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A coupled set of equations for carrier distributions and stimulated emission in a semiconductor laser is
presented, based on a nonequilibrium Green’s-function formulation. Carrier momentum-dependent de-
phasing caused by carrier-carrier scattering and frequency-dependent optical gain are shown to govern
the interplay between carrier relaxation and stimulated recombination. Ignoring the interband Coulomb
interaction, the coupled system of equations for the carrier distribution functions and the optical gain is
solved self-consistently for a single-mode short-cavity semiconductor laser under steady-state operation
conditions. Numerical results show spectral and kinetic hole burning as well as nonlinear gain satura-

tion.

PACS number(s): 42.55.Px, 42.65.—k

I. INTRODUCTION

The problem of spectral hole burning and gain satura-
tion in semiconductor lasers is not only central for the
understanding of the laser operation, but it also provides
detailed insight into the dynamics of the coupled carrier-
photon system. A consistent theoretical analysis requires
a unified treatment of light field and carrier dynamics, in-
cluding the fundamental relaxation and dephasing mech-
anisms. For example, the dynamic evolution of the car-
rier distributions in semiconductor lasers is generally
governed by the interplay between the nonresonant in-
coherent pumping (carrier injection), the relaxation of the
injected carriers, and the interband recombination by
spontaneous and stimulated light emission.

Substantial work on semiconductor lasers has been
published over the past two decades [1-3]. Particularly
relevant for our present study is the theoretical analysis
by Korenman [4] and by Zée [S], where the broadening
mechanisms in semiconductor lasers are included as phe-
nomenological parameters. Experimental investigations
of gain saturation and spectral hole burning in cw semi-
conductor lasers have been reported [1-3,6-8] and fem-
tosecond time-resolved investigations on semiconductor
amplifiers are presented in Ref. [9].

In this paper we investigate nonlinear saturation and
spectral hole burning for the case of short-cavity bulk
semiconductor lasers, where only single-mode operation
is possible. We present a self-consistent calculation of the
spectral and kinetic properties of the coupled electron-
hole-photon system for pump rates ranging from well
below to well above the laser threshold. The carrier
scattering processes which lead to optical dephasing and
the many-body renormalization of the carrier dispersion
(light induced gap) are treated microscopically at a con-
sistant level. Rather than providing a detailed derivation
of the microscopic equations we present the general re-
sults and discuss the physical significance of the various
terms. The general nonequilibrium Green’s function
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theory for a semiconductor is presented in Ref. [10] and
is extended here for the case of a semiconductor laser.
We use the simplest version of the general theory, i.e., we
make the well-known random-phase approximation
(RPA) generalized to the nonequilibrium carrier-photon
system. Even though it can be an interesting aspect of
the theory, we ignore in a first step all interband
Coulomb effects since their inclusion would considerably
increase the complexity of our analysis. Screening is con-
sidered on a single-particle level and the renormalization
and damping effects are computed in a microscopically
consistent fashion. These more formal aspects of the
theory will be presented in a forthcoming publication.

In this paper we start our analysis in Sec. II by describ-
ing the kinetic equations for a short-cavity semiconduc-
tor laser in a homogeneous and stationary situation. We
analyze the carrier-carrier Coulomb scattering by numer-
ically computing the electron/hole self-energies from the
carrier Boltzmann equation. We extract the intraband
relaxation and dephasing rates as functions of particle
momentum k and establish the relation to optical dephas-
ing. We verify that the relaxation time approximation
for the carrier kinetics in semiconductor lasers is applic-
able as long as the scattering rates are computed con-
sistently from the many-body formalism.

The detailed shape of the gain/absorption spectrum in
the running short-cavity laser is determined by the com-
petition between stimulated emission at the laser frequen-
cy and the carrier-carrier scattering. The probe gain
spectrum depends sensitively on the inversion of carriers,
i.e., on the carrier kinetics. To obtain the gain spectra we
solve the coupled microscopic equations for the carrier
inversion and for the spectral shape of the emitted light
intensity.

In Sec. III we discuss the numerical evaluation scheme
for our system of integral equations. Results are present-
ed in Sec. IV for the example of a continuously pumped
single-mode short-cavity GaAs laser. We show that a
spectral hole develops around the frequency of the run-
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ning laser mode, as soon as the laser is pumped above
threshold. For the highest carrier densities investigated
we find a substructure in the spectral hole which corre-
sponds to the light-induced renormalization in the carrier
dispersions. For above threshold carrier densities our
calculations yield a high degree of gain saturation, i.e.,
compensation of loss and gain at the laser resonance.

II. KINETIC EQUATIONS

We consider the distribution function f.(k) of elec-
trons in the conduction band of a semiconductor laser.
In the spatially homogeneous case the kinetic equation
can be written as

af.(k) 3f (k) af.(k)
= +
at ot coll ar stim
af.(k af.(k
felk) fe (k) 2.1
at spont at pump

The corresponding equation for the valence-band elec-
tron distribution f, (k) is obtained by replacing ¢ through
v. The different terms on the right-hand side (rhs) of Eq.
|

Pk =27
akyky kg

and

2\ W (ky—k ), (k1= f o (k)1 f (ke tr i r8(E. (k) =€, (ko) e lky)—ey(ky))
17K KKy

HENNEBERGER, HERZEL, KOCH, BINDER, PAUL, AND SCOTT 45

(2.1) describe the kinetic changes due to intraband
carrier-carrier collision, stimulated emission of light,
spontaneous emission, and pumping of electrons from the
valence band into the conduction band, respectively.

For the purposes of this paper we do not need the de-
tailed form of the pump rate. It is only included in Eq.
(2.1) to balance the rate of change of the total number of
carriers N=23, f (k). We denote the total pump rate P
as

of (k)
ot

(2.2)

Lump

P=23

k
A. Carrier-carrier collisions
The expression for the carrier-carrier collision rate is

af (k)

S| =Tall=fU01-Taufek)

coll

2.3)

where the relaxation rates I';, and I',, describe carrier-
carrier scattering due to Coulomb interaction. In RPA,
these relaxation rates are given as [11]

(2.4)
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where W(k) is the screened Coulomb potential. For sim-
plicity of notation we write Eqgs. (2.4) and (2.5) in the
electron-hole notation, where f,=f, and f,=1—f,, and
the summation index a runs over the indices e,h. €,
denotes the single-particle energy of electrons or holes.
The corresponding equation for the hole scattering rates
is obtained from Eqgs. (2.4) and (2.5) simply by substitut-
ing the index e by A.
A close inspection of Egs. (2.3)—(2.5) shows that

af. (k)
f, } o
ar coll

(2.6)

k

expressing the fact that carrier-carrier intraband scatter-
ing leads to redistribution of carriers within each band,
without any interband transitions.

It is well know that the evaluation of the scattering
rates in general requires a quite considerable numerical
effort. However, for a situation not too far away from
thermodynamic quasiequilibrium, we can approximate
the collision by

af.(k)
at

AL AL o
coll— Tc(kO) ’ ’

2.5

where

1
=Ficn,0(k0)+rgut,0(k0)

2.
T (kg) (2.8)

and k is a representative wave number at which the col-
lision rates are evaluated. In this paper we chose the
wave number k corresponding to the laser frequency w,
(see Sec. IV). In Eq. (2.7) fF(k) denotes the electron
quasiequilibrium Fermi distribution function and the in-
dex O on I' indicates that the actual distribution function
in Eqgs. (2.4) and (2.5) have been replaced by ff(k).
Furthermore, we used the fact that for f,(k)=ff(k), the
total collision term Eq. (2.3) vanishes identically.

As discussed in detail in Ref. [11], the relaxation time
approximation Eq. (2.7) is reasonable as long as the
overall actual distribution function deviates only weakly
from a Fermi function, even though the deviations in
some small range of k values may be relatively significant.
Generally, the overall deviation has to satisfy the condi-
tion

S f k) —fFk) << 3 fo(k), (2.9)
k k

which is well fulfilled for the presently studied case of a
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single-mode semiconductor laser where the running laser
mode leads to changes of the carrier distributions which
are centered around the k value of the mode.

B. Stimulated and spontaneous emission

The stimulated and spontaneous emission rates in Eq.
(2.1) are given by

af (k)| B

at Stim— [fc(k) fv(k)]

1
X5 Jdod, (k,0hgn(w) (2.10

and

af,.(k)
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1
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where A_, is the interband carrier spectral function and A
is the photon function. These quantities are discussed
below. The carrier population factors [f.(k)—f, (k)]
and f.(k)[1—f,(k)]in Egs. (2.10) and (2.11) are related
through

[f k)= f (R ]=f 1= f (k)]—f (k)1—f.(k)],
(2.12)

expressing the fact that the stimulated emission is pro-
portional to the inversion f (k)—f,(k), which is
the difference  between  spontaneous  emission
< f.(k)[1—f,(k)] and absorption « f (k)[1—f.(k)].

In optical transitions in a semiconductor, the spectral
function for the single-particle states A4 (kw) and
A, (ko) occur always in the form of a combined spectral
function

Acv(k,w)=—-ifdw'Ac(k,w—a)’)Av(k,w’). (2.13)
2T

Since a detailed analysis of these spectral functions is
presented in Ref. [10], we omit the discussion of these
quantities in the present paper and give only the explicit
form of 4., in Sec. III.

In Eq. (2.10) the coupling of the semiconductor to the
light field is described by the photon function
2
Jev iV %fph(q,co) ,

Agim(@)= (2.14)

where j,, is the interband current matrix element. Simi-
larly, the function A, (@) in Eq. (2.11) is given as

.2

Jev

Aspont( @)= (2.15)

1
- 2 An(qo) .
vV P

The photon spectral function 4, and the photon dis-
tribution f;,(g,®) enter into Egs. (2.14) and (2.15) since
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the light field is described in complete analogy to the ma-
terial quantities. The photon distribution function is the
Fourier transform of the field-correlation function
( A(r t;)A(r,t,)) into k space with respect to r,—r,
and into o space with respect to ¢; —t,, respectively. The
photon spectral function is the corresponding retarded
expression constructed form the field-correlation func-
tion. Because of damping, i.e., broadening of the photon
states, the spectral function of the photons does not sim-
ply consist of 8 functions peaked at the renormalized
dispersion g(w), but is given by

yph
[4°—g%(@)*+yp,
Here v, denotes the photon damping and is in a laser

the difference between the background losses 2«(w) and
the optical gain G(w):

A(qo)= (2.16)

Ypu(@)=2k(0)—G(o) . (2.17)

Since we investigate a short-cavity semiconductor laser,
where only one cavity mode exists within the gain band-
width, we model the resonator losses as

o for oFw,

(w)= _
) K, otherwise . (2.18)
Note, that for stationary operation conditions
Venl@)>0 (2.19)

must be always fulfilled; otherwise the retarded photon
Green’s function D™'(q,t) would diverge for t — .

Equation (2.14) shows that the stimulated emission
with the optical frequency ® 1is proportional to
3¢/ pn(q,@), ie., the total number of photons with fre-
quency . We see from Eq. (2.15) that the spontaneous
emission of course needs no real occupation of photons.
It involves only the spectral functions of the photons and
of the semiconductor to assure energy conservation in the
transition.

As a consequence of the broadening v, photons with
given momentum can contribute to various energetic
transitions in the semiconductor. We therefore need the
spectral resolution of the occupation function f;(q,®)
for a given mode q, which yields the information of the
distribution of the occupation of the mode q with fre-
quency . This is in contrast to the carrier distribution
functions, where we are only interested in the total occu-
pations of the k states, which are determined by the
frequency-integrated distribution functions.

The function Ag; (@) determines the spectral shape of
the stimulated emitted light as
2

: hkstim( o) .

(2.20)

@
Istim(a’)zT 7

Correspondingly I, follows from A,

The photon distribution function obeys an equation
which is formally very similar to the carrier Boltzmann
equation (2.3). The analogy to in and out scattering of
carriers due to Coulomb scattering is the emission and
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absorption of photons due to electron-hole-pair creation
and annihilation. The photon Boltzmann equation is dis-
cussed in Ref. [10] as Eq. (4.20). It involves the time
derivative of f,,, with respect to the center-of-mass time
(t,+1,)/2 and analogous spatial derivatives. In the fol-
lowing, we restrict ourselves to homogeneous systems in
both space and time. This allows a simple solution of the
photon Boltzman equation, as we only have to make the
emission and absorption contributions equal. Using the
explicit form Eq. (2.16) for the spectral function of the
photons yields

' w)
[ —qX @) P+yie)

fon(q0)= (2.21)

where T'P(w) is proportional to the scattering rate into a
photon mode

.2

Jev

h(w)=
c

lV S A, k,0)f,[1—f(K)] .
k

(2.22)

Note that the weak dependence on the photon wave vec-
tor has been neglected here.

Finally, we have to give the explicit form of the gain
function G(w) that enters the photon damping y .
Within the random-phase approximation, G(w) can be
written as
2

Jev lV S Ak f k) —fy k)] . (2.23)
k

Glw)=

For given spectral functions 4., 4,, and A, we have
now a closed set of nonlinear equations of the distribu-
tions functions f, f,, and f .

III. NUMERICAL EVALUATION

As a simple numerical example we evaluate our equa-
tions for the case of a short-cavity bulk GaAs semicon-
ductor laser of resonator length L, where only one reso-
nator mode exists within the spectral region of optical
gain. To obtain the stimulated emission spectrum, we
have to evaluate the q summation in Eq. (2.14). Taking
an output beam of diameter d, we assume that only
modes within an angle of d/L <<1 contribute to the
emission. Hence we approximate

d
(g,,w) for g, <—gq,
fon(@,0)= Imld UL 3.1)
0 otherwise ’

allowing us to evaluate the integration over the perpen-
dicular part of the wave vector ¢, in the g integration of
Eq. (2.14):

2
[d%af plg0)=m [ da,a*f (gz0) . 32)

d
2L

We then obtain form (2.14) with (2.21),
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where the damping of the photon states formally leads to
a further renormalization of the renormalized photon
dispersion:

7(@)=V[g%0)+[g% @) +13(w)]?]/2 .

(3.4)

In the vicinity of the laser mode w, the damping ap-
proaches zero so that in that spectral region §(w)=~g(w).
For simplicity we completely ignore the renormalizations
of the photon dispersion in our numerical evaluations,
approximating §(w)=~w/c.

Since we are dealing with a configuration that allows
only single-mode operation, essentially only a small re-
gion around the laser frequency w, contributes to the
stimulated emission. Furthermore, it is well known [1-3]
that the linewidth of a semiconductor laser is small in
comparison to the broadening which is predominantly
determined by the fast dephasing processes due to
Coulomb interaction. Therefore, we evaluate 4. (k,w)
at the laser frequency w, and approximate in Eq. (2.10).

1
5o [do 4.k,0)kgm(w)
1
= Ak, 00) 5 [ dorgm(e)

=4, (k,wp)kg » (3.5)

where A, and TPMw) have to be computed self-
consistently to satisfy Eq. (3.3). The quantity A is related
to the square of the Rabi frequency [10]

2m

#i

It is a good approximation to assume that the spon-
taneous emission rate is spectrally broad and does not
significantly influence the spectral properties near the res-
onances. Integrating Eq. (2.1) over k and making use of
the fact that the intraband collisions do not change the
total number of the carriers in the bands, we get

Q=1 . (3.6)

9N N

P+
ot

=0. 3.7)

spont

For our evaluations we ignore the frequency dependence
of P and (3N /8t ), and use these quantities as parame-
ters.

As has been discussed [10,12,13] for a passive semicon-
ductor excited with a monochromatic field, laser induced
bands and a renormalization of the electron dispersion
appear which lead to a modification in the spectral shape
of the interband transition rates near the resonance. This
leads to an interband spectral function of the form [10]

A, (ko)=4m[a*(k)b (iw—E,(k))
+b2(k )8, (o + E, (k) — 2Hi05)

+2a(k)b(k)d, (fio—Hwy)] , (3.8)
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where 8, is a broadened delta function. The damping

_ 1 1
(k) 1K)

2y (k) (3.9)

is the sum of the relaxation rates (2.8) resulting from
carrier-carrier collisions. The three terms in Eq. (3.8) re-
sult from transitions between the ‘“‘dressed” semiconduc-
tor bands [12,10], which include the light induced split-
ting of the conduction and valence bands. The factors
a(k),b(k) and the renormalized dispersion E.,=E_.—E,
are discussed in Eqgs. (3.8), (3.15), and (3.17) of Ref. [10]
and will not be repeated here. It is only important to
note at this point that the band renormalization is a func-
tion of the field intensity, through A4, and disappears for
weak fields, leaving the usual semiconductor band struc-
ture. Because of this field intensity dependence it is not
crucial for the band renormalization whether one as-
sumes a situation where ( 4 )70, as in Ref. [10], or
( 4)=0 as in the present case of a semiconductor laser.

For the numerical analysis we choose a laser frequency
wq close to the gain maximum at threshold. In a realistic
short-cavity semiconductor laser this frequency is deter-
mined by details of the experimental configuration such
as the cavity length. Assuming a carrier density, which is
implicitly determined by the pump rate, we compute the
chemical potentials entering the quasiequilibrium distri-
butions of the carriers in the conduction and valence
bands. Inserting Eq. (3.5) into Eq. (2.10), and then Egs.
(2.10) and (2.7) into Eq. (2.1) yields in steady state

fk)—fEk)

T

=[f (k)= f (k)] A (k,00)Ao

[4

_LAR=£,K)]

Tspont

(3.10)

where the pump contribution enters implicitly through
the chemical potential in f¥, and

1

Tspont

= [ do Ak, 0 o) . (3.11)

In Eq. (3.11) the weak k dependence has been ignored.
An equation analogous to (3.10) is valid for the electron

distribution in the valence band, where except for a sign
change all terms on the rhs are identical to (3.10), so that

S —fEk) _ fl)—fyk)

Te T

(3.12)

v

This equation shows that the ratio of the deviations from
thermal distributions in the different bands, i.e., the ratio
of the kinetic holes, is inversely proportional to the ratio
of the relaxation times in these bands.

We solve Egs. (3.10) and (3.12) by eliminating f,
which results in a quadratic equation for the carrier dis-
tributions as functions of A,. Using Eq. (3.3) with (2.22),
(2.17), and (2.23) we then compute Ay, (w), which de-
pends on A, via the carrier distributions. After obtaining
a self-consistent solution, we then calculate the total k-
integrated emission rates, and from these, using Eq. (3.7),
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we determine the pump rate required for the assumed
steady state.

IV. RESULTS AND DISCUSSION

In order to study the semiconductor laser situation we
first have to evaluate the carrier scattering and dephasing
rates for the relevant carrier densities. To this end we
numerically solve the full equations (2.3)-(2.5) for the
case in which equilibrium electron and hole distribution
functions have been distorted at small k values to study
the relaxation of a kinetic hole in a high-density carrier
distribution [11]. Figure 1(a) shows the electron and hole
distributions at various times after the initialization. We
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=
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FIG. 1. Relaxation of initially disturbed Fermi distribution
functions for a density n=8X10"® cm™3 and a temperature
T~300 K. Shown are the distribution functions of electrons
and holes (a) and the corresponding total scattering rates (b) as a
function of the carrier momentum in units of ag where az =140
A. The initial (1=0) distribution functions are the solid lines
and the consecutive times are t=60 fs (short-dashed line),
t =200 fs (dash-dotted line), and the final time t=1.1 ps (long-
dashed line). The corresponding total scattering rates are
shown only for the initial and final times.



1858

see that under the influence of carrier-carrier collisions

the kinetic hole vanishes on the time scale of ~50 fs.

Figure 1(b) shows that the scattering rates
r“k)=rgk)+I5,(k), a=e,h

u

(4.1)

are almost time independent and, as discussed in Ref.
[11], a relaxation time approximation seems justified.
Taking the computed scattering and dephasing rates in
the relaxation time approximation, we can now solve the
full set of laser equations. For simplicity, we investigate
a short-cavity semiconductor laser which has only one
cavity mode in the gain region. Hence, we arbitrarily
choose a laser frequency w,, which we keep fixed in our

1.0 —
Z N
= W\ (2)
E~ 0.9 ‘\‘ LR 4
@) LA
Z Yol
= velectrons
&= 0.8 VA ]
Z A
=) PR
B 0.7 \ 1
2 L
& Vo
E 0.6 yoL 1
= S
\":\ L
0.5 ML
0 100 200 300 400
E.v E, (meV)

-
o

o
o

NORMALIZED GAIN G(w)/2ko

o
o

o

100
hw — E; (meV)

200

FIG. 2. (a) Room-temperature electron and hole distribu-
tions functions for a short-cavity GaAs laser which supports a
single lasing mode. The threshold carrier density is 8X 108
cm . (b) Gain spectra corresponding to the carrier distribu-
tions of (a). The dephasing rates have been obtained from the
results of Fig. 1. The gain is plotted in units of the total losses
2k, of the laser mode. The different curves are computed for the
Rabi energies #Qy (in 107% meV): 9.9 (solid line), 13 (short-
dashed line), 28 (dash-dotted line), and 37 (long-dashed line).
The inset to (b) is an enlargement of the gain spectra around the
laser frequency.
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calculations, i.e., we neglect mode pulling effects which
would lead to small shifts of the actual laser frequency for
different operation conditions. We use the relaxation and
dephasing rates at the wave number k corresponding to
®y. Our numerical scheme yields the self-consistent solu-
tions for the carrier distribution functions, the gain
profile, and the laser output.

In Figs. (2) and (3) we show examples of the steady-
state solutions for different carrier densities, i.e., different
injection pump rates. For illustration we show in Figs.
2(a) and 2(b) the carrier distributions and the correspond-
ing gain spectra for a threshold carrier density of 8 X 10
cm ™3 and various field strengths (Rabi frequencies). As
we can see in Fig. 2(b) for small Rabi frequencies the gain
at the laser frequency w, is below the loss 2k, so that no
laser emission occurs. Hence, the corresponding distribu-
tion functions in Fig. 2(a) are basically the thermal
quasiequilibrium distributions. When G(w,) approaches
2k, laser action sets in. Above-threshold kinetic holes in
the distribution functions emerge at the resonance ener-
gy. The width of these holes is essentially determined by
the carrier-carrier scattering rates, hence it is in general
large in comparison to the spectral width of the Fabry-
Pérot resonance.

Simultaneously with the occurrence of the kinetic
holes, the optical gain develops a spectral hole whose
width is determined by the dephasing rate, see Fig. 2(b).
For large field strengths substructures in the spectral hole
appear which result from light induced renormalizations
of the band structure. They lead to gain depletion in the
spectral region +Qj around w, The light induced
bandstructure renormalization corresponds to the optical
Stark splitting (dynamic Stark effect) of the various k
states around the laser resonance. Since we do not spec-

trally resolve the carrier distribution for given k, these
substructures do not show up in Fig. 2(a).

o 3 .
2
(3]
N -
~ L Lo _
3 ’ \
] o . [ \
w RTINS B
b— 4 - \ \
3 \ \ \
I k \ \ .
a \ \ \
=] \ \ \
N 1t \ \ v
= i \ \
< ' \ \
2 '-‘ ‘\ \
s | Voo Y]
5 \
Z i '\ \
-3 L v \ N
0 50 100 150

fw — E; (meV)

FIG. 3. Room-temperature gain spectra for the threshold
carrier density of 2X 10'® cm 3. The different curves are com-
puted for the Rabi energies #Qy (in 107® meV): 4.7 (solid line),

45 (short-dashed line), 94 (dash-dotted line), and 132 (long-
dashed line).
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To investigate the parameter dependence of the spec-
tral holes, we show in Fig. 3 computed gain spectra for
the lower threshold carrier density of 2X 10'® cm ™3 cor-
responding to decreased resonator losses. As in Fig. 2(b),
we see in Fig. 3 the development of a spectral hole when
the laser is pumped above threshold. Also, the substruc-
tures due to Rabi splitting develop for sufficiently high
field strengths.

The comparison of the calculations for different thresh-
old carrier densities shows that hole burning is easier to
observe at higher threshold carrier densities, simply be-
cause the gain region is spectrally broader. Even though
spectral holes occur already for Rabi frequencies lower
than the dephasing rate, the band-splitting related sub-
structures inside the spectral hole are resolved only when

Qg > 7(k) . 4.2)

To study the onset of laser action as a function of car-
rier density we plot in Fig. 4 the net photon losses Eq.
(2.17) at w, for different pump rates. We observe a strong
compensation of gain and background losses at resonance
when the carrier density changes from N 014 to slight-
ly above N pieehoia- At still larger pump rates the mode
quickly saturates.

In summary, we present a microscopically consistent
theory for the spectral and kinetic properties of the cou-
pled electron-hole-photon system in a short-cavity semi-
conductor laser. We evaluate the theory for the
simplified case where the interband electron-hole
Coulomb effects are neglected. We observe the develop-
ment of kinetic holes, which are holes in the electron and
hole distribution functions, and of a spectral hole, i.e., a
hole in the gain spectrum of a running laser. At not too
high intensities the occurrence of a spectral hole is
predominantly a consequence of the kinetic hole, i.e., of
the carrier depletion at the frequency of the running laser
mode. At higher laser field strengths also light-induced
renormalizations of the carrier dispersions become im-
portant leading to substructures within the spectral hole.
The carrier dephasing is crucial for the details of the
spectral and kinetic holes, see Eq. (4.2). The nonequili-
brium shape of the carrier distributions causes a non-
linear gain saturation, i.e., compensation between gain

In [ypn(we)/2kc0]

-11 - 1 ' :
0 2 4
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FIG. 4. Logarithmic plot of the net photon loss rate, Eq.
(2.17), at the laser frequency wq in units of the losses 2k, at the
laser frequency w, vs normalized pump rate. Py, is the thresh-
old pump rate.

and loss up to seven orders of magnitude within a small
range of pump rates at and slightly above the threshold
pump rate.
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