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Spectral modification of the Stokes line of a Raman-coupled three-level system in a cavity
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We have investigated the spectral modification of the Raman Stokes line in the cavity version of Ra-
man scattering where a three-level system in the A configuration interacts with an externally driven

pump mode and a Stokes mode in a cavity. Anti-Stokes modes are eliminated by the cavity-resonance
condition. At very low intensities the spectrum consists of a single-peak structure (Raman Stokes) that
splits into a doublet when the external pump field is suSciently intense so that the effective Rabi frequen-
cy exceeds the rate of spontaneous emission. At very high intensity, however, a triplet structure appears
where the strong sidebands are symmetrically separated from the central weak band.

PACS number(s): 42.50.Hz, 42.60.Da, 32.80.Bx

I. INTRODUCTION

The spectral modification of radiation characteristics
of quantum-optical systems when confined in a cavity has
become one of the major issues of cavity QED today
[1—7]. The model that lies at the heart of these develop-
ments is the Jaynes-Cummings model [2,3,7]. Recently a
two-mode variant of this model describing the dynamics
of a Raman-coupled [8] system has been proposed
[9—12]. The model describes a three-level atomic system
in the A configuration where the excited state is con-
sidered to be far off resonance and is adiabatically elim-
inated [11]. The interaction term of this effective two-
level system thus consists of products of the creation
operator of the pump mode and the annihilation operator
of the Stokes mode. The model is exactly solvable and
admits of a number of nonclassical effects studied recent-
ly by Gerry and Eberly [11]and Gou [12].

The purpose of the present paper is to investigate the
spectral modification of the Raman Stokes line in this
cavity version of Raman scattering where the pump and
the Stokes cavity modes are interacting with this effective
two-level system in a three-level A- configuration. To
make the problem more realistic we have introduced the
loss due to radiation damping for the material system and
the cavity losses for the two modes and also in addition
consider the pump mode to be externally driven. At very
low intensities the spectrum consists of a single-peak
structure (Raman Stokes) which splits into a doublet
when the external pump field is sufBciently intense so that
the effective Rabi frequency exceeds the rate of spontane-
ous emission. The doublet structure of the Raman Stokes
line may be interpreted as the usual manifestation of vac-
uum field Rabi splitting in a cavity [2]. At very high in-
tensity, however, a triplet structure appears where the
two strong sidebands are syrnrnetrically separated from
the central weak band.

One pertinent point regarding the present model needs
attention. It is well known from the earlier works of
Mallow and others [8] that the explanation of the spec-
tral modification of Raman scattering in an intense field
is based on a three-level model system. The present rnod-

el proposed by Gerry and Eberly is a variant of the same
in the sense that with an appropriate adiabatic elimina-
tion of the third level due to large detuning it behaves
like the effective two-level system which is describable
in terms of an exactly solvable two-mode Jaynes-
Cummings-type Hamiltonian. One object here is to ex-
plore the spectral modification due to the effect of the
cavity based on the latter model modified by introducing
the driving and relaxation terms for the cavity modes and
atomic system.

II. THE MODIFICATION
OF THE RAMAN STOKES SCATTERING

IN THE CAVITY

In Fig. 1 we describe the three-level atomic system in
the A configuration as considered in Ref. [11]. The Ham-
iltonian describing this system is given by K =Kp+H„
where

and

Hp =E)e) )+E2cr22+E30 33+%co]a &a &

+Rco2azaz+A'[E(t)a, +E'(t)a, ]

Hl ~g12( I +21+a 1~12)+~g23( 2~23+a 2~32) '

Here a, and a2 are the operators for the pump and the
Stokes cavity mode, respectively, and o;; and e; are the
level occupation number operator and transition operator
for the levels i and j, respectively. E(t) is the external
field which drives the cavity pump mode. The cavity is
tuned in such a way that E3 —E, =fico& —Aco2 and there is
one detuning parameter 6, defined by AA =E2 E&

fico ] E2 E3 Rc02 Assuming AA» E,—E, one can
adiabatically eliminate the second level as described in
Ref. [11]. The resulting effective interaction [8] Hamil-
tonian is given by

Ht ff AA(tr+a&az+cr a,a2)

where o.+ =o.
3&,

o. =o,3, and A, is the effective coupling
constant such that A, =2g, 2gz3/b . Since the second level
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FIG. 1. Energy levels of the three-level atom in the A

con6guration. The detuning 6 is large compared to E3 —E&.

is far off resonance we also assume that 0.22=0. This im-

plies that cr»+o. 33 1. We then obtain the total effective
Hamiltonian as follows:

H =A'cooo'o/2+ %co&a &a & +Pizza za z

+R[E(t)a, +E'(t)a, ]+(E,+E3}I

+fiA(o+a&az+o a,az } .

In a standard cavity QED problem one is essentially
concerned with a number of competing processes, e.g.,
the fundamental coherent interaction between the materi-
al system with cavity field modes, the spontaneous decay
of the system, and the loss of photons from the cavity
field modes. The thermally induced processes are negligi-
ble in the case of optical transition at low temperatures.
In the present problem of Raman scattering in a cavity
we need be concerned with all these processes within the
quantum-statistical scheme for an analysis of spectral
characteristics of scattered radiation. For simplicity we
omit all other relaxation processes and neglect the wave-

mixing effects from the present analysis.
We now introduce the loss terms by coupling this

atom-field system with the bosonic heat baths. The mas-
ter equation [13] for the reduced density operator (p) can
be obtained in the rotating-wave, Born-Markov approxi-
mations as follows:

} '[AF+ I,.tt p]+. Lf(p)+La(p»

where Lf and L, are the Liouville operators representing
the decay of the cavity field modes and the atom, respec-
tively. These are given by

a &~a&, cd+~a+, a
&
~a&, o ++a

a2+ a2, 0.0+ ao, a2~a2 .

Using the standard operator disentanglement tech-
nique and definition of P(a) a partial differential equation
is deduced for P(a). This has derivatives of all orders
present for ao as exponentials of derivatives, but can be
approximated as a Fokker-Planck equation for P(a) by
keeping up to second derivatives. Having obtained
the Fokker-Planck equation which is the c-number
equivalent of the master equation one can immediately
write down the Langevin equations as follows:

a& = [ i co,a—, yf a—, i gaza ——E(t) ]+6 (t),
1

az=( —icozaz —yfaz —isa&a+)+G (t),

a+= [icooa+ —2ikatazao —(y, /2)a+]+6 (t),

a =[ icooa —+2ikaza&ao —(y, /2)a ]+6 (t),

ao=[ isa,—aza++ika;aza —y, ( —,'+ap)]+6 (t) .

(4)

Here G 's are the independent Langevin forces with zero
t

reservoir averages as follows: ( G~ )„=0. The nonzero

noise correlations of the random forces are given by

(G, (t)G (t'))s = i Aafaza+—5(t t'), —

(6 (t)G (t'))s =isa, aza 5(t t'), —

(G (t)G (t'))s=[ —(iA, /2)(a&a&a+ —afaza )

+2y, (ri+ao)]5(t —t'),

(G (t)G (t') )zt = —isa, a+5(t t'), —

with

X(g)=Tr(Op) where g=(gf, g„gz, gz, g, g+, (0)'.

We then define the generalized positive P representa-
tion [15]by

X(g)= J "d a exp(i f a)P(a),

and n is the column vector composed by the c numbers

a;; a=(a&, a~, az, az,a, a+, ao), and establish a
correspondence between the c numbers and the operators
as follows:

2

Lf(p) = g yf (2a;pa; —pa; a; —a; a;p),
i=1

(2) (6,(t)G (t'))z =ikafa 5(t t'), —

where for simplicity the decay rates of two fields yf and
1

yf are assumed to be equal (yf =yf =yf }and
(G (t)G (t'))ii =2ika&a05(t t'), —

(G +(t)G (t'))~ = 2ika*, a+5(t—t') . —
L, (p)=(y, /2)(2o po+ pcr+o —cr+o p}, —(3)

where y, is the atomic decay rate.
Next we choose an ordering for the atomic and field

operators [14,15], by defining the normal order charac-
teristic function as follows:

To eliminate the fast time dependence we now invoke
the slowly varying envelope. approximation:

lcolt + lcolt I CO2E

it'i a
&

it&a& ig& a& ig&a& it sr+ i(+oao ig a0 =e e e e e e e
E c02t I coot I CglOt

az =Pze ', a =P e, and a+=P+e
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LCO)t
We also assume the driving field E(t) =Ee ' to be at

exact resonance with the cavity pump mode. Now mak-
ing use of the exact two photon resonance, ~, =co2+mo
we obtain the following Langevin equations:

P, =( —yfP, i A—PP E—)+Gp (t),

Pp ( yfPQ ikP~P+)+Gp (t)

P+=[ 2ik—P)P2PO (y,—l2)P+]+Gp (t),

P =[2ikP2P)PO —(y, /2)P ]+Gp (t),

6.0—

l—~40
CL

Po=[ t'~P —P'P +&'~P'Pg y, ( ,'—+Po)-]+Gp (t),

where G (t)=Gp(t}e ', i=[1,2, +, —,Oj.
t t

To obtain the mean-field solutions from the above
equations we disregard the fluctuation terms. We also as-
sume that the pump field is so strong that it is not
modified by any feedback from the other cavity mode.
To find the fluctuations around these mean values of the
variables we go further to the next order in the perturba-
tion. Thus we let P; =P';+5P; where 5P, are the fluctua-
tions around the mean values P';. The result is the Ito
stochastic differential equation of the form [16]

0,0 I 1 l I I l I I I
J

I I l I I I 1 I I
f

) I I I I I I I I ) I 1 I 1 I I I I I ) I I 1 I 1 1 & I I

—15 —10 -5 0 5 10
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FIG. 2. The power spectrum S(v—co2)y, as a function of fre-
quency (v—co2)/y, for yf/y, =2.0, A, /y, =5.0, and E/y,
equal to 0.45 (curve 1), 0.8 (curve 2), 1.2 (curve 3), and 1.5 (curve
4) (both scales arbitrary).

d 5P( t }= A5P(t)d—t+ BdW( t), (6)

where A and 8 are the drift and diffusion matrices, re-
spectively, expressed in terms of the steady-state values.
Here dW defines the vectorial Wiener processes, and 5P
represents a vector. The Ito stochastic differential equa-
tion (6) describes a multivariate Ornstein-Uhlenbeck pro-
cess which is analytically solvable. For more details we
refer to Ref. [1,6].

Next we calculate the power spectrum [16] for the
Stokes emission in the usual way.

Ssp sp (v —a)~)= f exp[ —i(v —to~)]

x (,5P+(t)5P (O))dt

= [[A+i(v co&}I] 'B —B'

X [ A i(v F02}I] ]sp sp

The explicit calculation yields the spectra which are
given in Figs. 2 and 3. For a weak field we find a single-
peak Raman Stokes line centered at v=coz. As the exter-
nal field strength increases the spectrum splits into a dou-
blet. The doublet structure is characteristic of vacuum
field Rabi splitting in a cavity where a single quantum of
energy transferred back and forth between the atom and
the cavity. At a very high intensity, however, a triplet
structure appears where the two strong sidebands are
symmetrically separated from the central weak band.

ed by cavity-resonance condition. The model, which is a
cavity version of Raman scattering, is similar to the
Jaynes-Cummings model but with the single-mode opera-
tors in the interaction term replaced by the product of
the creation operator of one mode and the annihilation
operator of the other mode which describes a Raman
coupling scheme. Notwithstanding the nonlinear nature
of the interaction term in the present model as well as the
nonlinearity intrinsic to the mode1 system such as the
Morse oscillator as considered in our earlier paper [14],
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III. CONCLUSION

We have calculated the power spectra of the radiation
scattered from the Stokes mode of a three-level system in-
teracting with an externally driven pump mode and a
Stokes mode in a cavity. Anti-Stokes modes are eliminat-
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FIG. 3. The power spectrum S(v—co2)y, as a function of fre-
quency (v —N2)/y for yy/y, =7.0, A./y, =10.0, and E/y,
equal to 50 (curve 1) and 100 (curve 2) (both scales arbitrary).
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spectral features are almost the same. This leads us to
suspect that the system-field mode coupled oscillator
model is generic at the fundamental cavity QED level.
However, the detailed effect of nonlinearity in the study
of resonance fluorescence is still out of the scope of the
present treatment because of the fact that we are almost
always restricted within a linearized scheme in calculat-

ing the spectra by the quantum-statistical method as it is
currently developed.
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