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Trapping states in a three-level A system
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We study the temporal evolution and the stationary regime of an electromagnetic-field mode interact-
ing with three-level A-type atoms in a lossless microwave cavity. We find that under certain conditions
the field evolves to the recently defined tangent or cotangent states [J.J. Slosser and P. Meystre, Phys.
Rev. A 41, 3867 (1990)]. In particular, in this system number states can be generated for any value of the
atomic-upper-level population. In addition, a strong squeezing in the quadrature fluctuations is found.

PACS number(s): 42.50.Dv, 42.52.+x

I. INTRODUCTION

In recent years the lossless-cavity limit in micromasers
has been extensively studied [1—7]. One of the most in-

teresting results in this limit is the generation of number
states [1,2]. When the interaction time satisfies the so-
called trapping condition, v'N + 1 ttt =q ir [1], the
electromagnetic-field Fock space is separated in discon-
nected blocks, generating macroscopic superpositions.
For example, in the one-photon maser the field evolves to
a tangent or cotangent states [3,4] and in a two-photon
maser the field evolves to an even or odd state [8]. In ad-
dition a strong squeezing in the field-quadrature fluctua-
tions takes place [8,9].

The experimental realization of lossless cavities might
be achieved with the improvement of high-Q microwave
cavities. Until now, experimental studies in these cavities
have been carried out for two- and three-level atomic sys-
tems [10—12]. In the latter case, three-level cascade-type
atoms were considered. In the present work we study the
interaction of a one-mode electromagnetic field with
three-level A atoms (Fig. 1) in a lossless cavity. The A

system was recently proposed as an atomic system for las-

ing without inversion [13]. We show that, under certain
conditions, this model generates number states for any
value of the atomic-upper-level population. In addition a
high quadrature squeezing associated to cotangent states
is found. These predictions make the A system more gen-
eral as compared with a two-level system, in which num-
ber states are only present for atoms excited to the upper
level.

This work is organized as follows: in Sec. II we define
the model and we obtain the discrete master equation for
the reduced field-density matrix when the atoms are in-

jected in a coherent superposition of the atomic levels. In
Sec. III we consider the stationary regime of the master
equation and show the generation of the macroscopic su-

perpositions, and its squeezing properties. In Sec. IV we

discuss the results.
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where v is the field frequency and co; are the atomic level
frequencies. Operators a and a t are the usual boson field
operators and ~i & &j ~

are the atomic-transition operators.
Solving the Schrodinger equation for the Hamil-

tonian in Eq. (2.1) in the detuning condition
(co, —co, )

—v= v —(co, —cob ) =b, we obtain the following
expression for the temporal evolution operator of the A
system:

II. THE MODEL

The general framework to formulate the theory of this
master is the same as that for the usual masers. First of
all, we have to solve the temporal evolution for the
atom-field interaction and find the reduced field-density
matrix.

The Hamiltonian which describes the interaction of a
one-cavity mode and the A three-level atom (Fig. 1) is
given by
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where we have defined the shorter notation

G = —Ega p '+ hgaC, (2.3)
C= cos(grv tLc)
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with p and p being the operators

and

p=2g a~a+/

p=g'a fa+a' .

(2.8}

(2.9)

Using the time evolution operator given by Eq. (2.2) we
can find the master equation for the system for an arbi-
trary detuning. In order to make the analysis simple we
consider the on-resonant situation, that is, 6=0. The
evolution operator reduces to FIG. 1. Atomic three-level A system.
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where P=V2gr and N=a a.
Let us consider the evolution of the reduced density matrix for the Seld. In the absence of cavity loss the change in

the field depends only on the number of atoms which passed through the cavity. If only one atom interacts with the
field during a finite time r, the reduced density operator evolves according to the relation

(2.11}

~h~~~ P 's the reduced density operator after the interaction with the kth atom and p„, corresponds to the initial

condition for the injected (k+1)th atom. We have assumed that the atom and the field are decoupled before the in-

teraction so that we can wite the expression above the density operator after the (k+ l)th atom has passed through
the cavity. Let us consider an atomic initial condition given by a coherent superposition of the atomic levels

Iq'&„. =alu &+plb &+y Ic &, (2.12)

where the Probability amplitudes a, p, and y are the same for all atoms. Introducing the atomic density matrix into Eq.
(2 11) we get the following master equation in the number-state representation:

p'„~+"=lal cos(p&n+1)cos(kv'm+1}p', ~+ —,'[Ip yl +Ip+yl2cos(p&n )cos(pvm )]p'„"'

+»n(P&n +1)»n(P&m +1)p'„"+, +i+ lal sin(p~n ) sin(pv'm )p'„"',lp+yl' .

+ — [ cos(QV'n + 1)sin(pV m + 1 )p'„"'+ i
—cos(QV m ) sin(pV n )p'"'

i ]
ia(p+ y )*

+ — [ cos(p&n ) sin(Qv m )p'„', —cos($&m + 1)sin(pv'n + 1)p'„k+', ] .
2

(2.13}

This equation is similar to the master equation for a two-
level-atom micromaser when p=y. In the next section
we consider the generation of number states and rnacro-
scopic superpositions in this system.

III. NUMBER STATES
AND MACROSCOPIC SUPERPOSITIONS

The master equation obtained in the preceding section
allows us to study the temporal evolution for the system

in terms of the number of atoms, for arbitrary initial
atomic and field conditions. In Fig. 2(a) we show the
steady-state solution of Eq. (2.13) for the intensity and
the photon-number fluctuations, for atoms injected with
an atomic-upper-level probability lal =0.1 and for
P=m. /&11. We see that such reduced interaction time
imposes to the field to evolve within the Fock-space block
[0,10] when the initial conditions of the field are con-
tained in this block. This statement is reminiscent of the
existence of the so-called trapping conditions for the elec-
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10 The previous numerical results give us a feeling of the
possibilities of this system, that is, the existence of trap-
ping states and the generation of number states, in a
broad range of the input parameters. The existence of
number states can be established from Eq. (2.13}. When
we consider the situation y= —p the diagonal elements
of the master equation reduce to

p„"„+' = [1—la l
sin (P&n + 1)]p„"„

+lal sin (P n )p„" (3.1)

In the stationary regime of the above equation,
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tromagnetic field in zero-loss cavities. It is observed that
the field distribution is sub-Poissonian for all values of
the atomic-lower-level populations. In addition, for a
particular value of the lower-level populations (y = —p)
the photon-number fluctuations tend to zero, i.e., there is

a pure number state, which corresponds precisely to the
number state l10). Figure 2(b} illustrates the temporal
evolution for (N) and (hN) considering the same re-

duced interaction time of Fig. 2(a) and the condition
y= —p. It is observed that for different atomic-upper-
level probabilities the system evolves to the same pure
number state l10). The difFerence between these two
cases is in the time it takes the system to reach a steady
state.

I

FIG. 2. (a) Steady state of the intensity (solid line) and the
photon-number fluctuations (dashed line) as a function of
lower-level

l
b ) population, for a fixed

l a l2 =0. 1 and
P= n./~11. (b) Temporal evolution of the intensity (a, , i = 1,2)
and the photon-number fluctuations (b;, i = 1,2) as a function of
number of atoms passed through the cavity on a ln scale (i =1,
a=0.8, and i =2, a=0.4), with y= —P. The initial condition
of the field was chosen as the vacuum state.

(3.4)Pnn nN

that is, when y= —p and p satisfies Eq. (3.3), the field
mode evolves to number state lN„) for any nonzero
value of the atomic-upper population lal . This result
makes the difference between this system and the two-
level-atom system in which the number states can be gen-
erated only when the injected atom is excited to the
upper level [1,2].

From here on we will consider the more general condi-
tions under which the system evolves to pure states in the
stationary regime, for arbitrary atomic-level populations
a, p, and y. When the field mode reaches the steady
state, before and after a new interaction, the atom-field
state is given by the tensor product of the field and atom-
ic state. Explicitly

- Ule&,

where
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and
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where Nd and N„are the lower and upper limits of the
Fock-space block, and U the time evolution operator
given by Eq. (2.10). Writing explicitly Eq. (3.6) we get

with N„and q integers. In this situation Eq. (3.2) has the
solution
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—(P+y }sin(P&n }S„=[a cos(P&n ) —a' ]S„
2

{P' ,' [P——y+—(P+y) cos((b&n )]]S„

(3.8)

The pure states are apparent from Eq. (3.7). Trapping
states take place when the downward, (Nd )'~ P=q~, and
upward, (N„+1)' /=pm. , conditions are satisfied, with

q and p integers. From Eqs. (3.6) and (3.7) we get the fol-
lowing recursion relations for the coefticients S„ in the
steady state of the field:
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FIG. 3. (b,a2) (solid line) and (La&ba2) (dashed line) as a
function of the population of the level Ib ), for an upper-level

population IaI'=0. 1 and N„=400 under a n-trapping condi-
tion.

P' r'=P—r. — (3.11)

These equations must be satisfied simultaneously, so that
we get a system of equations which allows us to find the
values for the atomic probability amplitudes after the in-
teraction in terms of the initial values. From Eqs. (3.9)
and (3.10) we get

and

. &2a P&nS„= i —cot S„+r (3.16)

aP'= ,' [ a'(P+-y —)+a(P r)1—
The solution to these equations is given by

a'= a —y
, P'= p, y'=

Similarly, from Eqs. (3.8) and (3.9) we find

a'p'= —,
' [a'(p —y) —a(p+ y)]

and

(3.12)
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From these expressions we get a family of tangent and co-
tangent states. When we consider a particular value of
IaIAO there is a family of states corresponding to
different populations of the lower levels.

The last point motivates the study of the field-
quadrature fluctuations, which will have different
features as compared with a two-level system. The field
quadratures are defined by

a, =
—,'(a+at) (3.17)

and

Replacing these solutions into the recursive equations
found previously we obtain a~= —.(a —a ) .

2l
(3.18)
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(3.15) Using the states defined in Eq. (3.16), we readily get the

following expressions for the quadrature fluctuations:

and
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Figure 3 shows the quadrature fluctuations (ha&) and
the product (ba, b,az } as a function of the population of
the level Ib), for an upper-level population IaI =O. l.
We observe the existence of squeezing for a broad range
of I pI, with the maximum reduction around the sym-
metric point y= —P. As we pointed out before, at this

point the field is in a number state IN„ ) (Fig. 3 corre-
sponds to N„=400). In this case we have a maximum
squeezing of approximately 88%%uo. This reduction is
stronger than the one in a two-level system, for the same
upper-level population [14].

The minimum value of the quadrature fluctuations de-
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pends on the dimension of the Fock-space block and for
increasing dimension a best squeezing is obtained. From
numerical analysis the minimum has a tendency to zero,
but analytically it is not clear that perfect squeezing takes
place for a given set of parameters. Finally, we see that
the states are of minimum uncertainty for a broad range
f I@I'.

IV. DISCUSSION

We have analyzed the three-level A-type maser system
in the lossless cavity limit. This system exhibits interest-
ing properties which make it more general than a two-
level system. As a first conclusion we can say that when

y = —P and trapping conditions are satisfied, the system
evolves to a number state for any nonzero value of the
atomic-upper-level population. We recall this last point
as compared with a two-level system in which number
states can be generated only when the injected atom is ex-
cited to the upper level. On the other hand, we know
that squeezing states are generated around the region of a
number state, so we can say that a family of squeezed
states is generated in addition for each value of the
upper-level population. Finally, in a broad range of given

atomic-upper-level population, when the Fock-space di-
mension is increased and adequate atomic-lower-level
populations in the A system are chosen, the reduction is
unbounded, on the contrary, the reduction in the field
quadratures in the two-level system is bounded.

The previous conclusions have to be reconsidered when
the effects of finite cavity loss and atomic decay rates are
included in the analysis. The authors in Ref. [15] have
analyzed these effects for a two-level atom maser. They
found that these effects will play a critical role in the ex-
perimental realization of trapping states. We envisage
that a possible realization of trapping states in a A three-
level system will be restricted by similar conditions to
those found in that work. A detailed analysis of these
conditions in this system is an open question, and is
planned to be the subject of future work.
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