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The semiconductor Bloch equations are solved numerically for a two-pulse photon-echo configuration.
The time-dependent diffracted signal is computed and the significance of many-body effects, carrier re-
laxation, and dephasing is investigated in detail. Assuming femtosecond-pulse excitation at various in-
tensities and frequencies, distinctly different results are obtained if the exciton or the continuum
électron-hole-pair states are excited. It is shown that pure exciton excitation produces a free-induction
decay signal and no photon echo. An echo signal is obtained only if continuum states are excited either
directly by choosing the central pulse frequencies appropriately or if the band-gap renormalization is
sufficiently strong to shift continuum states into resonance. A continuous transition between free-
induction decay and photon-echo signal is obtained with increasing excitation amplitude. A perturba-
tive analytical analysis of the equations allows one to identify the role of the many-body effects in pro-

ducing the different features.

PACS number(s): 42.50.Md, 42.65.Vh, 42.65.Hw

I. INTRODUCTION

In recent years it has been discovered that the optical
response of direct-gap semiconductors shows some simi-
larities to that of atomic systems if the time scales in-
volved are shorter than the characteristic equilibrium
times of the semiconductor electron-hole excitations.
These conditions are best fulfilled for the case of pump-
probe spectroscopy with picosecond or femtosecond
pulses. The most studied example of such a “coherent”
semiconductor response is the optical Stark effect, where
a strong pump pulse excites that material energetically
below the exciton resonance and the probe pulse moni-
tors the transmission change at the exciton resonance
[1-4].

Another well-known coherent phenomenon in atomic
systems is the photon echo. Here, one uses short-pulse
excitation of a system with a broad distribution of transi-
tions, such as a cell of gas in thermal equilibrium where
the velocity distribution of the gas atoms or molecules
provides a continuum of Doppler-shifted transitions.
Since the electronic single-particle states in semiconduc-
tors are energy bands, there is an intrinsic inhomogene-
ous distribution of the optical transitions involving
electron-hole-pair excitation. This distribution of inter-
band transition energies acts very much like the Doppler
broadening in a gas. Therefore the photon echo is a very
suitable technique to investigate similarities and
differences between atomic and semiconductor systems.

Experimentally, photon-echo measurements are often
used as a tool to determine the optical dephasing rate in
atomic systems. This method has also been applied to
semiconductors and information about the different car-
rier relaxation processes has been extracted [5-9]. Re-
cently, evidence has been presented [9,10] that for a prop-
er analysis of the photon echo in semiconductors the
many-body effects in the system of electron-hole-pair ex-
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citations may lead to significant deviations from the
atomic case.

In this paper, we investigate the temporal behavior of
the photon-echo signal for a variety of different excitation
conditions using the semiconductor Bloch equations for
the case of a two-band semiconductor. These equations
[11-15] not only describe the dynamical behavior of the
light-induced polarization in semiconductors analogous
to the well-known atomic two-level dynamics [16], but
also include the Coulomb interaction and the excitation-
induced many-body effects in the screened Hartree-Fock
approximation. We treat the screening quasistatically,
where the time dependence enters only parametrically
through the distribution functions of the charge carriers.
To extract the different scattering orders we use a spatial
Fourier-series expansion for the equations and obtain an
infinite set of equations, which we then truncate. For
simplicity, scattering contributions due to a possible spa-
tial dependence of the screening function are neglected.
Optical dephasing and carrier collisions are described
phenomenologically. We integrate the truncated set of
equations numerically. Furthermore, we compare the
numerical result with analytical evaluations using pertur-
bation theory. Using a similar approach, Wegener et al.
[17] recently investigated the time-integrated photon-
echo signal for below-resonant excitation. In addition
they studied phenomenological models with local-field
effects to explain some of their numerical results.

In Sec. II of this paper we briefly review the semicon-
ductor Bloch equations and discuss how scattering and
screening can be included. A spatial Fourier analysis is
performed in Sec. III and we derive the set of equations
describing the photon-echo configuration and discuss
how to solve them. Numerical results are presented in
Sec. IV and some of the results are analyzed by analytical
approximations in the Appendix. Conclusions are drawn
in Sec. V.
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II. SEMICONDUCTOR BLOCH EQUATIONS

The semiconductor Bloch equations for a parabolic,
isotropic two-band semiconductor have been shown to be
a very powerful model to study the optical properties of
semiconductors [11-15,18]. The coherent part of the
equations can be obtained easily by using the time-
dependent Hartree-Fock approximation in the Hamil-
tonian equations of motion [14]. For a more complete
description the scattering processes, dephasing, and
Coulomb screening must also be included. The model,
which we use to study the photon echo, is given by the
semiconductor Bloch equations in the form
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where F; = <agap ) and F/=¢( b;bp ) are the carrier popu-
lations and P,=(b,a,) is the polarization for the
momentum state p. Here a,, a,, pr, and b, are the
creation and annihilation operators of conduction-band
electrons and valence-band holes, respectively. The re-
normalized energy €, and the effective field U, are func-
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with eg being the kinetic energy related to the reduced
mass m, of an electron-hole pair, p,, is the interband di-
pole matrix element, v, =4me?/p? and v, are the bare
and screened Coulomb matrix elements, respectively, and
we defined e2=e? /€,, where e, is the elementary electron
charge and ¢ is the static background dielectric constant
of the medium, respectively.

Since the photon echo is essentially a coherent
phenomenon we have included relaxation and screening
in a rather phenomenological way. The full scattering
contributions in the semiconductor Bloch equations are
very complicated and strongly nonlinear. In our phe-
nomenological approximation the dephasing of the polar-
ization is described with a rate term proportional to v, in
Eq. (3). The population-scattering processes tend to dis-
tribute the electrons and holes in quasiequilibrium Fermi
distributions within the respective bands. We use a linear
approximation of the scattering integrals by including re-
laxation rates proportional to I'j and l"g in the popula-
tion equations (1) and (2). The function f,(u(2),T(?)) is
the quasiequilibrium Fermi distribution with chemical
potential u(¢) and carrier temperature 7 (¢). The chemi-
cal potential and the carrier temperature are fixed by the
conservation of the total particle number and the total ki-
netic energy in the carrier-carrier scattering process.
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These quantities are determined such that f,(u(2),T (1))
is that quasiequilibrium distribution function towards
which the actual distribution function F, would relax if
after time ¢ no other interactions were present.

The screening plays a quantitatively important role
since it modifies the strength of the Coulomb interaction
and thus of the nonlinearity. The screening in our treat-
ment is taken into account quasistatically, i.e.,
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where « is the inverse of the screening length, o, is the
plasma frequency, and C is a fitting parameter set equal
to 4 [19]. The inverse screening length is given by
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and the plasma frequency by
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where n is the total carrier density. The screening of the
Coulomb potential modifies the effective dipole energy U
and gives rise to the screened-exchange and Coulomb-
hole renormalization of the transition energy [19].

Equations (1)—(3) are derived assuming the system to
be spatially homogeneous. We ignore coupling between
the relative and center-of-mass motion and assume that
the energy dispersion due to the center-of-mass motion
can be neglected. This approximation, which is related to
the Raman-Nath approximation [20], leaves the center-
of-mass coordinate as a parameter R in the spatial depen-
dence of the external-light field. We use this parameter
later to perform a spatial Fourier transformation. The
approximations made assume that the semiconductor is
locally homogeneous on a spatial scale of the order of
several Bohr radii, but its excitation varies on a scale of
the order of the wavelength of the light. The light field in
our case consists of two traveling waves propagating in
different directions.

Since quite generally the optical response of a system
depends strongly on its excitation spectrum it is of in-
terest to review briefly the excitations contained in Egs.
(1)-(3) [19]. If the Coulomb potential is completely
neglected, the equations are linear and the only coupling
between different p states is due to the population-
scattering term. In this case the equations essentially de-
scribe a set of two-level systems with a continuous distri-
bution of excitation energies. The density of states has a
lower limit, the band edge, and increases proportionally
to the square root of the energy. Hence one of the basic
elements of the semiconductor excitation spectrum is an
energy continuum very similar to that of a gas. Another
simple situation arises when we neglect the screening, by
replacing v, by v,, as well as the so-called exchange
terms, which are the nonlinear terms proportional to
products of F and P in Egs. (1)-(3). The equations then
still contain a contribution of the Coulomb potential in
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the form of an attractive potential in the polarization
equation. For the case of an unexcited bulk semiconduc-
tor we can diagonalize the polarization equation using
the hydrogen-atom states to obtain the linear semicon-
ductor excitation spectrum consisting of the discrete exci-
'Eon resonances and the interband excitation continuum
14].

III. THE SPATIAL FOURIER EXPANSION

We assume that the semiconductor sample is
sufficiently thin so that we can neglect the reabsorption of
the induced field. In this case we do not have to solve the
detailed propagation problem and obtain the measured
optical signal simply from the total induced-polarization
density P (1),

1
_ ©)
P(1) Vzp P,

In photon-echo experiments the detector usually is in the
far-field region. In order to compute the measured signal
we therefore have to Fourier analyze the total polariza-
tion with respect to the spatial coordinate and select only
those components which propagate in the direction of the
detector. One of the standard photon-echo-measurement
geometries consists of two laser beams propagating at a
small angle with respect to each other and overlapping in
the sample. A three-beam geometry [6-8] to produce
stimulated photon echoes is also often used but in the
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present paper we concentrate on the two-beam case. The
nonlinear interaction of the light beams with the material
polarization produces a multitude of spatial scattering or-
ders. These different scattering orders complicate the
solution of the problem considerably.

In the rotating-wave approximation the total excitation
field consists of two traveling waves given by

ik,'R
’

ER,D=E, (e X+ E,()e (10)

where both E,| and E, have a dominant time dependence
of the form exp(—iwt). We use the notation

k,=K+k, k,=K—k,

and introduce spatial Fourier series expansions in the
form

F,= 3 Fje"«® 1y
and

P,= 3 PJe/KRTinkR (12)
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Because F, is real, we have the condition Fy=(F,"*.

The equations of motion for the Fourier components take
the form
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When the screening is included we choose not to Fourier
analyze the screened potential even if it depends on the
distribution functions and, hence, also in principle has a
spatial dependence.

If the system initially has no excitation, we can see
from the equations that only even harmonics (n =2m) of
the population F and only odd harmonics (n =2m +1) of
the polarization P appear. The odd Fourier components

of F and the even components of P stay zero. If we
neglect the higher scattering orders, the expansions for
P, and F), take the form

—pl kR 1 ik,R
P, Pe +P, e

4 p3, )R
p

F,=F3+FZ" 7y (pryegitha kR (16)

—

where the coefficients are independent of the spatial coor-
dinates.

Equations (13) and (14) reveal an important difference
between the many-body semiconductor system and a set
of independent two-level systems. Our equations reduce
to those of a two-level system if we put all Coulomb ma-
trix elements equal to zero, or if we neglect the terms
containing products of population and polarization
Fourier components. For the case of two sequential
pulses without temporal overlap and E, coming before
E,, the equations show that a set of independent two-
level systems only produces the Fourier components F°,
F*2, Pl P=3 all other Fourier components remain
zero. The signals are consequently propagating only in
the directions k;, k,, and 2k,—k,. However, when the
bilinear terms are included, the system is a true interact-
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ing many-body system. The bilinear terms mix the
Fourier components in such a way that all spatial har-
monics are created. For example, the signal in the direc-
tion 2k, —k, would then be completely given by the ex-
change effects and the measurement of this signal allows
a direct estimate of the magnitude of these effects.

In practical calculations the set of equations is truncat-
ed in some finite order by neglecting all Fourier com-
ponents of order higher than a chosen number. Note
that this truncation is not equivalent to ordinary pertur-
bation theory since it takes a part of the field effects up to
infinite order. We solve the truncated equations numeri-
cally as discussed in Ref. [18].

The photon echo is seen in the direction 2k, —k; (cor-
responding to the Fourier component Pp_3) if the pulse
E,(t) hits the sample before the pulse E,(¢) and in the
direction 2k, —k, (corresponding to the Fourier com-
ponent Pp3) if the order of the pulses is reversed. Notice
that reversing the time sequence of pulses with equal
strengths is equivalent to taking a mirror image of the
signal.

IV. RESULTS AND DISCUSSION

For the numerical evaluations we take the material pa-
rameters corresponding to CdSe, which has an exciton
Rydberg energy E; ~16 meV and the masses are approx-
imately m,~0.125m, and m; ~0.431m. The scattering
rates and the dephasing rate are taken to be phenomeno-
logical constants and for the present purposes we choose
them all to be 5X107® fs~!, which corresponds to
T,=200 fs. For this choice of parameters the 1s exciton
is clearly resolved in the linear absorption spectrum. In
this study we choose Gaussian excitation pulses with a
temporal width of 100 fs [full width at half maximum
(FWHM)]. Consequently, the pulses have a frequency
bandwidth (FWHM) of the order of 2E; in CdSe. If the
central frequency of the pulses is chosen to be at the 1s
exciton resonance, i.e., at E; — Eg, the pulses barely have
frequency components that are able to excite the continu-
um states.

One reason for the choice of CdSe rather than GaAs as
our model substance in this paper is that we are interest-
ed in clearly distinguishing between the excitation of ex-
citons and the continuum states. As discussed in Ref.
[10], the smaller exciton binding energy in GaAs requires
either large detuning or longer pulses to avoid direct exci-
tation of continuum states.

We vary the amplitudes, i.e., the bare Rabi frequencies
teE /% and u, E, /# for the pulses 1 and 2, respective-
ly. In our notation the pulse E,(¢) has its maximum al-
ways at ¢t =0 so that the delay time 7 is the time of the
maximum of the pulse E(¢). Hence negative delay times
imply that E,; comes first, which is our standard situa-
tion.

To be able to distinguish the role of many-body effects
in the photon echo for semiconductors it is instructive to
recall the results for the case without many-body effects.
The phenomenon of photon echo is based on a special
preparation and a consequent free motion of an inhomo-
geneous set of oscillators [16]. For example, in a gas each
atom or molecule is essentially independent and only the
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various Doppler shifts due to the velocity distribution
cause an inhomogeneous distribution of the optical tran-
sitions. The free motion of the induced polarization for a
single oscillator after a short pulse is given by

P(g,t)=P(g,0)e &7, (17)

The total polarization is the sum over all excited osilla-
tors

P(t)= [ de D(e)P(g,0)e e 7" . (18)

where D (g) is the distribution function of transition fre-
quencies of the different oscillators. In the case of a semi-
conductor f de D(e)P(g,t) would correspond to ¥, P,.

If the preparation of the system has been essentially in-
dependent of the frequency, such as in the case of a
coherent broadband excitation, the total signal is just the
Fourier transform of D(g). Consequently, the signal just
decays monotonically after ¢ =0.

However, other more interesting phenomena can be
obtained if the excitation of the different oscillators has
been phase dependent, which in the case of the photon
echo is achieved by using the two consecutive pulses E
and E,. The second pulse is strong enough that a non-
linear signal in the phase-conjugated direction can be
created, starting from the conjugated-polarization com-
ponent P* created by the first pulse. The first pulse
creates the polarization components essentially indepen-
dently of the frequency. However, the free propagation
during the time between the pulses causes energy-
dependent phase changes. Assuming that the first pulse
excites the sample at time — |7/, the polarization com-
ponents traveling in the direction of the first pulse, just
before the second pulse arrives at ¢ =0, is given by

PI(E,I)(IeAiE‘t+T)_Y(t+T’ . (19)

Due to the nonlinear interaction the second pulse excites
a polarization component proportional to [P'(g,0)]*,
which propagates in the direction 2k,—k;. This com-
ponent then acts as the initial value for integration of the
photon-echo signal for later times. The signal is given as

P70« [deD(e)[P(e,0)]*e e 7
o« fdsD(E)e—is(t—f)e(—y(t+r) , (20)

which is again the Fourier transform of the distribution
function D (g). The phase-sensitive excitation has creat-
ed a shift in the time argument. The maximum now
occurs at the time ¢t =7 after the second pulse and not at
t =0 as in Eq. (18). This maximum in the signal is the
photon echo and the value of the signal at the maximum
proportional to exp(—2y7), can be used to extract the
dephasing rate y. The integrated signal as a function of 7
has a similar behavior. In order to obtain a clear photon
echo, the distribution function D (¢) must be sufficiently
broad. However, if we assume in Eq. (20) that the distri-
bution D (¢) has only one frequency component, then the
integral is reduced to one term and the signal decays
monotonically starting from ¢ =0 like

|P(1)| e+ 21



45 THEORY OF THE SEMICONDUCTOR PHOTON ECHO

and free-induction decay but no echo occurs.

These simple considerations let us expect that the pho-
ton echo in an ideal bulk semiconductor depends strongly
on the excitation frequency and, since we assume pulsed
excitation, the bandwidth of the pulse also becomes an
important factor. In general we can say that if we excite
resonantly at the exciton and the pulse bandwidth is less
than one Rydberg energy, we would not expect to see a
photon echo but only a single free-induction-decay type
of signal. On the other hand, if the bandwidth is larger
than the exciton Rydberg energy or if the center frequen-
cy of the pulse is in the band we would expect an echo. A
mixed situation, in which both types of signals appear, is
also possible.

In real semiconductors the concept of independent os-
cillators is lost and free motion after an initial excitation
is very complicated due to the nonlinearity of the system.
We will show that a very important factor is the
excitation-dependent band-gap shift. This renormaliza-
tion leads to a resonance condition which changes during
the excitation due to the increase of the carrier density.
Even if initially the excitation takes place at the exciton
resonance energy, it is possible that during the excitation
the band states may end up in resonance. Thus the
strength of the excitation plays an important role as well.

First, we want to see what kind of signal the complete-
ly coherent system produces in the photon-echo direction
for the case of low excitation. For this purpose we
neglect completely the dephasing and the relaxation of
the population but keep the quasistatic screening. We
choose the delay time as 7=-—300 fs and the field
strengths pu . E,=0.01E; and u  E,=0.1Eg. In Fig. 1
we see the time dependence of the signal when the excit-

SIGNAL (units of 107 ap ®)

-

0 rulll B S R B 1o+ 4 4 4 el
-300 300 900
TIME (fs)

FIG. 1. Time-resolved signal in the direction 2k, —k, for ex-
citation at the exciton resonance. The material parameters are
chosen for CdSe, a; is the exciton Bohr radius, E; is the exci-
ton binding energy, and the calculations were done for T, =
(no dephasing and no population relaxation), detuning
8=—1.0E; (excitation at the exciton resonance), pulse width
100 fs (FWHM), delay time 7= — 300 fs (pulse E, comes 300 fs
before pulse E,), field strengths p . E;=0.01E;x and

ueE,=0.1Eg, where pu., is the interband dipole matrix ele-
ment.
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ing fields are in exact resonance with the 1s exciton. The
most important and somewhat surprising feature is that
the signal seems to rise without limit. The rise is absent
in atomic systems and is completely a consequence of the
exchange contributions, as we discuss in the Appendix.
Figure 2 shows that if we neglect the exchange contribu-
tions, the signal exhibits only a constant-level signal su-
perimposed with the relatively small-amplitude oscilla-
tion due to the quantum beat between the 1s exciton and
the 2s exciton. A comparison of the signal magnitudes in
Figs. 1 and 2 shows that in the nonlinear system the con-
tribution in Fig. 2 is completely masked by the much
stronger rising signal. We do not expect the signal to in-
crease up to infinity, but it will saturate at later times.
There is no distinct peak to be seen in Fig. 1 which would
correspond to the 300-fs delay time. Hence we cannot
speak about a photon echo in this case, confirming our
expectations that weak excitation of an isolated reso-
nance does not produce a photon echo. However, the
signal in Fig. 1 strongly deviates from the simple decay-
ing signal, Eq. (21), which would result from a linear sys-
tem such as uncoupled free excitons.

In Fig. 3 we assume excitation of the semiconductor at
the band edge where a continuum of states is available.
We keep all other parameters the same as in Fig. 1. Now
the signal shows a clear echo which has its maximum
about 300 fs after the second pulse. In Fig. 4 we demon-
strate that a similar kind of signal is obtained also if the
exchange effects are neglected. The photon echo occurs
at the proper delay time and in addition we see now a
small signal contribution caused by the beating between
the 1s and 2s excitons, where the 2s exciton is weakly ex-
cited through the wing of the pulse spectrum. The com-
parison of the signal magnitudes shows that the exchange
contributions strongly amplify the signal. In the Appen-
dix we also discuss the amplification of the photon-echo
signal in the nonlinear system when the continuum is ex-
cited.

In real semiconductors the dephasing and the scatter-
ing of the population play an important role. In fact,
photon-echo experiments are often used to measure the

o

L [o)] (o]
T T T

SIGNAL (units of 1077 ag ®)
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..... Loyuo "

- .300 900
TIME (fs)

0 Pt
-300

FIG. 2. Same as Fig. 1, but exchange terms are neglected.
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SIGNAL (units of 107°
»

300 900
TIME (fs)

9300 1500
FIG. 3. Same as Fig. 1, but for excitation at the band edge,
i.e., 6=0.0E.

dephasing rates [6—9]. In what follows we therefore in-
clude the dephasing and the scattering. As a conse-
quence the increase of the signal in Fig. 1 is expected to
stop. In Fig. 5 we show the time dependence of the signal
for various delay times from —400 to —150 fs for the
case when the center frequency of the excitation is at the
1s-exciton resonance. The field strengths are again
chosen to be u, E,=0.01E; and u.,=0.1Eg. The sig-
nal starts to rise when the second pulse hits the sample,
but in contrast to Fig. 1 it has only a finite duration as a
consequence of the dephasing. The time at which the sig-
nal peaks is not related to the delay time. In a measure-
ment situation this kind of signal could, however, be easi-
ly confused with a real photon echo if by coincidence the
delay time 7 and the signal-peak time are not too different
or if only time-integrated measurements are performed.
The decrease of the signal magnitude with increasing de-
lay time is due to the dephasing taking place between the
pulses. The corresponding integrated signals as a func-
tion of delay time are shown in Fig. 6.

To see what happens when the continuum states are

SIGNAL (units of 1077 ag™®)
N

‘ 300 ‘
TIME (fs)

FIG. 4. Same as Fig. 3, but exchange terms are neglected.
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SIGNAL (units of 1077 ag™®)
N

2
%00 0 200 400 800
TIME (fs)

FIG. 5. Time-resolved signal in the direction 2k, —k, for ex-
citation at the exciton resonance § = —1.0Ej, including dephas-
ing and scattering, T,=200 fs. The other parameters are the
same as in Fig. 1, but the delay times 7 are —150, — 175, —200,
—300, and —400 fs corresponding to decreasing signal max-
imum, respectively.

excited, we set the center-pulse frequency at the band
edge. In Fig. 7 the signals with the same delay times and
field strengths as in Fig. 5 are shown for delay times
larger than the dephasing time. A clear echo feature can
be seen essentially one delay time after the second pulse,
as expected from the two-level-case analogy. The signal
shows an additional peak centered around ¢==50 fs in-
dependently of the delay time. This component corre-
sponds to the 1s exciton which is also excited due to the
finite pulse bandwidth. The measurements of photon-
echo signals of this kind have been reported in Ref. [21],
however, for slightly different excitation and sample con-
ditions. Figure 8 shows the integrated signal correspond-
ing to Fig. 7 as a function of delay time. Fitting the
curve formed by the maxima of the signals in Fig. 7 to
the relation |P|2,, <exp(—47/T,) we regain the value
used T, =200 fs.

Even though the low-excitation results presented so far

3.0

25F

20

ag™® fs)

INTEGRATED SIGNAL

(units of 107°

0.5 r

0.0 —F==r==t

O550 " —300 =100
DELAY TIME (fs)

100

FIG. 6. Time-integrated signal (in units of 1073 a5 ® fs) in the
direction 2k, —k, as a function of delay time for pulse strengths
peE,=0.01Eg, pu.E,=0.1 (dashed line) and 0.5Ey (solid line).
All other parameters are the same as in Fig. 5.
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-6
Qg

-7

SIGNAL (units of 10

2100 100 300 500
TIME (fs)

FIG. 7. Same as Fig. 5, but for excitation at the band edge.
The delay times 7 are —100, —200, —300, and —400 fs corre-
sponding to decreasing signal maximum, respectively.

exhibit some features which can be explained by consid-
ering the different exciton states as independent oscilla-
tors, similar to two-level atoms, our analysis shows that
the many-body effects play a significant role in the dy-
namics. For example, if we neglect the many-body
effects, the strengths of the signals are drastically
modified. Furthermore, as discussed before, the increas-
ing signal in Fig. 1 is a direct consequence of the ex-
change terms. Additionally, the band-gap renormaliza-
tion can also be an important effect because it may com-
pletely modify the resonance conditions. To illustrate
this feature, we plot in Fig. 9 the dependence of the band
edge corresponding to Fig. 5 as the top curve. We see
that the first pulse, which is very weak, leads to a shift of
only about 0.3Ey, whereas the second pulse causes a shift
of the order of 2E,. In the case of such a large shift, a
pulse which is originally centered at the ls-exciton reso-
nance causes direct excitation of the continuum states
after the band gap has shifted by E;. Nevertheless, this
situation does not lead to a photon echo in Fig. 5, since
the phase shifts necessary for the echo are produced in
the time interval between the pulses [see Egs. (19) and
(20)] and during this time interval the band-edge shift in
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FIG. 8. Time-integrated signal corresponding to Fig. 7 as a
function of delay time.

23755
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FIG. 9. Renormalized band edge as a function time. EJ is
the unrenormalized band gap. The delay time 7= —400 fs and
the different curves are for u..E;=0.01Eg, 0.03Eg, 0.05Eg,
0.07ERg, and 0.1Ey, from top to bottom, respectively. All other
parameters are the same as in Fig. 5.

this case is still too small to allow significant continuum
excitation by the first pulse.

However, for the same situation, only increasing the
intensity of the first pulse, we should be able to shift and
excite immediately part of the continuum so that the free
propagation before the second pulse arrives is sufficient to
cause the needed phase shifts for the photon echo. To
demonstrate this effect we keep the center frequency of
the pulses at the ls-exciton resonance, fix the delay time
at 7= —400 fs, choose the strength of the second pulse as
U EE,=0.1ER and vary the strength of the first pulse. In
Fig. 10 we show the resulting signals as a function of time
for various field strengths of the first pulse. As expected,
for low intensities the signal has a single peak near zero
time, whereas for large intensities the peak of the signal is
at 400 fs, which is the correct photon-echo time. The
curves for intermediate intensities show the transition

10

SIGNAL (units of 1077 ag™®)
FN

—0100

TIME (fs)

FIG. 10. Time-resolved signal in the direction 2k, —k, for in-
creasing strength of the first pulse E,. Excitation occurs at the
exciton resonance 8= —1.0Ez, T, =200 fs; time delay 7= —400
fs; pulse FWHM =100 fs; and p.,E,=0.1E;. With increasing
dash length, the curves are for u.E;=0.01Egz, 0.03Eg,
0.05ER, 0.07ER, and 0.1Ey (solid line).
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from ‘“free-induction decay” to ‘“photon echo” taking
place. A double peaked structure is seen to appear be-
tween the limiting cases. The band edges plotted in Fig.
9 correspond to the field strengths of Fig. 10 and we can
see that for increasing u. E, the gap shift before the
second pulse increases and exceeds Ep. Consequently,
the band states are shifted into resonance with the field
and the photon-echo signal develops.

To clarify further the different nature of the two peaks
in the time-resolved signal in Fig. 10, we study their
modifications caused by changing the dephasing rate. We
choose pulses centered at the band edge, a delay time of
—300 fs and the field strengths of u  E,=0.01E; and
e E,=0.1Eg, respectively. The resulting time-resolved
signals are plotted in Fig. 11 for various T,. The curve
for T, =200 fs shows two peaks, the first of which is
caused by the weakly excited exciton and the second peak
at t =300 fs is the real photon echo. The curves for
T,=100 and 50 fs show how the relative importance of
the photon echo decreases with increasing dephasing
rate, i.e., decreasing T,. The overall signal level de-
creases also. These features are all related to the dephas-
ing taking place between and after the exciting pulses.
Both signal peaks experience the dephasing during the
preparation period between the pulses, proportional to
exp(—27/T,) causing the overall decrease of the signal
with decreasing T',. The first-signal contribution is gen-
erated essentially immediately after the second pulse be-
cause it is a pure free-induction decay signal. Therefore
its peak value suffers no additional dephasing. The
photon-echo peak, however, is a consequence of a con-
structive interference at time 7 after the second pulse.
During the time 7 the individual oscillators have suffered
a further decay proportional to exp(—27/T,) and conse-
quently the photon-echo signal is reduced by this factor
more than the induction decay signal. Therefore for
small T, the free-induction decay component becomes
the dominant feature of the overall signal.

SIGNAL (units of ag™®)

—01 00 l 100. 300 500
TIME (fs)

FIG. 11. Time-resolved signal for different dephasing times
for excitation at the band edge, §=0.0E;, 7=—300 fs,
e, =0.01Eg, and pu.,=0.1E;. The dephasing times T, are 5O
fs (short-dashed line), 100 fs (medium-dashed line), and 200 fs
(solid line), respectively.
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V. SUMMARY

In summary, we present a comprehensive numerical
analysis of the semiconductor Bloch equations for condi-
tions under which the photon echo in semiconductors
can be investigated experimentally. For the material pa-
rameters of CdSe we show that the time-resolved signal
exhibits features which can be clearly attributed to either
exciton or continuum excitation. The exciton signal is
characterized as free-induction decay which starts im-
mediately after the excitation. For the artificial situation
of vanishing dephasing this signal exhibits a predom-
inantly linear increase which is caused by the exchange
contributions in the electron-hole Fermi system. A true
photon echo is obtained for resonant interband-excitation
conditions. However, even for excitation into the exciton
resonance we obtain a photon echo if the excitation inten-
sity of the first pulse is sufficiently strong so that the
band-gap renormalization shifts the continuum states
into resonance during the presence of this pulse. With in-
creasing excitation intensity we find a gradual transition
from free-induction decay signal to the characteristic
photon-echo scenario. Even though our numerical re-
sults are based on model equations for a two-band semi-
conductor with quasistatic screening and phenomenologi-
cal inclusion of scattering and dephasing processes, we
expect qualitatively similar behavior for real semiconduc-
tors.
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APPENDIX

In this appendix we take an analytical approach to the
semiconductor Bloch equations. The obvious way to sim-
plify the equations is to use perturbation theory. We as-
sume that both pulses are weak and solve the equations in
first order in E, and second order in E, for the case when
E| comes before E, assuming that the pulses have no
temporal overlap. We do not include damping in these
evaluations even if it would be straightforward. The
equation we solve is given by

d , _
i~—P,=¢,P,—U,(1—2F,) . (A1)

dt

To close the set of equations we use the constant of

motion
(1—2F,)*+4|P,|*=1, (A2)

which is valid if the relaxation is neglected. In the per-

turbative limit we can solve for F, to obtain
F,~|P,|>*+0(P*). (A3)

Hence the equation of motion can be approximated by
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’.EPPE 2 Pp+p 22vp.|Pp+p,lsz
P

.u'cv

+23 v,p, 4P, P——7E(R,0(1=2|P, %),
<

(A4)

with the initial condition P,(t = — 0 )=0.
We now use the fact that the solution of the eigenvalue
problem
&5y~ 3 Vpbp 4y =1} (A5)
P
is known [19]. The eigenfunctions form a complete
orthonormal set of functions which we use to expand the
polarization,

PA=E (¢,),‘)*Pp (A6)

P, 2 ¢y P> . (A7)

J
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Because we assumed no temporal overlap between the

two pulses, we can choose a time ¢, such that the first

pulse is gone and the second one has not yet come. For

this time ¢, we can write the polarization in first order in

E, in the form

=i 3 (¢))*e
p

PM1, o (R,A)

—i[¢*0)]*e "OE,(R,M), (A8)

where E(R,7) is the Fourier transform of E, at frequen-
cy A given by

E(R,M)= [dtE|(R,t)e™ . (A9)

The Fourier transform limits the range of the excitation
within the bandwidth of the exciting pulse. We use this
polarization as an initial condition when we integrate
over the second pulse. The corrections to P(t,) are of
third order in E,. For times larger than ¢,, the total po-
larization propagating in the direction 2k, —k; takes the
form

P()==2i3 3 ¢MO0)d})*"(0)))* [ (0)]* 6} [E (A)]*

p AALAY

' 1, =Mt~ ) +ik't N g, —ik(e =t "
Xf_wdte E,(t )f_mdt e E,(t")

23 3

pp LA A
t . TV o 4 TP t' iy e
Xf dt'e iMe—t)+i)'t f dt'"e A —t )Ez(t")f dt'"e PN —t )Ez(t”') ,
- — o0 - ®

Y,y 0) (D) * [427(0)]* 6} [6¥(0)]* 8} (67 (0)( ) )* — ™ (0)( ¢y )* ILE;(A)]*

(A10)

when only the first-order contributions in E, are taken into account. The first term in Eq. (A10), which does not vanish
when the Coulomb matrix element v, is set to 0, describes the response of an inhomogeneous set of independent oscilla-
tors, which in this case are all the s excitons. The last term in Eq. (A10) is due to the exchange effects. Because of the
multiple summations involved this expression is tedious to evaluate. We therefore make some rather drastic approxi-
mations in order to investigate the general features of the signal.

If the center frequency of the excitation is below the band gap, we expect that the bound excitons, which have a
discrete spectrum, will become important. To concentrate on their effect we neglect all other excitons except the 1s ex-
citon. In this case the signal is given by

¢*°(0)]3z(¢2°>3[E1<A0>]* [' are

—ikg(t—1")

P(t)~—2i[ "B,y [* are™ Byt

—i ’ i " 2
°(O)]42v B — (4P 0L E (o) I*e M dt'[f_’ dr'e™ B, (1) (A11)

We are essentially interested in the long-time asymptotic behavior of the signal which we obtain from Eq. (A11) as

P(1)~ —2z[¢*°(0)]32(¢,*,°)3[E1(xo)]*[Ez(xo)]le

—ikgt

2[¢"(0) ]42 BB (8)18 01 E (Ag) [* [ Ey(Ag) Pe 0. (A12)

The first term, which is the familiar induction decay, merical evaluations as the dominating contribution. As

gives only a constant signal, not an echo, as expected
from an isolated oscillator. However, the exchange con-
tributions produce a signal that monotonically increases
with ¢. Figure 1 shows that this signal is seen in the nu-

noted in Ref. [11], the multiplying coefficient of this term
is the Heitler-London coefficient familiar from molecular
physics, where exchange effects play an important role
too. It is clear that physically this rising signal cannot be
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correct for all times because of the conservation of the
energy, indicating that our perturbation-theory approach
is only valid at sufficiently short times.

The other limit is the case when the excitation frequen-
cy is well above the band gap in the interband absorption
continuum. In this case we treat the Coulomb interac-
tion perturbatively. We neglect the Coulomb interaction
in the wave functions and keep it only in the exchange
contributions as a multiplying matrix element in the
sums, so that

P(t)z"iZ[El()\.)]‘e_iM [ft dt:Ez(tr)eiM' ]2
)\’ — o0

_22 VPA_PA’[EI(}\,’)]*e—iAtft dt:(l_ei(l—}\.')(t—t’))ft' dtliEZ(tll)eiAt”ft, dt:nEz(tul)eik’t'” .
AN T —® —®

If we assume that the second pulse has the same line-
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¢y ~8,1, ¢M0)=1. (A13)

The states are essentially free-particle states and conse-
quently the eigenvalues A are labeled by a momentumlike
vector p,. The eigenvalues are given by

#i

AzEg+Ep§ : (A14)
The signal (A 10) takes the form
f
(A15)
J
, 1 if ¢ and ¢’ have different signs
Flt,e')= i sgn(z) if ¢t and ¢’ have same signs . (A18)

shape function f and carrier frequency w, as the first
pulse, but is delayed by a time 7, we see that the echo sig-
nal from the first term is given by

S [f (A=) e

A

—iwgt —i(A—ay)t —27)

Pl(t)=e (A16)
The signal is a kind of inverse Fourier transformation of
the cube of the Fourier transformation of the pulse, but
the maximum of the signal is shifted by 27 from the peak
of the first pulse. Thus the echo generally looks very
much like the existing pulse itself but is broader in time.

To evaluate the exchange contributions we need the in-
tegral

N iTApIE+ AP )
G(t,t') Z,vp_p,e
bp

e v
2e (27)?

i 1 .
w'| t+t’

2m

iEg(z+t’)
#i

F(t,t'),

(A17)
where F(t,t') is defined by

Since the integral form for arbitrary pulse shape does not
reveal the behavior of the signal we assume for simplicity
S-function pulses. The signal contribution is then pro-
portional to

2
—lEg(t —27)

el v 2m i
—_—— — e —_
2e 27)? | A (t—=7) 27—t
X |V(t—7)/7—In t—+|2t‘/TT(2’T|—_T—) +i7r], (A19)

where O(t) is the Heaviside step function. Equation
(A19) shows that the signal diverges at t =27 as would
also the first term given by Eq. (A16) if it had been calcu-
lated for 8-function pulses. The asymptotic behavior of
the signal goes like ¢ ~!/2 and the signal, hence, decays for
large times in contrast to that of the exciton. Hence this
signal contribution also shows an echolike feature which
is supported by the numerical results in Sec. IV when the
excitation takes place inside the band.
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