
PHYSICAL REVIEW A VOLUME 45, NUMBER 3 1 FEBRUARY 1992

Dynamic quantum-noise reduction in multilevel-laser systems
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Based on the standard laser model of a large number N of model atoms resonantly coupled to a single

lasing mode, we show that the nonlinear dynamics of the active atoms of the laser can lead to output-
intensity fluctuations significantly reduced below the shot-noise level. We identify the multiple recycling
of the active electron from the lower lasing level to the upper level through the pumping as the key pro-
cess leading to this dynamic-pump-noise reduction. This process has been neglected in most of the stan-

dard treatments of the laser so far. We find that the results are closely related to recent calculations
based on the assumption of an external regular pump. For the widely used four-level model of the active
atoms, the intensity noise can be reduced 50% below the shot-noise level. Generalizing the model to an
m-level system, we find a quantum-noise reduction by a factor of

2
m/(m —1)(m 3), leading to perfect

output-intensity noise reduction in the limit of a large number of intermediate steps in the recycling pro-
cess of the active atoms. Finally, we demonstrate that the bandwidth of the noise reduction can be
significantly enhanced using a nonlinear absorber in the cavity.

PACS number(s): 42.50.Hz, 42.55.—f

I. INTRODUCTION

In a number of recent publications it has been shown
that quenching the various sources of intrinsic noise in a
laser leads to reduction of the output-intensity fluctua-
tions below the shot-noise limit [1—9]. The photon count
statistics of the laser then becomes sub-Poissonian, clear-
ly indicating a nonclassical state of the light field. It
turns out that one of most promising approaches is the
reduction of the pump fluctuations. This can be
achieved, e.g. , by regular injection of excited atoms into
the laser cavity or by pumping the laser active atoms
with squeezed light. In the best case one finds a complete
suppression of the low-frequency laser output-intensity
fluctuations. However, all the schemes to avoid pump
noise proposed so far rely on a regularization of the
pump process by an externally imposed mechanism. In
this work, however, we will demonstrate that under cer-
tain operating conditions the desired regularity is gen-
erated by the dynamics of the laser atoms. Hence, in
contrast to previous calculations, we predict that a laser
will emit sub-Poissonian light, without any regularity im-
posed from the outside, if operated under suitable operat-
ing conditions. To some extent it seems surprising that
with the exception of very recent work by Khazanov,
Koganov, and Gordov [10], Ritsch et al. [3], and Ralph
and Savage [9] this effect has not been discovered in the
vast amount of earlier work on the laser. The main
reason is probably that most treatments so far have
neglected depletion of the atomic ground state by assum-
ing the number of atoms is so large that only a small por-
tion is excited by the pump. In other treatments [11]
fluctuations in the number of laser atoms overwhelming
this effect have been explicitly introduced.

From a physical point of view the presented mecha-
nism is closely related to the well-known effect of anti-
bunching in atomic resonance fluorescence [12]. For the
fluorescence of a two-level atom driven by an external
field, the probability that two photons are emitted within
a time interval short compared to the inverse Rabi fre-
quency is very small. This reflects the fact that immedi-
ately after the atom has emitted a photon, it is in its
ground state and cannot emit a second photon until it is
reexcited to the upper state. This behavior is even more
strongly pronounced if one introduces additional inter-
mediate levels through which the electron is recycled to
the fluorescing level. As we will see later this anticorrela-
tion in the successive emissions of photons leads to a dy-
namic self regularizat-ion of the pumping process, making
it completely deterministic in the case of a large number
of intermediate levels. The physical mechanism has been
recently identified by Ritsch et al. [3]. Note that this
regularity is generated by the atomic dynamics and does
not have to be injected from the outside. For a large
number of intermediate levels we find Q~ —

—,', which is
the same value as one obtains for a laser with a perfectly
regular pump. For a three-level system our results are in
agreement with recent predictions of Khazanov, Ko-
ganov, and Gordov [10],who find an optimum Mandel Q
parameter of —

—,'. The squeezing spectrum of intensity
fluctuations has been discussed by Ralph and Savage [9].

A second approach to a dynamic reduction of the in-
tensity fluctuations in a laser is the insertion of nonlinear
elements into the laser cavity. In contrast to regular
pumping, nonlinear absorbers tend to reduce the high-
frequency components of the laser intensity fluctuations
[6]. In this case one finds strong antibunching of the pho-
tons emitted by the laser, while fluctuations on a slow
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time scale are even enhanced. It is thus interesting to in-
vestigate the combined effect of such nonlinear elements
and a dynamic-pump-noise reduction scheme.

This paper is organized as follows. In Sec. II, follow-
ing a systematic adiabatic elimination procedure for the
atoms as presented in Ref. [13],we first derive a Fokker-
Planck-type equation for the Glauber-Sudarshan P repre-
sentation of the laser mode. Subsequently we calculate
physically interesting quantities like the Mandel Q pa-
rameter and the output-intensity fluctuation spectrum.
In Sec. III we explicitly calculate these quantities for the
four-level laser model with pump-electron recycling. A
generalization to m & 4 levels is presented in Sec. IV and
the effect of additional nonlinear absorbers placed into
the laser cavity is dealt with in Sec. V.

presented in Fig. 1. The part of the Hamiltonian for the
atoms, the pump field, and the corresponding interaction
reads

H, =Ho, +H +H, +H, +H„ (3)

with

N 4

Ho, = g g iiico 0'",
i =1 j=O
N

f dcoAcob (a))tb (co);
1

representing the Hamiltonians of the uncoupled atoms
and pump modes. The pump field is coupled to the pump
transition(~0) —~1)) via

II. FOKKER-PLANCK TREATMENT
OF THE LASER

N

H, =i' g f dai[g'b (co),oo, +H. c. ] .

Hs =HI +H free +H/, free &

H, =fiai, aa, Hr„, = f des ficob(co)tb(ai),

HI &„,=ifi&afdco[ab(. co) +b(co)at],

(2)

where col is the eigenfrequency of the laser mode and h~
denotes a suitably chosen frequency interval around co&,

to which the laser mode is coupled. ~ is the correspond-
ing coupling constant which we assume is frequency in-
dependent. As is well known, the coupling with the out-
put modes on the one hand leads to a friction force for
the internal oscillator describing the losses but on the
other hand it introduces fluctuations, so that the commu-
tation relation Eq. (1) is preserved [13(a)].

The laser active medium inside the cavity is described
by a large number 1V of randomly distributed atoms. We
assume that their mean distance is large compared to a
typical optical wavelength d »A, , so that we can (will)
neglect cooperative effects (e.g. , superfiuorescence, etc.)

and atom-atom interactions. In order to get a fairly real-
istic description, we will treat the lasing atoms as at least
four-level systems, coupled to the pump modes b (co), the
laser mode a, and the electromagnetic vacuum. A
schematic picture of such an atomic level configuration is

In this section, after introducing some notation and
definitions, we will outline a systematic procedure to ob-
tain a Fokker-Planck equation for the Glauber-
Sudarshan P representation of the laser field. We use an
adiabatic elimination method as presented in Ref. [13(a)],
which is closely related to a derivation previously used by
Haake and Lewenstein [13(b)]. We then demonstrate
how one can extract from this relevant physical quanti-
ties like the Mandel Q parameter and the intensity fiuc-
tuation spectrum S(co).

We consider a single quantized light mode described by
creation (annihilation) operators a (a ), with

[a,at]=1

inside an optical cavity, which is coupled to a continuum
of outside modes b(co) The corr.esponding Hamiltonian
then can be written as

PUM ASER

FIG. 1. Schematic representation of the four-level atom.

with coupling constants g' and the atomic operators
given by o;J =

~i )(j~. Note that we have assumed that
each atom is coupled to its own independent pump
modes. In practice this means that we assume that the
coherence length of the pump field is much shorter than
the atomic distances. In the literature this is known as
the "private bath" assumption. Recent calculations and
experiments investigating the resonance fluorescence of a
sample of atoms exposed to a classical stochastic light
field [15] have clearly demonstrated the significance of
collective fluctuations of the atomic populations. In view
of this, the validity of this approximation in the case of
optical pumping by a finite bandwidth "pump" laser is
not totally obvious. Fortunately, in the two limits of a
white-noise pump and a fully coherent pump, the private
bath assumption turns out to be valid. In the following
we will restrict ourselves to these limits.

In Eq. (3) H„accounts for all the unexcited modes of
the electromagnetic vacuum not contained in H, which
interact with the atom via H,„ like a zero-temperature
heat bath. Effectively they lead to various additional
spontaneous decay terms in the atomic equations. The
coupling between the laser mode and the laser active
transition from level ~2) to level ~3), which we assume is
resonant, is given in the standard rotating-wave approxi-
mation (RWA) by
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N

Hat=i% g gt(a o32 H. c. ),

where gi' in general depends on the position of the ith
atom. The total laser Hamiltonian is then given by the
sum H=H, +H, +H, I. Using standard techniques we
can trace over the output H,„, and vacuum H„modes to
derive a master equation for the combined density matrix
8'of the intracavity field, the atoms, and the pump field,
which in the interaction representation reads [13(a)]

—W(a)=(L, +L2+L3)W(a) .d (12)

The first term

= a
~a da

Here 8, W(a)l„denotes the remaining terms in Eq. (6),
which do not explicitly contain a, a . We will now re-

group the various terms in Eq. (10) into three parts:

W=(L,„+Lto+L,t+L, )W
d
dt

(6)

N

L, W(a) = —g gt [a*[o33, W(a)] —u[crz3, W(a)][
k=1

with +L,„W(a)+L,~ W(a) (13)

with

N

n=li) j

L+W=a(2aWa aaW— Wa a—) .

The other Liouville operators in Eq. (6) are formally
defined by L;X=(i/fi)[H;, X], where X stands for any
operator. y;. are the various atomic decay constants,
stemming from H,„. We now assume the limit of a good
cavity, i.e., the time scales of the atomic motion 1/y;J.
and the pump fluctuations ~ are much faster than the
cavity decay time I/~. This enables us to adiabatically
eliminate the atomic and pump degrees of freedom from
the density matrix Eq. (6), so that we are left with an
equation for the reduced density matrix of the internal
mode amplitude alone. In order to do this systematically
we will use a projection-operator technique such as, e.g. ,
is presented in Ref. [13(a)]. As a first step we represent
the combined atom-field density operator 8'by a Glauber
P representation for the laser field

W= f d ala&&al W(a), (8)

where W(a) is still an operator in the many-atom and
pump Hilbert space. Note that for notational conveni-
ence we use a Glauber P representation for the laser field
density matrix in the following derivation; nevertheless it
can be easily generalized to a generalized P representa-
tion, which we will need to correctly describe the non-
classical properties of the laser field. Inserting this ex-
pansion into Eq. (6) and using the well-known
operator —c-number correspondences [16],we find

L1p', =0 . (15)

Note that p', depends parametrically on a. Physically
this is motivated by the fact that the dynamics of the
laser field is slow on the time scale of atomic relaxation.
Hence p', can be considered as a quasistationary atomic
density matrix, which adiabatically "follows" the laser
field a.

Finally

N

L3W(a)=B, lpga+ g gt"(o33) +H. c.
k=1

(16)

describes the "slow" dynamics of the laser mode driven
by the mean atomic polarization and damped by the cavi-
ty losses, with a typical time scale I/tr. Defining a pro-
jection operator

PW(a) =Tr, +~ [ W(a) ]ep',

we can easily show that the above choice of L[12 3) im-

plies the identities

describes the "fast" dynamics of the atoms coupled to the
pump and laser fields with a characteristic time scale of
1/y;J. . The second part,

N

L3W(a) —g gt [B~(cr3$ (03$))+H.c.],
k=1

which is proportional to the atom-field coupling gi', con-
tains the fluctuations of the atomic polarization around
the steady-state expectation value. Here the atomic ex-
pectation values are to be taken with respect to the sta-
tionary atomic density matrix p, satisfying

a W~a W(a),
a W~(a* —8 ) W(a),

PL1 =L1P=0

PL2P =0,
PL3=L3P .

(18)

(20)

N
+ g gt"[8 o32W(u)+B, W(a)o33]

k=1

+8, W(a)l,

(10) Thus as demonstrated in Refs. [13]and [14] in the case of
fast atomic dynamics y; )&~, one finds the following
equation of motion for the P-distribution function of the
laser field:

B,P(a) =L3P(a) —Tr, + L2L
&

' =f dt e ' Lzp',
0

with XP(a) (21)
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with P(a)=Tr, + [W(a)].
Strictly this is only correct if all eigenvalues of the

Liouville operator L1 are negative, which is obviously not
the case as we see from Eq. (15). However, in our case L,
is applied only on Lzp„which gives zero if projected
onto the eigenspace connected to the eigenvalue zero, as
can be seen from the second identity in Eq. (18). Hence
we have to evaluate

N

X
n, m =1

To gain more insight into the physical contents of Eq.
(22) it proves advantageous to convert the amplitude vari-
ables a, u' to intensity and phase variables:

lI=a*a and P= —ln
2

(23)

As is well known the phase diffusion coefficient D&&
determines the laser linewidth, whereas the intensity
diffusion coefficient Drr is connected to the intensity noise
and thus the photon statistics of the laser output. In the
new variables the drift and diffusion coefficients read [16]

X(a.5o» p. ~, +a .p.5o;3~, )

+(a 5o 32 p', i, +a p', 5o 23', )
Ar=A @+A +a+2D +, A&=Im

D
(24)

with

Xa,5o 23], and

Drr 2a"(aD + +&*D )

5o32 o32 ~ o32 ) and 5o23 ~23 ( o23 ) 2Q
D&&= (aD + u"D ),— (25)

As a next step, we will move all derivatives with
respect to a and n* to the left-hand side. The small
corrections to the drift proportional to gi stemming from
this reordering can be neglected [13(a)]. We thus get the
following Fokker-Planck-type equation for the Glauber P
distribution for the laser mode:

a,p(~)=(a.~.+a .~.*+2a' .D .
+a,D +a „D, , )P(a)

with

N

A~ =K(X+ g gl (Ct32)
k=1

N

D e = g gl gi fdr(5o. 23(r)5cr32(0) ),
k, m =1

N

D =D', , = g gl"gl f dr(5o32(r)5cr32(0)) .
k, m =1

Again the atomic averages have to be taken with
respect to the stationary atomic density matrix as defined
in Eq. (15). As expected, the drift terms A that deter-
mine the mean amplitude are given by the cavity losses
and the mean induced polarization, providing for the
laser gain. Apart from the contributions stemming from
the vacuum and thermal Auctuations entering through
the laser-output coupling, the diffusion is given by the
time integral over atomic polarization autocorrelation
functions. These look very similar to correlation func-
tions, which enter the calculation of resonance Auores-
cence. In fact D + is just proportional to the incoherenta a
part of the resonance fluorescence intensity emitted at the
atomic transition frequency [17]. In order to evaluate
this correlation function, we first have to solve Eq. (15)
for the stationary atomic density matrix p'„where we can
treat the laser field amplitude e as a c number. Using the
quantum regression theorem we can then find the neces-
sary integrals over the correlation functions by a Laplace
transform of the corresponding equations.

Dr&= Im
aD

In terms of atomic correlations Drr is then

N

f «[2gl"gl'
k, 1 = 1

X (a5o 23(r)+lz &532( r), Q 5o32) ]
N fd[k l(5 /c()5 l)]

k, l =1

with 50.r =a50 23+a*60.32. Hence the diffusion
coefficients Drr(D&&) are given by the autocorrelation
function of the atomic polarization in phase (in quadra-
ture) with the laser field amplitude.

Note that the private bath assumption has not yet been
made in Eq. (26). We will do this now and thus keep only
the terms with k =l. The diffusion coefficients hence are
proportional to the number of atoms N and not N, as
one might expect from Eq. (26).

Due to the nonlinearity in the drift and diffusion
coefficients an exact analytic solution of the Fokker-
Planck equation is in general not possible. However, well
above threshold we can linearize the intensity around the
steady-state value I. The resulting linearized Fokker-
Planck equation has constant drift and diffusion terms
and can be solved analytically. In this case one derives
the following expression for the Mandel Q parameter of
the laser:

(n(n —1))—(n ) Drr
a

lo,
dAr

dI
(27)

with n =a a.
Q is a well-known measure of the deviation of the pho-

ton statistics from a Poissonian distribution (Q=0),
which one finds for a coherent state. A negative Q
(equivalent to sub-Poissonian statistics) is a signature of a
nonclassical state of the field. Another physically in-
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II= (i ) 1+2«
I(at +to )

(28)

where (i ) =«(I ) denotes mean output intensity. In the
following sections we will evaluate these quantities for
various physically interesting level schemes of the laser
atoms.

III. LASER WITH FOUR-LEVEL ATOMS

In order to establish a fairly realistic model of the ac-
tive atoms of a laser, one usually describes them by four-
level systems. Here one pair of levels is coupled to the

pump light, whereas a second independent pair forms the
actual lasing transition. Both pairs are assumed to be
coupled by various radiative and nonradiative decay
channels, which we will simply describe by transition
rates. In Fig. 1 we sketch the level scheme of such an
atom, where wiggly arrows stand for incoherent transi-
tions. The pump transition is indicated by an upward ar-

teresting quantity is the spectrum of the output-intensity
correlation function:

S(to)= f dc0 cosmos( i(t+r)i(t ) ),

row and a double arrow denotes the laser active transi-
tion. In most treatments of the laser so far it has been as-

sumed that the pumping is weak, so that there is no de-

pletion of the atomic ground state. In this case the
ground state can be eliminated from the atomic equations
and we are effectively left with three levels. Additionally
the transitions from the lower levels to the ground state
of the atom are often ignored.

In our approach we will now abandon the weak pump
approximation and include the dynamics of the ground-
state level of the atom. Consequently we will introduce
recycling terms (rM, r2o) in the four-level system from
the lasing transition back to the pump transition. This
allows us to study saturation effects in the pump transi-
tion, as well as the effect of one atom undergoing several
cycles of absorbing a pump photon and emitting a laser
photon.

In order to evaluate the corresponding atomic correla-
tion functions entering Dtt, Q, etc. [Eqs. (27) and (28)],
we now have to solve the full system of equations for the
(4X4)=16 density matrix elements. Fortunately in our
case only eight are nonzero. Explicitly the dynamic
equation ( d ldt )r = 2 r for the vector of atomic density
matrix elements reads

poo

P1 1

pz2

P33

dt P1O

P01

P23

P32

—(r1+r12}
'Y 12

—i—'0'
2

—i—'0
2

y30 i Q t 0
0 i—' Q* —i—'0

2 2

Y23 Y30

Yp

—ga* ga*
—ga ga

—ga' ga

Xs

POO
0

ga' —ga P1 1

pzz

P33

P1o

p p P01

P23

P3Z

(29)

(s + A )9'[V](s ) =V(0) . (30)

Here V[f ](s) denotes the Laplace transform of f and
V stands for the vector of atomic correlation functions

V(r )=( VOO, Vl 1, V22, V33 ~ V10, V01, V23, V32 )( Y)

V~1(1 }—((CT,J )(1 ), (0' 3(20})) . (31}

Here 0 stands for the (fluctuating) ™plitude of the

pump field and Eq. (29) still has to be averaged over the
pump degrees of freedom (for a coherent pump field we

have 0=const, while in the white-noise case 0 is propor-
tional to a complex Wiener process) ~ In Eq. (29)

fp3 +g 2p denotes the sum of the decay rates out of
level ~2) into levels ~3 ) and ~0); r, and r~ are the trans-
verse decay rates of the atomic polarization. The correla-
tion functions needed for the diffusion coefficients then
can be obtained by the quantum regression theorem. The
Laplace-transformed differential equations for the atomic
correlation functions read

From the definition of the Laplace transform it is trivi-

al to find the identity

~ V& ~ = lim V;. ~ s = lim s + A 'V 0
0 s~0 s ~0

(32)

In order to reduce the computational effort, it proves
advantageous to introduce the in-phase atomic polariza-
tion correlation function VI =a V23 +a*V32, with

Dtt =2a' P[ Vt ](s) ~, o, which reduces the number of
equations by one. Similarly we define V&

=a V23
—a' V32,

which can be shown to decouple from the other equa-
tions. Hence the phase diffusion coefficient

D&& =(2a*/I )9'[ V&](s)~, o can be obtained very easily
from
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2g NP22

Ts
(33)

which is of course related to the Shawlow-Townes
linewidth.

As the most general expressions for quantities like DII,
Q, etc., get rather lengthy and tedious to evaluate, we will

restrict ourselves for the moment to the special case of a
broadband pump. In this case the pumping is described
simply by transition rates between the pump levels. Us-
ing standard master-equation techniques [18,19) we can
average Eq. (29) over the pump field fluctuations to ob-
tain the following equation for the atomic density matrix
elements:

—ynt, y(nb+ 1)

y(nb+1) —[y, +y(nb+1)]
0 V1

F30

0

r2 ga go!

723

gal gal Vs

—r30 g~ g~

Poo

P&i

P22

P33

P23

P32

(34)

—ga Vs

where nb =Tr~(2Q*Qly~ )ly is a measure of the spectral intensity of the pump field. Note that the matrix elements
connected to the atomic polarization on the pump transition are decoupled from this equation, so that we are left with a
system of six coupled equations. These can be reduced further by introducing proper linear combinations of the density
matrix elements as mentioned in Sec. II:

d dp(t) =——(ap +a'p )

= —y, p, +2 ~ga ~'(p„—p„), (35)

d =dpy(t)=
d

(ap a p )= r.pt . (36)

Inverting Eqs. (34) and (30) we can then evaluate the intensity and phase diffusion coefficients. With some effort we find

4Ryi y3+n
D~~ —g N

y, n Ry&(y3 —y23)+(y23+n )[2R(y, +y3)+y&y3]

Ry)n y3y, [r)R(r23+3 3)+r3r23(2R+y&)]+M1+n ys&2'
DII =g N

[y,R(y,3+y, +2n )+n [y,(2R+y, )(y»)+n ]['
with

~1 yll 23r33 (3 3+3 23 ) Rrlr231 3[3 1(l 3 Y23) Y [(3 23+r3)(y23+r3+4r1)+2(3 3+y23)]j

[( Y3 V23) [rl(3 23+y3)+ r33 23] y3r23(rl+ Y3+ Y23) yl(r23+r3)[1 1(1 23+y3)+83 3r23]]

and

z2 ylr23y3 R r 13 3(r3 3r»)( Y3 r23+2r j)+4R'(rir23+3r ir3r23+3 33 23 rlr3)

(37)

(38)

(39)

Here we have introduced the laser-induced stimulated transition rate n =2~a~ /y, and the pump transition rate
R =yn„. As our interest in this work is mainly focused on intensity noise, we will now look at the expression for DII in
more detail. Note that DII contains positive as well as negative terms. In order to compare our results with previous
calculations we first consider the limit of a weak pump. To lowest order in R we find

2
R 723n f3+ V2

2

DII=g'N
2 2r3 (r23+

(40)

This is precisely what Lax and Louisell obtained in their well-known series of papers on quantum noise in a laser [14].
Obviously in this limit DII is always positive and goes to zero if we neglect the spontaneous emission rate y23. Howev-

er, this is not true in the general case, where higher-order terms in the pump rate R become important. These are con-
nected to depletion and recycling processes in the atomic ground state. As we will show below these terms can cause

DII to become negative, leading to a nonclassical steady state for the laser. Neglecting spontaneous emission for nota-
tional convenience, we see that Eq. (37) reduces to
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(Ry1y3) Ry1'Y3y, —nRy, (y3 —y, ) n—y, (4R+2y, +y )
Drr =g'&

ys [Ryty3+n[2R(y, +y3)+yty3][
(41)

which obviously turns negative if n
getssufficiently

lar, (i.e., the laser is operated far above threshold). Fortunately in
this limit one can linearize the Fokker-Planck equation for the laser intensity around its steady value n and obtain an
explicit analyticalexpression for the Mandel Qparameter using Eq. (27}:

Ry, y3 Ry, [y3y, —n(y3 —y, )] n—y, (4R+2y1+ga3)
y, n [2R(y1+y3)+y, y3][y3(2R+y, )(y3+n)+Ry1(y3+2n)]

(42)

with mean laser-induced atomic transition rate n given by

Ry(yn=(c —1)
2R(y1+y3}+y1y3

(43)

RylY3+y23[R(YI+2Y3}+Yly3]
Cthr

Ryt('Y3 —
Y23)

In the limit of large n(c»1), Qreduces to

4R+2yi+y3
Q= —RY1y3

[2R(y, +y3)+yty3]

(44)

(45)

As is obvious from Eq. (45} Q in this limit is negative
and thus we find sub-Poissonian behavior of the laser. A
short calculation yields anoptimum Q value of ——,'in the
case of y3= —', R and y, =2R. Hence we can expect more
than 60%%uo intensity noise reduction in the laser-output
field. In order to estimate the influence of spontaneous
emission we calculate the correction to Eq. (45} to lowest
order in the spontaneous emission rate y23,

Here c=g Nl(y, v) is closely related to the laser
cooperativity parameter, with the laser threshold given
by

the laser can become a source of strongly amplitude-
squeezed light. The physical origin of this effect is very
closely related to the effect of antibunching of photons in
resonance fluorescence. Once an atom has emitted a pho-
ton, it is projected into the lower state and cannot emit a
second photon until it is reexcited into the upper level.
This introduces a sub-Poissonian behavior into the laser
pumping. We will discuss this in more detail in Sec. IV,
where we will treat the m-level atom, for which this effect
becomes even more pronounced and its origin can be
traced more precisely.

Let us now turn to the output-intensity power spec-
trum of the laser as measured by a photodetector. As can
be seen from Eq. (28), for a negative DII the spectrum
shows a Lorentzian dip of area ~Q~ below the shot-noise
level. It is centered around zero frequency, with a width
given by

(c —1)Ry,y3+y23[(c+1)Ry1+y3(2R+y1)]
Qr —2K

cRyt(y3 y23)

(47)

In the limit of a negligible spontaneous emission
y23«(y3, R, yt) thisreduces to a very simple form:

~ 23 4Ry1[R~ 1+2RY3+Y1Y3+(y3~2} ]
Q=QI, =o+

y3 [2R(y1+y3)+y1y3]
c —1

2a
C

(48)

-Ql =o+—5 y23

y

Here in the second line we have inserted the optimum
value for the pump rate R. As the spontaneous emission
rate in a laser is typically much smaller than the decay
rate of the lower level y23«y3, the correction to Q stays
small. This behavior is demonstrated in Fig. 2, where we
plot the Mandel Q parameter as a function of the pump
rate R in units of the decay rate y3p out of the lower level
~3). In curve a we have assumed optimally matched
rates y, 2=1.5y3p and neg1igible spontaneous emission

y, p y23 0, whereas in curve b we have chosen a fast
decay out of the upper pump level y, 2=10y3p. The
influence of spontaneous emission is demonstrated in
curves c (d), where we have set y,o=y3o, y, 2=2.5y3Q,

y23 (310 Y23 y30)
Note that the results are very similar to the case of a

laser with sub-Poissonian pump. However, we do not
need any regular pump mechanism from the outside, but
the noise reduction is dynamically produced by the laser
itself. Hence under suitably chosen operating conditions

As is easily seen from Eq. (47), sufficiently above
threshold(c»1) the width of the dip is 2a, which is the

0.0

—0.2

0.0
I

0.5
1

1.0
R/y

1.5 2.0

FIG. 2. Mandel Qparameter as functionof thepump rate R
in units of y3Q The parameters for the various curves are
y12=3/2y3o ylo=O=y23 (curve a); y»=10y30 ylo=O=y23
(curve I) y12 5/2y30, ylo y30 y23 0 (curve &); »d
y»=3/~y30 ylo 0 y23=0. 1y30(curve d).
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same as one finds for the laser with a regular pump.
Hence the maximum noise reduction, which in this case
occurs at co =0, amounts to

S(0)= =2Q = —44&O

a
(49)

In the best limit (c))1, y23«y3) we thus find about
60% noise reduction below shot-noise level in the stan-
dard four-level laser model.

IV. LASER WITH MULTISTEP RECYCLING:
MULTILEVEL SYSTEM

As we have demonstrated in Sec. III the inclusion of
dynamical recycling of the active laser atoms to the
upper laser level after having emitted a laser photon can
lead to a substantial reduction of intensity fluctuations
below shot-noise level. In close relation to the well-
known antibunching in atomic resonance fluorescence,
we have suggested that the regularity of successive emis-
sions of laser photons by each active atom plays a key
role in this effect. To further substantiate this suggestion
we will now generalize the above model to the case of an
m-level system, ~1), . . . , ~m ). From the lower of the
two lasing levels ~3) the active electron is now recycled
via (m —2) steps ~i)~~i —I), which are simply de-
scribed by unidirectional rates r, to the upper lasing level
2). In Fig. 3 we schematically depict such an "atom. "

The conditional probability for an electron, being
prepared in state ~i) at time t=to, to jump to level
i —1) in the time interval [t, t+dt ) is given by—r(, r —to jc(t)=re '. For m —1 consecutive independent

steps we find

c(t)=r[r(t —to)] 'e ' Im! . (50)

In our m-level system this probability can be identified
with the conditional probability for the atom to be
repumped into the upper lasing state at time t after hav-
ing emitted a laser photon at t=to. We see that for
m ~ 2 we find an anticorrelation c(t =0)=0, which gets
stronger the more levels we include. Of course this is just

a reformulation of the mell-known fact that a Poisson
process as a sequence of consecutive unidirectional ran-
dom steps gets deterministic in the limit of a large num-
ber of fast individual steps (keeping the ratio of the indi-
vidual transition rate r and the number of steps m con-
stant) [16]. For our case, where we consider a Poisson
process on a circle, this limit implies a deterministic num-
ber of cycles for the active electron in a given time inter-
val. Consequently if the number of atoms is constant,
then the total number of photons added to the cavity
mode in this time interval is fixed. Hence we have no
pump noise, although the number of atoms in the upper
lasing level exhibits random fluctuations in time. Obvi-
ously these results can be related to the calculations for a
laser with an external regular pump, where c(t) is the
conditional probability for the next pump event [2].
Indeed in a recent paper Marte and Zoller have calculat-
ed the Mandel Q parameter for exactly the same condi-
tional pump probabilities c(t) as given in Eq. (50).

Let us now generalize the four-level equations Eq. (34)
to the case of m levels as depicted in Fig. 3. We will do
this by introducing m —4 intermediate levels ~i ) between
levels ~3) and ~0). These are assumed to be coupled only
by spontaneous transitions. For the sake of simplicity the
pump transition from level ~0) to level

~
1) is replaced by

a unidirectional rate as well. Hence we have no nonzero
off-diagonal matrix elements on the nonlasing transitions
and the corresponding equations for the diagonal density
matrix elements read

(51)

where y;, +, is the (spontaneous) transition rate from lev-
el ~i ) to level ~i+ I ). In the stationary limit we then
have

~mOPmm Ym —l, mPm —l, m —1 Vi —l,iPi —l, i —1 734P33 '

(52)

Using the above identities, we see that Eq. (34) for the
stationary average of the atomic density matrix is un-
changed with the exception of the first line, where we
have to replace y3o by @34 Of course the additional con-
dition of having a closed atomic system now reads

12
p;;=1 .

i=1
(53)

LASER

Similarly, in the augmented set of Eqs. (30) for the
atomic correlation functions, which we must solve to find
the diffusion coefficients, the equations containing the ad-
ditional levels can be eliminated, using the relation

(s+y;;, )V[V;;](s)=y, , ;V[v;, ;,](s) . (54)

34

4p

FIG. 3. Schematic representation of the m-level atom.

The resulting equations for the m-level system then can
be solved analytically as for the four-level case. As one
might expect from the considerations at the beginning of
this section, the best noise reduction occurs for the laser
operated well above threshold with all the various decay
rates matched. The Mandel Q parameter obtained by
linearization of the resulting Fokker-Planck equation
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then reads

y(2y —n )
—n (m —1)(m —2)

2n(m —1)[y+(1—1)n ]
(55)

words, the number of photons emitted in a sufficiently
long time interval (5t )) I /1~) becomes deterministic.

V. NONLINEAR ABSORBERS
INSIDE THE LASER CAVITY

where we have set y, , +& =y for i E [4, . . . , m ], y34 2y,
and neglected spontaneous emission (y23=0). As before,
n here denotes the laser-induced stimulated transition
rate given by

7 34 F23
n =(c—1)

(m —2)y3+2y
(56)

to
In the limit of operation far above threshold Q reduces

1 m —2
2 m —1

(57)

which is exactly what one would expect from Eq. (50).
For a large number m of levels we find Q = —

—,', which is

the same result as obtained for the laser with a complete-
ly regular pump. Hence, as suggested by Eq. (50), the
atomic multistep recycling process leads to a complete
suppression of pump noise.

So far we have neglected spontaneous emission on the
laser transition. Including the first-order correction to
Eq. (57) from a nonzero spontaneous emission rate y23 on
the lasing transition leads to

1 I —2 723 m

2 m —1 2y34 m —1
(58)

which fortunately, in a laser, is normally quite small. In
Fig. 4 we plot the Mandel Q parameter as a function of
the laser cooperativity parameter, for various numbers of
atomic levels m. As expected, the maximum noise reduc-
tion occurs for large cooperativity parameter c, which
has to be of order c =10 to get a significant effect. For-
tunately this is independent of m.

In the output-density fluctuation spectrum we again
find a dip below the shot-noise level with a width of ap-
proximately 2v and a minimum around zero frequency
S(0)=2Q. Hence in principle one could achieve zero
noise in the slow fluctuations of the intensity. In other

+[&gkt(a')'(I0) &1I)k+H.c. ] +H.t. ,

(59)

where H„t „describes the decay out of the upper level I 1)
and we have assumed co„I=~1—co0=2co&. Using the
operator replacement rules

a W —+a W(a),

(a ) W —+(a' —2a'8 +B 2)W(a),
(60)

As has been recently shown by Ritsch [6], as well as by
Walls, Collett, and Lane [8], a nonlinear absorbing medi-
um inside the laser cavity can lead to a significant reduc-

tion of photon number fluctuations in the laser output.
Physically, in contrast to the situation described in Sec.
IV instead of the gain we are now modifying the losses of
the laser mode. We can easily include such nonlinear ab-
sorbers in our laser model. In contrast to a description
based on an abstract nonlinear medium with a macro-
scopic nonlinear susceptibility, we will add a further in-

dependent species of atoms inside the laser cavity. These
are assumed to have an n-photon transition resonant with
a multiple cavity frequency col. For notational simplicity
we will restrict ourselves here to the case of a two-photon
absorber. The methods, however, can be easily general-
ized to the case of more complicated nonlinear transi-
tions as treated in Ref. [6]. For instance, the case of a
nonlinear feedback can be treated by introducing a four-
level system as in Fig. 3 and replacing the coupling to the
pump transition by a nonlinear coupling to the lasing
mode.

For the standard two-photon absorber the additional
terms in the Hamiltonian Eq. (2) read

M 1

k=1 1=0

0.10

0.00--

—0.10 =

we find the following additional terms for the Liouville
operators L; [Eq. (12)]:

M

[g ta [o32 W(a) ]
—a'[o23 W(a ) 1]

k=1

—0.20 =

M
L L —g g„"t[(B 2a*+B,)(5o" )+H.c.],

k=1
(61)

—0.30

—0.40

—0.50 I

10
logj OC

=10

. I

100 1000

FIG. 4. Mandel Q parameter and mean intensity of laser as a
function of pump rate R for various number of intermediate lev-
els m.

M
L L + g g„"t[(B 2a'+B, )((o" ))+H.c. ] .

k=1

It is easy to see that conditions of Eqs. (18) are still
fulfilled, and we can use the same adiabatic elimination
procedure as in Sec. III. Note that we find additional
second-order derivatives already in the slow part L3,
which later will turn out to be the origin of the noise
reduction in the laser intensity. In the differential equa-
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tion for IV(a) we will neglect derivatives of order 3 and
higher [13] and transform the resulting Fokker-Planck
equation in a and a" to intensity I and phase P [see Eqs.
(24)]. Approximating the absorber atoms by simple two-
level systems, which are independent of the laser active
atoms, we find the following rather simple equations for
the corresponding in- and out-of-phase polarization
correlation functions of the absorber atoms:

d VI= —yVI —2lga I V, ,

d
V, = —2y V, +2VI —2y(o 32), (62)

DII DII, L +DII, L
t

with

I
DII, I., 2Mg(a*) (o32) = —y~

y p

and

I2
Drr, L =4My

(y+I )p

Here

(63)

I =g (64)

denotes the rate of nonlinear absorptions per atom. For a
weakly coupled nonsaturated absorber transition y)&I
the upper-state populafion p&', can be neglected and only
the first term contributes significantly to

y —3I
DII = —yMI —MIP (y+I )2 P

(65)

d
d~

V = —yV

After some algebra we find two additional contribu-
tions to the intensity diffusion stemming from nonlinear
absorber s.

the fact that the nonlinear absorption indeed reduces the
intensity diffusion on the one hand, but on the other hand
also diminishes the mean intensity. In agreement with
previous calculations [6,8,20] the minimum Mandel Q is
bounded by Q = —

—,'.
If we start to saturate the absorbing transition, the

upper-state population cannot be neglected any more. In
this limit the first contribution stemming from L3 tends
to —yM, while the second contribution gives 4yM, so
that the net effect of the absorber is an increased intensity
noise. Hence a saturated nonlinear absorber acts as a loss
introducing additional fluctuations. From Eq. (65) it is
obvious that this transition from noise reduction to addi-
tional noise occurs at y =3I . The best noise reduction
due to the nonlinear absorber hence is achieved in the
weak coupling limit, where no saturation of the nonlinear
absorbing atoms occurs. This is probably the situation
easiest to achieve in an experiment anyway. In order to
obtain a significant effect in this limit one of course needs
a large number of atoms.

So far our considerations on nonlinear absorbers have
been based on the standard approach to the laser, where
one neglects dynamic-pump-noise reduction. In the fol-
lowing we will investigate how a nonlinear absorber
modifies the results obtained in Secs. III and IV [i.e., we
replace Dli and ai in Eq. (66) with the expressions ob-
tained in Sec. III]. As the general expression for the
Mandel Q parameter in this case is rather complicated
and not very instructive, we will demonstrate the key
effect in the following plots. In Fig. 5 we plot Q as a
function of the nonlinear absorption rate r =MI fornl p
m =10, fixed laser intensity, and ideally matched atomic
transition rates. We see that increasing the nonlinear ab-
sorption rate gradually decreases the total amount of in-
tensity noise reduction from Q = ——' to Q = ——'. Hence

2 4'
at first glance a nonlinear absorber seems to have a detri-
mental effect on the noise reduction. However, as before,
the intensity fluctuation spectrum shows a Lorentzian dip
around co=0 below the shot-noise level. Its width, how-
ever, is not given simply by the cavity linewidth ~, but in-

which thus becomes negative. If this "nonlinear" contri-
bution to DII dominates over the positive part stemming
from the usual laser terms, we get nonclassical sub-
Poissonian statistics of the laser light, with Q given by

-0.26

-0.3

DII g MI /y

2I(di+4g MI'/y)
(66)

-0.32

-0.34

y»r 4
P

Here DII denotes the diffusion term stemming from the
conventional laser gain terms. It tends to zero far above
threshold as we have noted above [Eq. (40)]. In the limit
that the laser losses are mainly due to the nonlinear ab-
sorption rate I, we find

y —6(gI ) 1

4y'
(67)

-0.36

-0.38

-0.4

-0.42

-0.44 I I

O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r~

Thus the laser intensity fluctuations are reduced by 25%
compared to the Poissonian limit of the standard laser.
Here the magnitude of the noise reduction is limited by

FIG. 5. Mandel Q as a function of nonlinear absorption rate
r, in units of y30 for optimally matched rates and fixed laser in-

tensity.
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60

50-

for the additional term in the phase diffusion rate. Obvi-
ously D&& is positive. Hence we always find an enlarged
spectral width of the laser.

40 VI. CONCLUSIONS

30

20

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 6. Bandwidth b of intensity noise reduction (in units of
the cavity width v) for the same parameters as in Fig. 5.

creases with the nonlinear absorption rate. This is
demonstrated in Fig. 6, where we show the linewidth ai
as a function of r„I for the same parameters as in Fig. 5.
We see that although a nonlinear absorber tends to
reduce the total amount of noise reduction characterized
by the Mandel Q parameter, the frequency range over
which a significant noise reduction can be achieved can
be greatly enhanced. Thus we get a large frequency
range over which the intensity noise reduction is
significantly enhanced. This effect could be very impor-
tant for applications involving high-frequency modula-
tions or very fast measurements, as the time needed to
measure the output intensity with a certain precision can
be significantly reduced.

As a last point, let us now look at the explicit expres-
sion

For quite a long time, apart from some small effects
found for the two-level laser model [21], it has been be-
lieved that the laser sufficiently above threshold emits
light, which is closely related to a coherent state, but with
a slowly time-varying phase. In this work we have
demonstrated that under certain conditions, such as
keeping the number of laser active atoms fixed and allow-
ing a depletion of the atomic ground state, the laser will
emit highly nonclassical light, with strong amplitude
squeezing. For a three-level atom our results agree with
recent predictions by Khazanov et al. , who obtained a
Mandel parameter of Q = —

—,'.
In this paper all the explicit calculations were done as-

suming a broadband pump. As has been pointed out to
us by T. Ralph in a recent discussion, for a coherent
pump [set A=const in Eq. (29)] one finds even better
noise reduction [9]. Indeed an explicit calculation based
on the full density matrix Eq. (29) instead of Eq. (34)
yields an optimum Mandel Q parameter of
Q= —m/[2(m+1)]; i.e., the result is similar to Eq. (57)
with m replaced by m +2. Hence replacing one of the
rate transitions in the recycling circle by a coherent tran-
sition has an effect similar to adding two further levels.

ACKNOWLEDGMENTS

We thank M. Marte, T. Ralph, C. W. Gardiner, and D.
F. Walls for discussions. Work at JILA is supported by
the NSF. This work was supported by the Oester-
reichische Fonds zur Foerderung der wissentschaftlichen
Forschung under Grant No. F7295.

[1]Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
[2] M. A. M. Marte and P. Zoller, Phys. Rev. A 40, 5774

(1989);A. W. Troshin, A. I. Trubilko, and R. Ibarra, Opt.
Spektrosk. 65, 1195 (1988) [Opt. Spectrosc. (USSR) 65, 674
(1988); C. Benkert, M. O. Scully, J. Bergou, L. Davidovic,
M. Hillary, and M. Orzag, Phys. Rev. A 41, 2756 (1990).

[3] H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls,
Phys. Rev. A 44, 3361 (1991).

[4] M. A. M. Marte and P. Zoller, Quantum Opt. 3, 229
(1990).

[5] F. Haake, S. M. Tan, and D. F. Walls, Phys. Rev. A 40,
7121 (1989).

[6] H. Ritsch, J. Quantum Opt. 2, 189 (1990).
[7] T. A. B. Kennedy and D. F. Walls, Phys. Rev. A 40, 6366

(1989);A. Sizmann, R. Schak, and A. Schenzle, Europhys.
Lett. 13, 109 (1990).

[8] D. F. Walls, M. J. Collett, and A. S. Lane, Phys. Rev. A

42, 4366 (1990).
[9]T. Ralph and C. M. Savage, Opt. Lett. 16, 1113(1991).

[10]A. M. Khazanov, G. A. Koganov, and E. P. Gordov,
Phys. Rev. A 42, 3065 (1990).

[11]A. Smith and C. W. Gardiner, Phys. Rev. A 41, 2730
(1990).

[12] H. J. Carmichael and D. F. Walls, J. Phys. B 9, 1199
(1976); H. J. Kimble, M. Dagenais, and L. Mandel, Phys.
Rev. A 18, 201 (1978).

[13] (a) A. W. Gardiner, Quantum Noise (Springer-Verlag, Ber-
lin, 1991); (b) F. Haake and M. Lewenstein, Phys. Rev. A
27, 1031 (1983);28, 3606 (1983).

[14] M. Lax and W. H. Louisell, Phys. Rev. 185, 586 (1969).
[15]H. Ritsch, P. Zoller, and J. Cooper, Phys. Rev. A 41, 2653

(1990); M. H. Anderson et al. , Phys. Rev. Lett. 64, 1346
(1990).

[16]C. W. Gardiner, Handbook of Stochastic Methods



1892 H. RITSCH AND P. ZOLLER 45

(Springer-Verlag, Berlin, 1983).
[17]B.R. Mollow, Phys. Rev. A 5, 1522 (1972).
[18]H. Ritsch and P. Zoller, Phys. Rev. A 3$, 4657 (1988).
[19]C. W. Gardiner, IBM J. Res. Dev. 32, 1 (1988).

[20] Y. M. Golubev and I. V. Sokolov, Zh. Eksp. Teor. Fiz. 87,
408 (1984) [Sov. Phys. —JETP 60, 234 (1984)].

[21]L. A. Lugiato, F. Casagrande, and L. Pizzuto, Phys. Rev.
A 26, 3438 (1982).


