in the picture
from mode-amplitude operators a.. to quadrature-phase-
amplitude operators Z,; , does not only involve a linear
change of variables. In fact the Heisenberg-Langevin
equations (2.8a) and (2.8b) will be shown in the next sec-
tion to be entirely equivalent to a classical Ornstein-
Uhlenbeck process for two coupled complex variables
(which are the classical c-number counterparts of the
quadrature-phase-amplitude operators), once a definite
(i.e., the symmetric) ordering scheme (relative to quadra-
ture operators) is adopted.

The key point is that, when we adopt such a scheme, a
classical stochastic picture emerges for the quantum pro-
cess (see Sec. III): intermode parametric gain (modeled
with the coupling constant g), associated with the semi-
classical deterministic dynamics tends to redistribute the
vacuum quadrature noise between orthogonal quadrature
components, while the noise source appears in the classi-
cal Langevin equations just as it does in the quantum
description, that is, it depends entirely upon the vacuum
fluctuations of the bath and not on the coupling constant
g

It may now be understood, at least in part, why the
usual formalism based upon mode-amplitude variables
fails to allow a physical description in terms of a classical
diffusion stochastic process: the intracavity coupling be-
tween modes a; develops purely quantum intensity cross
correlations between them that eventually (once the
steady state is reached) becomes stronger than individual
self-correlations into each mode separately. This frame is
thus suited to a photon-correlation view of two-mode
squeezing but is entirely foreign to a phase-space descrip-
tion in terms of c-number classical amplitudes: in fact,
no classical positive diffusion (with a source of real noise)
process describing a two-mode coupling process between
complex-mode field amplitudes may violate the classical
Schwarz inequality [12]. No equivalent violation is ap-
parent when quadrature-phase-amplitude variables are
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taken at the basis of the physical description and there-
fore this allows us to infer that quantum squeezing in this
linear device (below threshold parametric oscillator) is
essentially similar to the ““classical squeezing” of noise re-
cently reported [13].

B. Amplifier coupled
to a second phase-sensitive reservoir

The role of phase-sensitive reservoirs has been recog-
nized recently to be important in connection with the be-
havior of quantum-optical systems in a broadband
squeezed-vacuum environment [14,15]. Phase-dependent
reservoirs give rise, as opposed to a broadband ordinary
multimode vacuum, to some additional phase-dependent
correlation functions that reflect the nonstationary and
nonuniform, phase-dependent distribution of the noise in
the reservoir.

Here, we consider two resonant modes of a high-Q cav-
ity in a ring configuration. The coupling to a squeezed
reservoir field is now modeled to resolve a definite physi-
cal problem: a nondegenerate parametric amplification
process occurs inside the cavity with two mirrors cou-
pling the cavity to the outside world: the first mirror (see
Fig. 1) transmits photons at both of the cavity resonant
frequencies into an ordinary vacuum environment and is
assumed to be the port used for the measurement of the
emerging squeezed field while the second is fed by a
broadband squeezed-vacuum field centered at one of the
two internal frequencies. It is supposed, furthermore,
that mirror D is frequency selective in its transmission
coefficient, allowing the leakage of photons only in the
frequency band around the lower cavity resonance o _.

As the loss through any unused port is well known to
degrade the maximum obtainable squeezing, it is interest-
ing to answer quantitatively how much the proposed de-
vice would compensate this undesired effect.

We assume therefore that there are now present two
kinds of out-cavity reservoir field modes (operators ¢ and
d refer, respectively, to the mode operators of the quan-
tized reservoir vacuum fields reflecting at mirrors C and
D in Fig. 1), so that the relaxation associated with the
transmitting mirrors C and D is written

4 \L——m
\ /.f/

FIG. 1. Schematic representation of the device considered
here. The phase-insensitive vacuum fluctuations are considered
to enter the cavity through mirror ¢ and the output spectrum of
squeezing is measured at a right angle. The mirror d enables
the entrance of phase-sensitive squeezed input noise depending
upon the parameter r and the transmittivity ratio q.
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Hsb =2 fik laclaal +2 thaCZaaT—
a a

+3 #iky,dsea’ +H.c. (2.14)
a

where now the third term models the losses of one of the
intracavity modes (frequency @ _), through the coupling
mirror D. The frequency band over which the last sum in
Eq. (2.14) is considered is assumed to correspond to a
broadband squeezed-vacuum field at the central frequen-
cy w— =Q—v. The exact Heisenberg equations for the
intracavity modes may now be translated into approxi-
mate Heisenberg-Langevin operator equations as above.
The result is now formally the same as the one obtained
in Sec. IT A (there the intracavity photons leaked into a
multimode out-cavity field in an ordinary vacuum state
through a single port cavity):

da -

d: =—(ivtya (O+ga L (O+T (1), (2.15a)
da_ + -

a0 =(iv—y_J)a_(t)+ga  ()+T _(z). (2.15b)

We assume equal transmission at mirror C for both
intracavity modes (y, =7, ), e, Y4 =%,
=mg(o )k (0)]? Y=Y tV¥a_ where

Y. =mglo )k (0 )% and v, =mglo_)lk;(e_ )%

We shall write, for brevity, ¥y .=y, and y_=(1+gq)y,
where g is the ratio of the decaying rates at the lower
resonant frequency ®_ for the two mirrors
lg=(y——v)V/v+=va_/7c )

The correlation functions for the Langevin forces in
Eqgs. (2.15a) and (2.15b) may be easily related to those of
the reservoir fields. Assuming that only a narrow distri-
bution of bath-mode frequencies centered around each of
the resonant-cavity mode frequencies w,=Q+v couples
to the cavity, the noise operators

T.()=—3 ki, exp[ —i(@;,—Q)t]c;,(0) , (2.16a)
T _()=—i3 ky, exp[ —i(wy,—Q)t]c,,(0)
—i > ki, exp[ —i(w3,—Q)t]d;,(0) (2.16b)
may be approximated as [17]
L=, ()=—iexplif.. (1+v/Q)" '/
XV2y &t , (2.17a)

T (=T, (0+T, (1)
=—iexp(if, N1—v/Q) " V2V2y& P A1)

—iexplify )V 2qyg§t)(t) (2.17b)

where the complex exponentials are related to the phase

shifts due to transmission and

2epc A
/19

172
52":)(’): ] exp(im)Ec‘j’(t) , (2.18a)
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~ 2e,c A
&= |2 expliQt)E (1), (2.18b)

— ﬁQ —

1/2
2ecA

(H) = |97 (+)

647 (2) 70— exp(iQt)E;" (1) (2.18¢)

etc. Notice that the factors (1£v/Q)~!? in Egs. (2.17a)
and (2.17b) appear as the result of the normalization
adopted for the corresponding field operators E (T,
Here we have denoted also by Ec‘j)(t) the free evolving

positive-frequency part of the electric field operator of
the corresponding reservoir field [analogous expressions
may be written for E{*'(¢) and E{*(1)]:

ETV(n=3 exp(—iw,t)c,,(0) . (2.18d)

W1y
26 AL
(A is an effective cross-section area and L is the length
along the quantization coordinate; see the work of Car-
michael in [21] for the details of the quantization
scheme.)

In a similar fashion the other Langevin forces may be
easily related to the reservoir field operators evolving
freely from their value at the initial time. In doing so, the
corresponding correlation functions are immediately ob-
tained by averaging over the respective initial states of
the reservoirs. We assume also without loss of generality
that all the phase shifts are set equal to exp(—m/2).

If the bandwidth of the squeezed reservoir field incom-
ing through the mirror D is much greater than the cavity
linewidth, the vacuum quantum fluctuations appear as d-
correlated squeezed white noise [17] to the cavity modes.
For the reservoir in an ideal squeezed-vacuum state, the
following correlation functions may be written [9]:

(&) =(E & (1))
=—S"(0)exp[iv(t +1')]d(t —t') ,
(2.19a)
(EN(E T )) =1[1+ZP(0)+27(0)]
Xexpliv(t —t")]d(t —¢t'), (2.19b)

(ESTVE ey =L —1+2 (0 +327(0))
Xexp[ —iv(t —t')]d (t —t') (2.19¢c)
where the corresponding spectral densities (cf. Ref. [9])

e)=1[(w_te€)/w_]

X {cosh?[r(€)]+sinh?’[r(€)]} , (2.20)
ST e)=—[(w_*e€)/w_]
X {cosh[r(e)]sinh[r(e)]ei2i¢(5)} (2.21)

are replaced in Eqgs. (2.19a)-(2.19¢) by their values at the
center of the broadband squeezed spectrum (e=0). In
this formulas » and ¢ are parameters that characterize
the squeezing.
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We transform the Langevin equations [Egs. (2.5a) and
(2.5b)] writing them again in terms of quadrature-phase-
amplitude operators as defined above [Egs. (2.7a) and
(2.7b)]. Using Egs. (2.17) and (2.19)-(2.21), we arrive at
the following Heisenberg-Langevin equations:

%er Z,()=—vy 1+% Z, +oyV1+qZ,
+1liygZ,+T (1), (2.22a)

d . |5 ,._ q |5 —

E_HV Z,(t)=—y 1+5 Z,—oyVi+qZ,
—LiyqZ +Ty1) (2.22b)

where we have introduced again the pump parameter
0=g/g,=8/yV1+q. In these and subsequent equa-
tions we shall use the approximation v/Q=0.

From Egs. (2.17) the noise operators I',(¢) may be re-
lated to the reservoir fields by

L)=—Vy[E N0 +E . (0]—

Vgyéiw),
(2.23a)

Ty)=—Vy[—i6 D W+i&(1]—ivVayE )

(2.23b)

(gi')(t)=[5’(k+)(t)]]‘, k =c,,d_). Making use of Egs.
(2.19a)—(2.19¢) we readily arrive at the desired correlated
functions. For convenience at a later step, we arrange
the noise- operator varlables in terms of the vector

I(¢)=(I',,T, T, )7 and drop the time dependence at
the modulation frequency v[ T, (¢)=T(t)exp(ivt)]. We

may then write
(D()T(¢)T)=Dd(t —1t") . 2.24)

Taking into account Egs. (2.19)—(2.23), the following
4 X 4 diffusion matrix results:

D=D"™4+ D™ (2.25a)
where the symbols ‘“nsq” and “sq” denote the
nonsqueezed and squeezed inputs, respectively:

0 0 1
w 0 0 —i 1
D=y 1 i 0 ol (2.25b)
—i1l 0 O
Me ™% iMe ¢ N —iN
e iMe %% —Me~¥ N N
£779Y | 14N i[14N]  Me¥®  —iMe %9
—i[1+N] 1+N —iMe¥® —Me*?
(2.25c¢)

where N =sinh*(r), M =sinh(r)cosh(r). Notice that ob-
viously the previous drift and diffusion matrices are
recovered for ¢ =0. The phase-sensitive diffusion matrix
D% is expected to modify the spectrum of quadrature
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fluctuations of the field emerging from the cavity and fur-
ther discussion is deferred to Sec. IV.

In connection with the present work it should be men-
tioned that the relaxation or decay of a cavity two-mode
system interacting with a phase-sensitive reservoir has re-
cently been studied by Ekert and Knight [16], by means
of master-equation techniques.

III. EQUIVALENCE
TO A CLASSICAL PROCESS

A. Classical c-number Langevin equations

The equivalence between quantum Heisenberg-
Langevin equations and ordinary classical diffusion pro-
cesses is not a trivial question even if the former are
linear in form. In fact, it is not self-evident how linear
Langevin operator equations, like the ones obtained
above [see Egs. (2.8a) and (2.8b) and (2.22a) and (2.22b)],
might be transformed into the corresponding c-number
Langevin equations with equivalent positive-definite
diffusion matrices. As is immediately recognized, prob-
lems associated with the ordering of noncommuting
operators appear soon.

Recent efforts have been directed at describing quan-
tum squeezing in a more classical manner. Marshall and
Santos [8] have shown how c-number classical Langevin
equations may be readily obtained from the Heisenberg
equations for a typical squeezed field generator (the para-
metric oscillator), provided that, as usual, the model is
treated within the linear approximation.

The main features of the method referred to above are
(a) the role of bath modes is restored in the physical
description as providing the proper source of noise (vacu-
um or thermal noise), (b) the coupling constants leading
to squeezing are correctly assigned only to the deter-
ministic (drift) terms of the Langevin equations, leaving
the noise source (diffusion) generated by the dissipative
interaction with the environment, and (c) the particular
role of the Wigner function is emphasized as opposed to
other phase-space representations.

The present formalism of a two-mode cavity amplifier,
based upon the use of quadrature-phase amplitudes, en-
ables us to achieve this correspondence: The quantum
Langevin Eqs. (2.8a) and (2.8b) are in fact equivalent to
classical c-number Langevin equations with ordinary
white-noise sources. We limit ourselves here to the key
arguments, leaving a complete account of the proof to a
forthcoming paper. As Marshall and Santos [8] have
pointed out in connection with the degenerate parametric
amplifier, a system with at most quadratic reversible in-
teraction Hamiltonian and weakly coupled to a set of
densely distributed reservoir of harmonic oscillators
evolves according to a classical stochastic system
represented by the time-dependent Wigner distribution
function.

As is well known, this is the phase-space image of the
operator density matrix of the system, once the sym-
metric ordering of creation-annihilation variables is as-
sumed. In our present two-mode situation we may notice
by quick inspection that the normal (antinormal) order-

1911

ing of quadrature-phase amplitudes [see Eq. (3.8) below]
corresponds to opposite ordering of the two modes in the
single-mode sense (cf. Ref. [9]). Also the symmetric or-
dering of quadrature-phase amplitudes corresponds again
to the same symmetric ordering scheme for the creation-
annihilation mode variables. We should expect, there-
fore, that a classical stochastic picture of the dynamics
might be found in terms of c-number quadrature vari-
ables, governed by a corresponding two-mode Wigner
function [18].

This is the first piece of our argument; the second, and
most important, evolves from the form of the Langevin
operator equations. As may be seen from Egs. (2.8a) and
(2.8b), the equations of motion have a block-diagonal
drift matrix: the time evolution of quadrature-phase vari-
ables (Z,) is decoupled from the corresponding to the
Hermitian conjugates (Z L). This fact, together with the
particular algebra of noncommuting quadrature-phase-
amplitude operators, is sufficient to overcome the
difficulties associated with time ordering in the passage
from quantum to stochastic multitime correlation func-
tions [19]. For brevity we limit ourselves to the case of a
reservoir in an ordinary or thermal vacuum state (Sec.
IIA). We may thus write the following classical
Langevin equations for c-number complex quadrature
amplitudes:

da

—dt—‘=—y(1—a)a1—iya(v/ma2+g1(t>, (3.12)
da, .
7=—7/(1+a)a2——1ya(v/ﬂ)a1+§2(t) (3.1b)

where £;(¢) are now classical white-noise sources with
identical correlations as the symmetric reservoir correla-
tion functions [cf. Eq. (2.11)]:

(EDE ) ym=r(1+20)8(t —1') (i=1,2),
(D& ) ym=1iy(v/Q)(1+2m)8(t —1') .

(3.2)
(3.3)

These correlations are evidently related to just the
same positive-definite diffusion matrix defined above [Eq.
(2.11)]. Beginning with these Langevin equations all sym-
metrized covariances and correlation functions may be
derived to obtain exactly the same results that we would
obtain by direct integration of the original quantum
Langevin equations. The only effect of the parametric
coupling between intracavity modes is to modify the
effective damping constants of the two orthogonal quad-
ratures [see Eq. (3.1)], thus producing a redistribution of
vacuum fluctuations in each quadrature component of
the two-mode field, i.e., squeezing.

A rigorous proof of the above statement may be estab-
lished by means of formal phase-space methods as pro-
posed earlier [20], and is planed to be the subject of a fol-
lowing paper. Here we notice that a certain Fokker-
Planck equation may be written for an ideal two-photon
device coupled to a heat or squeezed reservoir, starting
from the master equation of the process, for a set of prop-
erly defined quasiprobability distribution functions (in-
cluding the two-mode Wigner distribution).

The crucial properties of the normal (antinormal) or
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symmetric quadrature-phase ordering schemes involved
in that formalism are that the diffusion matrices in this
Fokker-Planck equation are just the same as the ones in-
volved in the present quantum-operator Langevin treat-
ment: as such, these diffusion matrices are positive
definite, independent of the parametric pumping parame-
ter o, and reflect only the noise properties of the reser-
voir.

As it may be recognized, this physical picture is entire-
ly different from (although equivalent to) the widely used
phase-space representation based upon normal ordering
of mode-amplitude operators, where an equivalent
methodology leads to negative “nonclassical” diffusion.

B. Generalized Einstein relations
and quadrature-phase stationary noise

We now turn to consider some nontrivial consequences
of the quantum Langevin equations derived above [Egs.
(2.22a) and (2.22b)], which may be written in compact
vector form:

d

—Z=AZ(t)+T(2)
dt

(3.4)

where Z(1)=(Z,,Z,,Z},Z})T and the 4X4 drift and
diffusion matrices are given in block form by

A 0 3
A= 0 A* |’ (3.5a)
_ —a+b 1/2ic
Alo)= —1/2ic —a—b (3.5b)
with
a=y K
b=oyVi+gq ,
c=vq,

and D =D™9+ D% as above [see Egs. (2.24) and (2.25)].

Note that the same formal Langevin equation allows us
to take into account the two physical settings of our para-
metric amplifier device: the first one corresponding to
the ordinary setup with nonsqueezed-vacuum fluctuations
being amplified (this corresponds to taking ¢ =0 in the
previous equations), while the second one corresponds to
an additional squeezed vacuum being injected into the
cavity through a second transmitting mirror (g > 0).

To begin with we derive from the quantum Langevin
Egs. (3¢c) and (3d) the equation of motion for the 4X4
complex covariance matrix:

C(=(ZnzZ)T) . (3.6)

Following the usual procedure [3,11] of noise operator
theory, a generalized Einstein relation is derived:

4 C(t)=AC()+C(A+D .

3.7
dt— 3.7)
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The stationary covariances for the intracavity
quadrature-phase-amplitude operators may now be ob-
tained straightforwardly from this equation, by setting
the left-hand side in Eq. (3.7) equal to zero and solving
the corresponding matrix equation. Restricting ourselves
to the squeezed quadrature (corresponding to the smallest
negative eigenvalue of the drift matrix) we are led to the
following covariances:

(21z,)=1(a%a, Vs+(a_al ) ;—2Re(a_a,)y)

1 14+g(1+N) 1+g/2—0V1+g
2 1+q/2 1+g—oc*1+gq)

(3.8)

The behavior of this covariance is shown in Fig. 2. It
is to be noticed that a true divergence exists at threshold
(0—1) for ¢ >0. This is explained by the fact that the re-
laxation time of the quadrature-phase amplitude goes to
infinity for 0 =1. The corresponding fluctuations show a
drastic slowing down in the vicinity of the critical point
in contrast with the case for ¢ =0 (no additional losses
through a second mirror). The sharp region around the
instability point should therefore be addressed by a prop-
er nonlinear theory.

The condition for nondegenerate squeezing may now
be stated in terms of the symmetrized covariance:

((Z,Z})Y+(Z3z, ), <L . (3.9)

1

2
From Eq. (3.8) and noticing that {Z,Z})=(Z1Z,) un-
der the assumed approximation v/Q =0, results the fol-
lowing condition for g << 1 results:

1+[g/(1+g)IN _,

2(1+0) 2’ (10

which is to be contrasted with the case for ¢ =0, but
thermal noise entering the cavity through mirror C:

(1+27)

2(1+0) <

) (3.11)

(NI

the last inequality being satisfied for sufficiently low
thermal noise (27 < o). According to Eq. (3.13) the limit

16
12+

A

™ 08faq-08s

M\ q=0.75

v q=0.25 -
04 4-0
00 1 ! 1 Il 1

00 05 06 Q7 08 09 10
g

FIG. 2. Behavior vs the pumping parameter o of the station-
ary covariance [Eq. (3.8)] for different values of the transmittivi-
ty ratiogand r =1.
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0.25 near threshold is obtained for the squeezed quadra-
ture covariance (for 77 =0), in accordance with previous
work [20]. Input broadband squeezed noise [whose spec-
tral density is measured by the parameter N =sinh(r)?]
behaves in the first case much as thermal noise does in
the ordinary one, degrading the level of available squeez-
ing. As a numerical example, for g=0.1 and 0 =0.75,
the quadrature noise is lower than 0.40 for r<1.5
(N <4.5).

The squeezed two-mode vacuum generated in the sta-
tionary state may be expressed in any case as a Gaussian
state with this covariance. Nevertheless, a very impor-
tant difference is apparent between the stationary
squeezed states for ¢ =0 and ¢ >0. For g =0, the vacu-
um state generated has the null covariances (Z, Z,, ) =0
(k,m =1,2). This means that the noise in the quadrature
phases is distributed randomly in phase (time stationary
noise in the quadrature phases). On the contrary, for
q >0, we have

11 14+q/2—0Vi+g
214+q/2 1+q—0X1+gq)
XgM exp(—2i¢)

<ZZZZ )s.v =
(3.12)

which clearly shows phase-sensitive noise in the two or-
thogonal Hermitian components of the (non-Hermitian)

0.18
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012 1 PR L

) 014
>

012+
1 1 | Il

016l 0=085

0’14\\ 9=0

| Q=025
00075

012

!

1 1 1

00 04 08 1.2 16 20
r

FIG. 3. Behavior of the stationary variances [Eq. (3.13)] vs
the input squeezing parameter r for three different values of the
pumping parameter o. The three sets of curves correspond to
the transmittivity ratios displayed in the figure.
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quadrature-phase amplitude Z,. In fact if we write
Z,=X,+iY,

the two Hermitian components of the squeezed quadra-
ture (commutator [X,,Y,]=iv/2Q=0) carry phase-
sensitive fluctuations. For an ordinary two-mode
coherent or squeezed state {X,X,)=(Y,Y,) <1l Now
from the stationary covariances, Egs. (3.8) and (3.12), it
results in

(X2X,) =1 Z}Z,) ym+Re(Z,Z,))

1
11
4 1+q/2

It

F(o)[1+q+q(N—M cos(24)]
(3.13)

where we have written F(o)=(14+q/2—0cV1+q)/
[1+g —0*1+¢)]. For ¢=0 and a certain range of the
other parameters, { X,X, ), may reach lower values than
0.25, manifesting as a quadrature-squeezed state, i.e.,
time-dependent nonstationary noise in the quadrature
phases of the field [10]. Some representative graphs for
several values of o are depicted in Fig. 3.

IV. INPUT-OUTPUT CORRELATIONS:
THE OUTPUT SPECTRUM OF SQUEEZING

A. Relation between input, output,
and intracavity fields: The output spectrum

This model of a two-mode coupled oscillator interact-
ing with a bath is the simplest model for a nondegenerate
parametric amplifier within a resonant cavity. As it has
been previously noted, there is a need for a supplementa-
ry theory to relate the internal squeezing of the discrete
resonant modes within the cavity with the actual squeez-
ing measured in the multimode output-cavity field [21].
In this section we derive the special structure of a
squeezed field output spectrum as it is obtained within
the quadrature-phase formalism outlined above. For the
sake of clarity we discuss independently the two cases
worked out in previous sections (ordinary vacuum noise
or squeezed noise entering the cavity through one or two
mirrors, see Secs. II and III). We assume thus at first, for
the analysis of the output spectrum of quadrature fluctua-
tions, the physical configuration of a ring cavity system
coupled with the outside world through a single transmit-
ting mirror.

Following Collett and Gardiner and Carmichael [21],
we can relate the output field to the internal field and do-
ing so, identify the physical origin of the Langevin noise
sources described above. Let us write the output (linearly
polarized) electric field operator in the form

E(z,t)=EAz,t)+ E7(z,1) @.1
where the usual decomposition into positive- and
negative-frequency components has been made.

The positive-frequency part may be expressed in terms
of the bath creation-annihilation operators:
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ENzn=3 A1 1/Zc (t)expliw,,z /c)
4 " 2€0AL la P 1a2
12
+3 ZeoAL Cao(tdexplim, z /c) .

(4.2)

The Heisenberg operators c,(t) and c,,(¢#) may be
readily integrated from the exact Heisenberg system-bath
equations. When substituted into the last equation we
obtain

H+EF) (z,1) 4.3)

E(+)(z’t)=E¥rte)( source
where the first term only depends upon the initial state of
the bath and the “source” term is related to the intracavi-
ty system operators. When the standard approximations
are performed (continuous distribution of bath frequen-
cies, Markovian limit), we obtain for the “source” term
the following expression:

El}) (z,6)=V2y exp[ —iQ(t ~z/c)]

A(Q+v) S
_2ce0A a+(t z/c)
AHQ—v) o,
2ceid _(t—z/c) (4.4)

valid for ¢t >z >0. Following Caves and Schumaker we
rescale the electric field in photon units as
6(+’(z,t)=(2eocA /AQ)V2E Nz,1). Then we obtain
from Eq.(4.2)

6(&1—1;& Z,t)=exp[“i9(t “Z/C)]Z\/;
X[Ay@y(t—z/c)+A_a_(t—z)/c)]
(A, =V(Q+v)/2Q] .

(4.5)

We can now identify the quadrature components of the
measured output field. To do so it is sufficient to observe
that the measured field at any time may be considered to
propagate freely from the field at the output mirror of the
cavity (z =0 coordinate) so that we may write the ob-
served quadrature fields in the form

EMMN=6m()+2Vy[Z, ()+Z T ()] 4.6)

so that 6(2)= 67" (¢)cos(Qt)+ 63" (¢)sin(Q¢) is the mea-
sured real electric field in photon units. &, (¢) may be

Vcavity(w):4y fow[<22(t)22(t '+'T)>sym+ (Z ;(t)z ;(

t47)) ymH Z, (1)
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easily interpreted as the quadrature components of the
vacuum fields propagating into the cavity from the out-
cavity environment and reflecting simultaneously onto
the cavity output (see Ref. [21]).

The Langevin quantum sources of noise in Egs. (2.8)
may now be easily related to the input quadrature (Her-
mitian) operators &', (¢) and the following relation holds:

. (04T (n=—vy6En@) 4.7)
where
r,,(t)=exp(—ivt)[,, (1) . (4.8)

Equations (4.6)—(4.8) will now be the point of departure
for the analysis of the output squeezing spectrum. We
define the quadrature fluctuation spectrum by means of
V(o) (m=1,2), defined by

Vm(a,)=fo°°<5m(t)ém<t +7))% coswrdT . (4.9)

As is well known, when heterodyne detection of the
combination of the two side-band modes is performed,
the photocurrent fluctuation spectrum has Fourier com-
ponents just proportional to

V(6,0)= [ “(6°(6,1)6°(6,1+7)) gy cOSOTd T

where 6°Y(6,t)=cos069" (1) +sin065"(¢), the noise in
each “rotated” quadrature 6°"(6,¢) being detected by a
suitably chosen local oscillator phase [10]. The max-
imum reduction of quadrature-phase noise corresponds
to that quadrature maximally deamplified as may be seen
from the Langevin Egs. (2.8a) and (2.8b). Therefore it
will be sufficient to limit our analysis to the Z, (0=m/2)
quadrature-phase noise. Taking into account Eq. (4.6) we
obtain the following structure for the spectral density:

V(7/2,0)=V,(0)=V")+ VY p)+Vory)
(4.10)
where
V@)= [ "(6061 +7) 5 coswrdr . .11
Here V"(w) arises from the quadrature-phase noise car-

ried by the vacuum field. This just amounts to the phase
invariant value of I and measures the ordinary quantum
limit for the coherent-vacuum state. The second term is
related to the intracavity quadrature spectrum:

Z3t+7) ymH(Z YDZ,(t +7)) g coswTd T
4.12)

As is shown below, this spectral term has positive values for all frequencies. The third term in Eq. (4.11) is therefore

responsible for the observed output squeezing at a suitable range of frequencies.
) arises from correlations between the free-quadrature fields and the intracavity system and is given by

Vcorrel( ®

As follows from Egs. (4.6)-(4.9),
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veort)=2vy [ “I(ERDZy(t40) ym+ (EFOZ (1 +7)) g

H(Z, ()Nt +7)) ym+(Z N6t +7)) g Icos0Td T .

(4.13)

Going further with the calculation of V®'1%(w), we first define the spectral matrix:

S(@)= [ "*(Z(OZ(t+7)T)exp(—iwr)dr

(4.14)

where Z(t)=(Z,Z,,Z T,Z ; ). It is straightforward to write V°®¥(®) in terms of the following matrix elements of

S(w):

Vo) =(4y /2)[ 1S p(0+ )+ 1S5 (—0+ )+ 1S u(0—v) + 184 (—0—v)

(4.15)

where we have taken into account that exp(ivt)Z,(t)=exp(ivt)Z;(t).
Equations (4.13) and (4.7) allow us to write V™) in terms of the correlations between intracavity quadrature-
phase amplitudes and the Langevin-noise operators I';(¢). For that purpose we further define the spectral matrices:

H(o)= [ " (T(O)Z(nT)exp(—iordr ,

Glw)= f_+w (Z(r)T0)exp(—iwr)dT .

(4.16)

(4.17)

Substituting &' (¢) from Eq. (4.7) into Eq. (4.14), and making use of the time invariance of the stationary two-time

correlation functions:
(r(—nZ0)")=(T0)Z(n7)

(4.18)

for 7> 0, we can easily relate ¥°°™(w) to certain matrix elements of H(w) and G(w). Proceeding as above we are led

to the following expression:

peorrel( )= =G p(@+v)+Gule+v)+Gyu(—wt+v)+ Gyl —w+v)

+Hy(o+v)+Hylo+v)+Hy(—o+v)+Hy(—o+v)

+Gu(@—v)+Gy(o—v)+Gpu(—o—v)+Gy(—ow—v)

+H42((1)—"V)+H44((0_V)+H42( _w_V)+H44( _CO_V)] .

The complete form of the output squeezing spectrum
may then be obtained by means of the elements of the
three spectral matrices defined above [Egs. (4.14)-(4.16)].
The form of these matrices may now be made explicit as
the following formulas may readily be derived making
use of the quantum-regression theorem [3]:

G(w)=D(io—A")", (4.20)
H(w)=(io—A)"'D, 4.21)
S(w)=(A+io) ' D(A4T—iw)"". (4.22)

We may then calculate these spectral matrices from the
explicit form of the drift and diffusion matrices which
may be immediately written from Egs. (2.8) and (2.9) in
Sec. IT A, for the case of a reservoir field in an ordinary
vacuum state.

As it may be seen from Eq. (4.22), the first four terms
|

V,(w)= Vin(p) 4 Veavity( o) 4 peorrel( )

1-i—2

Y

(4.19)

f

in the right-hand side of Eq. (4.16) stem from the phase
sensitivity of the noise present in each of the intracavity
quadrature fields. As it is shown in [9,10], this is a null
contribution if the intracavity signal has time-stationary-
quadrature-phase (TSQP) noise, and this is in fact the
case for the present setting of the linear parametric
amplifier. Straightforward algebra leads us to the follow-
ing terms:

Szz(w)ZSM((U)=O N
Gzz(a))zG44(Q))=H22(0))=H44(0))=0 .

Further properties will be discussed below for the gen-
eral expression of Eq. (4.19).

Noting that 4 is a diagonal matrix in the present case,
the calculation of the relevant matrix elements is
straightforward and it results in the following simple ex-
pression for the spectrum of quadrature squeezing:

(4.23)

Y
+2
7/(co-—1/)2—i~7/2(1-+-0)2 4

1 1

2

(—o—v)*+yH1+0)?

Y lo—v)+y(l+o0o)

(—o—v+y(to) &

c.|. 4.24)
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If the intermode frequency separation is much greater
than the cavity linewidth, the squeezing spectrum for the
maximally squeezed quadrature may be well approximat-
ed in the vicinity of ®=v, with the following results:

2072

1

2 (0—v)P+y21+0)?
As may be immediately seen from the last expression,

this formula leads to V,(w)=0 (100% noise reduction)

for w=v, in the limit 0 —1 (threshold point for oscilla-

tion). This is a well-known result for ideal parametric

two-photon devices [21].

V()= (4.25)

B. Output quadrature spectrum:
Phase-sensitive squeezed reservoir

The output spectrum of quadrature-phase fluctuations
(squeezing spectrum) will now be obtained for the cavity
amplifier when an additional input reservoir field with
broadband squeezed white noise enters the cavity as dis-
cussed before. We shall proceed, with minor changes,
along the same lines as in the preceding section.

The relationship between input and output quadrature
fields is formally unchanged [cf. Eq. (4.6)] and we write it
for clarity:

EMMN=6" (O+2Vy[Z,(0+Z T ()] (m=1,2)
(4.26)

where now the first term stems from the vacuum quadra-
ture noise entering the cavity through mirror C.

In addition the input quadrature field is related to the
Langevin operators, as follows immediately from Egs.
(2.23) and (2.23b):

P man)+T %)= —vy 6, (1) 4.27)
where [ ™9(¢) refers to that part of the Langvin forces re-
lated to the nonsqueezed noise transmitted into the cavity
through mirror C.

The fluctuation spectrum in each of the quadratures of
the output field may now be easily calculated. Proceed-
ing along the same lines as above, we are led to the fol-
lowing quadrature spectrum:

Vz(a))z Vin(a))-l— VCaViIY(w) + Vcorrel(w)

where the three spectral contributions are expressed with
some minor changes as done in Egs. (4.11)-(4.13). We use
again the spectral matrix S(w) defined by Eq. (4.14), and
substitute T’ by I'™% in the expressions for G(w) and
H(w) as defined by Egs. (4.16) and (4.17).

The formulas given in Egs. (4.20) and (4.21) are still
valid, with the 4X4 diffusion matrix replaced by D™
[Eq. (2.25)] and the drift matrix written in block-diagonal
form in Egs. (3.5a) and (3.5b) [cf. also Egs. (2.22a) and
(2.22b)].

We note in turn that D™9 [(see Eq. (2.25)] is an Hermi-
tian matrix, so the following relation between G and H
holds:

H(0)=[G(—w)]".

(4.28)

(4.29)

A straightforward but lengthy calculation leads to the

L. SAINZ de los TERREROS AND F. J. BERMEJO 45

following final spectral terms for the output squeezing
spectrum in the output quadrature corresponding to the
most strongly damped intracavity quadrature:

Siplo)=XHIAEM gy 24102 c(a—b)],

L(w)
(4.30a)
:__2/_ —h)2 1,2 2
Syw) Z(@) {(1+gN)[(a —b)*+ tc?+w?]
+c(1—¢gN)(a —b)} , (4.30b)
SM((O):Szz(-(I))*
- _—9qY :
L(w)Mexp(szJ)
X[(a —b)2+a)2+%cz—c(a —b)], (4.30c)
__Y 232 1,2 2
Gylw) L(a))(a b*—tc "~ —2iw)
X §+<a—b)+iw , (4.30d)
- Y 232 1.2 2 4.
H, (o) .L(w)(a b= i~ —2aiw)
X %—(a —b)—iw (4.30¢)

V, (W)

FIG. 4. Spectra of quadrature squeezing for three different
transmittivities. The upper trace corresponds to V,(w) and the
lower ones to the correlation component V (). All of the
spectra correspond to the values of r =1, 0=0.8, v=4, $=0.
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0.2

min V, (W)

01

00+ o+
0

FIG. 5. A comparison between the maximally attainable
squeezing when coherent- (dots, r =0) or squeezed- (triangles,
r >0) vacuum inputs enter through mirror d for several values
of the transmittivity ratio q.

where we have written

.L(a))=(a2—b2—%c2—a)2)2+4a2w2 . 4.31)

Some representative spectra for a selected set of pa-
rameter values are displayed in Fig. 4. As can be seen
upon inspection of the graphs, the out-of-cavity spectrum
which is constituted by the sum of the three contributions
given by Eq. (4.28) shows reduced fluctuations around the
central frequency and a region of quadrature-squeezed
noise below the input level for a range of parameters.
Such a reduction is mainly caused by the correlation term
yeorel(), whereas the cavity contribution V'%(g)
counteropposes this effect since it is a positive quantity in
all the frequency range.

As an example Fig. 5 shows a comparison of the max-
imum squeezing attainable for coherent-vacuum and
squeezed-vacuum inputs, respectively, for several values
of the transmittivity ratio ¢g. It can be clearly seen upon
inspection of the figure that for nonzero values of g the
input of a squeezed vacuum substantially compensates
the deleterious effect of the added transmission losses.
Finally, it is to be noticed that the appearance of a cen-
tral structure (for the g >0 spectra) signals the instability
near the threshold already mentioned above (see Sec. III).

V. DISCUSSION

The dynamics of a well-known nonlinear-optical device
currently used for the generation of squeezed states of
light has been reformulated by means of the quadrature-
phase-amplitude formalism. The relevance of such an
analysis stems from the following facts. First of all, fully
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classical analogues are easily found which are free from
the well-known effects introduced by the use of standard,
positive-P representation methods, that is, the appear-
ance of nonpositive-definite diffusion matrices. Although
it has been argued that such negative diffusion phenome-
na were a true manifestation of the quantum character of
the dynamics, it seems nowadays clear that such a
difficulty can be circumvented using a different represen-
tation.

On the other hand, the advantage of having a clear
classical counterpart in the linear subthreshold regime of
two-photon optical devices enables the use of computer-
simulation techniques for the more complicated non-
linear above-threshold problems, a technique that was
rather difficult to use in the previous positive-P version of
the formalism. In this respect, it is worth noticing that,
although some linearization procedure should be applied
for problems involving higher than quadratic interac-
tions, very useful results can be obtained provided that
the calculations are carried out far from critical points
(i.e., threshold).

A number of optical two-mode devices may also be
readily analyzed along the lines described above. In par-
ticular, we mention the recent studies on resonance-
fluorescence models directed to the squeezed-state gen-
eration [22] and four-wave mixing nondegenerate
amplifiers with a two-photon decay mechanism [23] as
some problems which can be reformulated using the
method proposed in this work. In such cases it may be
interesting to analyze the out-of-cavity spectrum of
squeezing along the same lines sketched in Sec. IV of the
present paper, since something may be gained from the
separation of noise sources into different contributions as
proposed above. This may be especially relevant when
phase-dependent broadband squeezed reservoirs are in-
cluded.

Finally, it seems clear that a substantial effort should
be directed towards tackling complicated nonlinear prob-
lems in a search for clear classical analogues. At the
present time only the first steps [24] towards this goal
have been taken and further efforts are required.
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