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Partial cross sections and correlation effects in B +-He collisions
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Total and partial cross sections are calculated for single-electron capture in B'+-He collisions for pro-
jectile energies from 1.0 to 500 keV. Results for a one-electron model and a full two-electron treatment
of the electronic wave function are compared. Both procedures compare well with experimental data for
total cross sections. However, the two-electron model, which incorporates correlation and relaxation
effects, compares most favorably, particularly when partial cross sections are considered. The total
single-capture cross sections for higher velocities (U =2-8 a.u. ) decay in average according to a v be-

havior, close to the U behavior expected from the Bohr-Lindhard mgde1. The discussion focuses on
the role of correlation effects during the collision.

PACS number(s): 34.70.+e

I. INTRODUCTION

Studies of electron-transfer processes in heavy-particle
collisions where two electrons are active have been widely
studied in recent years [1]. It is well known that effects
due to electron-electron interaction may play an impor-
tant role when such processes are considered. At high
energies, when the collision can be analyzed by perturba-
tion methods, the contribution to the cross sections from
correlation effects may be isolated [2]. At intermediate
and low energies, where the collision amplitudes can only
be calculated accurately by nonperturbative methods, an
isolation is no longer possible. In this case one may ob-
tain understanding of correlation effects by comparing re-
sults from one-electron models with full two-electron
treatments [3]. In addition, one may study correlation
effects by turning the related couplings on or off in the
collision program [4].

Total cross sections for single capture in B +-He col-
lisions have been measured by Zwalley and Cable [5] and
by Crandall [6]. The n =2 shell gives the dominant con-
tribution to the capture probability for this system, and
ratios between the 2s and 2p cross sections have been
measured by Matsumoto et al. [7]. The measurements
cover the projectile energy range from 0.5 to 50 keV and
are in good agreement with calculations using molecular
orbitals by Shipsey, Browne, and Olson [8]. The detailed
capture dynamics for this system has been investigated
with respect to propensity rules for orientation in capture
to the B +(2p+, ) states. From a simplified coupled-
channel model, strong propensity for capture into the
B +(2p, ) state was predicted [9]. This was confirmed
qualitatively in experiments performed by Roncin et al.
[10].

A new series of measurements for capture into oriented
states, covering a broad range of energies, has been per-
formed [11], and will soon be compared to differential
cross sections obtained from calculations. In order to
perform such a detailed comparison, we have developed a
collision code that employs realistic potentials and corre-
sponding atomic basis functions. This approach will be
referred to as a one-electron model, since correlation
effects are modeled by a screened electron-core potential.
In addition, we have developed a two-electron collision
code that employs properly symmetrized two-electron
basis functions, and procedures for calculation of matrix
elements including the electron-electron interaction.

In this paper we report total and partial cross sections
for single capture from He(ls ) to B + in the projectile
energy range from 1.0 to 500 keV. %'e particularly focus
on two-electron effects, i.e., correlation and relaxation.
In the next sections we describe the theoretical pro-
cedures, followed by a presentation and discussion of the
results. Atomic units will be used unless otherwise stat-
ed.

II. THEORETICAL MODELS

In the following we describe two models for calculation
of the transition amplitudes. In both models the time-
dependent Schrodinger equation is solved in the straight-
line-trajectory approximation for the heavy-particle
motion, R(t)=b+vt. The expansion of the wave func-
tion in traveling atomic orbitals centered at the nuclei re-
sults in a set of coupled equations for the transition am-
plitudes, c,

iS(b, v, t)—c=M(b, v, t)c .
d
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Here S is the overlap matrix that is identical to the unit
matrix at t =+ac, and M is the coupling matrix that con-
tains the integrals over the part of the Hamiltonian that
is not diagonalized by the states in question. %'ith ap-
propriate initial conditions, the transition amplitudes can
be calculated numerically from Eq. (1), and the probabili-
ty for electron capture to a state characterized by quan-
tum numbers nf If is given by

p„"Pi (b, u)=g~c„"Pt (b, u, t =+ oo )~

mf

(2)

(p
i +p ion +p exc +p cap )2 (3)

For two noninteracting identical particles one thus ob-
tains the total probability for single capture

where mf runs over final magnetic quantum numbers.
In a one-electron model, the target atom is assumed to

be represented by a model potential that gives the correct
binding energy of the ground state. At low energies, such
a model can be expected to work well, since the transfer
probabilities are most sensitive to the Q value

(s;„;„,&

—Es„,&) of the reaction [12].
An open question concerns the possible modification of

the capture probabilities of the one-electron model due to
the presence of two electrons in the initial state. Whether
or not the probabilities p„"i (b, v), should be folded by

statistical factors related to binomial distributions of
independent-particle models depends strongly on the pro-
cess in question. By denoting the probabilities for all pos-
sible processes in a one-electron model by p' (the electron
in the initial state after collision), p"" (ionization chan-
nels), p'"' (excitation channels), and p" (capture chan-
nels), probability conservation implies

A. One-electron model

The Hamiltonian of the one-electron model is defined

by

Q2
H(R(t), r)= — + V'(r)+ Vp(rp),

where V' models the He+ core and V~ models the
B +(ls ) projectile core. The coordinate rp is the elec-
tronic space coordinate with respect to the projectile
center, i.e., r~=r —R. The potentials are approximated
by frozen-core exponential forms. They are explicitly
given by

t 1 —atr 1 at
V'(r) = ———e ' —+

r r 2
(8a)

ly. The probability for transfer of the second electron
will have a very small reaction window [13] in the
impact-parameter range for the first process. As a result,
the total probability for single capture in this model may
often be larger than unity. For double capture, however,
where the probability will be given by p„"'tg„"i, this ap-

proach may serve as a useful starting point for probing
the capture dynamics [3].

In the following we describe the one- and two-electron
models in detail. Based on the preceding discussion, we
assume that for the one-electron model all effects by the
second electron are represented by a He+ core potential,
and refrain from statistical two-electron modifications.
Cross sections will thus be calculated by the usual formu-
la

o'„'i (u)=2nf .db bp„"Pi (b, v),

for both models.

p
cap }p

cap
nf, lf (4) (8b)

The commonly used factor of 2 is readily obtained in the
perturbation limit when p "~&&1. It is important to real-
ize that this procedure implicitly assumes the possibility
of two-electron transitions. For collisions where state-
selective single-capture channels dominate, this pro-
cedure becomes rather doubtful. The cross section to
single-capture states in such cases would be underes-
timated at the cost of large probabilities (p„"pi ) for dou-

ble capture to nonexisting states.
A drawback for one-electron models is the difficulty of

describing relaxation effects. One may try to take this
into account by performing statistical foldings based on
probabilities for capture from the initial state and proba-
bilities for transition from the relaxed 1s state of He+.

pcap (b ) 2(1 tran} cap
nf, If nf rlf

where p'"" is the probability for any transfer process
from the relaxed He+(ls) state in a B +-He+(ls) col-
lision. For single capture this procedure will again be-
come doubtful at low to intermediate energies, since now
the probability p'"" will be very smal1 for state-selective
processes where the transfer fo the "first*' electron is like-

where a, =3.376123 and a =6.0817. The target poten-
tial is very close to the one first used by Opradolce, Vali-
ron, and McCarroll [14]. The present potentials are
created by optimizing the solution of the Schrodinger
equation,

g2

2
+V e„I=a.„IC„I, (9)

N, +N

xp(R(t), r) = g c, (t)4,'(r }+g c, (t)happ(rp),
in 1 i =N, +1

for the ground-state energy c.„,with respect to the ex-
0

perimental binding energies. Excited states are then ob-
tained by numerical solutions of Eq. (9), keeping the po-
tentials fixed. The wave functions, obtained from Eq. (9}
on a numerical mesh, are fitted to a sum of Slater orbit-
als. Binding energies obtained from this procedure for
excited states are in excellent agreement with experimen-
tal energies, cf. Table I. The parameters of the wave-
function fits are given in Table II. The scattering state is
now expanded:
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B2+

State

2$

2p
3$

3p
3d

Energy

—1.3915
—1.1751
—0.5730
—0.5154
—0.5005

Expt. binding energy

—1.394
—1.174
—0.573
—0.515
—0.500

He 1$ —0.9029 —0.904

where N, and N~ are the numbers of target and projectile
states. Each projectile state is augmented with electron
translational factors exp[iv r —(U t l2)]. The wave func-
tion of Eq. (10) is inserted into the time-dependent
Schrodinger equation and the coupled equations for the
expansion coefficients, Eq. (1), are readily obtained.

B. Two-electron model

The Hamiltonian of two electrons, initially bound to
the He nucleus and perturbed by the core potential of the
B + ion, is defined by

H(R(t), r, , r2)= g
i =1,2

p2

2

TABLE I. One-electron energies (a.u. ) for the 8 +(nl) states
and the He ground state obtained from numerical solution of
the Schrodinger equation, Eq. {9), using the model potentials,
Eq. (8), compared to experimental energies.

metry need to be considered. The initial He(ls ) state is
obtained numerically from a Hartree-Fock program, and
fitted by two Is orbitals, i.e., 'P(r„r2)=$;(r&)P;(r2),
where 4, .(r}=2 37619e 2.3s7sr+2. 27074e

1s= —2.862. The final states, expressing the capture of one
electron in combination with a relaxation of the other
electron to a He+( Is) state Po(r), are given by

[(('o(ri)~J(r$)++', (ri)ko«2)] .1
(12)

f d r&d r2[P,'(r, )P,'(r2)l
~

@+j(rt R)fo(r2)
1

r, —r2

= Jd r, P,
*'(r, )W(r~~).f(r, ), (13)

The single-particle states W~ are identical to those of Eq.
(10), cf. Table II.

A significantly larger number of matrix elements needs
to be calculated in a two-electron approach compared to
a one-electron model. However, all matrix elements that
do not contain the electron-electron repulsion potential
can be calculated by standard one-electron methods [15],
since they basically become products of one-electron-type
matrix elements. The correlation integrals between the
initial state and final states are also transformed into
standard forms of one-electron-type integrals by a mul-
tipole expansion of ~r, —r2~ . Since the function Po is an
S state, only L =0, M =0 contributes in the multipole ex-
pansion, so the matrix element can be written

(11)
where

The basis functions now become Pauli symmetrized wave
functions. Since there are no spin-orbit couplings in the
Hamiltonian, only basis functions of positive space sym-

2 1 —~~, 1 2f(r, )=g a; ——e ' ' + a;
i ia ~ a ari i 1

TABLE II. Parameters for the analytical fits to the radial part of the one-electron wave functions, R„,(r) =g„cqr e

B2+

State

2p

3$

3p

3d

Coefficients

C

Qk

Ci&

&/

C/&

&k

Ci&

1.815 52
—2.815 87

0

1.705 94
—3.796 98

1

0.985 572
—2.203 16

0

0.636 314
—1.941 53

1

0.424 774
—1.002 12

2

2.750 33
—1.709 45

0

3.329 28
—1.548 15

1

1.377 47
—1.103 75

0

1.846 61
—1.022 06

1

—3.97493
—2.815 87

1

—2.741 36
—2.203 16

1

—0.335 554
—1.941 53

2

—6.021 63
—1.709 45

1

—3.831 43
—1.103 75

1

—0.973 792
—1.022 06

2

1.15077
—2.203 16

2

—2.608 36
—1.103 75

2

He 1$ C/&

CX/,

2.266 85
—2.354

0

2.299 73
—1.3815

0
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Here a,- refers to the product of normalization factors of
the two 1s states P,'(r2) and Pc(r2), and a; refers to the
sum of exponents of the states.

The matrix elements between the final-capture states
can be expressed in terms of the usual perturbation from
the target ion M; '"", terms due to relaxation M '"",and
terms due to correlation V as

Mpp M direct+ M relax+ V12+ V21
lJ IJ lJ IJ V

(14)

In the first correlation integral V, the translational fac-
tors are attached to the same space variable. The correla-
tion interaction is then multipole expanded, resulting in a
standard type of one-electron integral,

V,' = f d r, @,'~(r~~)@~(rf) —e ' 2+
Tl

=fd r, 4, (rf)'Pc(r, )f d r2$c(rz)'4, (r$) . (16)

With this simplification we have obtained a two-electron
procedure where all matrix elements are calculated by the
same procedures as for one-electron calculations. None
of these approximations affects Galilean invariance and
probability conservation of the coupled equations, Eq.
(1). In the next section we discuss results of calculations
where both types of approximations are used.

III. RESULTS AND DISCUSSION

(15)

The last type of correlation integral, V; ', originates from
the exchange of the two electrons. This integral is the
most complicated, and the numerical evaluation is time
consuming, since it cannot be brought to a one-electron
type of integral. However, since this integral is quite
small compared to the other terms of Eq. (14), we at-
tempt to approximate this term. In a zeroth-order ap-
proximation it was simply dropped, and in a peaking ap-
proximation it was replaced by the product of two relaxa-
tion overlaps:

1
V'j Pl f2 ' rl p r2 j r pr, —r2

1.50

1.25

~ 1.00
O

0.75

0.50
~ I

0.1
Velocity (a.u. )

FIG. 1. Total-capture cross sections for the two-electron
model compared to the experimental results of Zwalley and
Cable [5] (squares). Solid line: calculation using the peaking ap-
proximation of Eq. (16). Dashed line: calculation without the
term V;,

' of Eq. (16).

Eq. (16), and the dashed curve refers to a calculation
where the VJ' coupling is neglected. The two calcula-
tions give very similar results, and it is clear that this
coupling is not too important for total-capture cross sec-
tions. The estimated error of the experimental cross sec-
tions of [5] was reported to be about +7% so that both
calculations are in excellent agreement with experiments.
In the following we shall refer to the two-electron calcu-
lation as the calculation that uses the peaking approxima-
tion.

In Fig. 2 we compare total-capture cross sections for
the two-electron model and for the one-electron model.
It is clear that the two-electron model gives a better
agreement with experiments at the maximum cross sec-
tion. At low energies, however, the two models tend to
the same agreement with experiments, reflecting that the
Q value is the most important parameter for such (avoid-
ed) curve-crossing reactions. At intermediate energies
v =0.2, however, correlation and relaxation also play an
important role.

It is interesting to compare the behavior of the capture
cross sections at higher energies with the simple Bohr-
Lindhard model [16]. According to this model, the elec-

The Q values for excited He states are so large that to a
good approximation only the ground state of He is in-
cluded in the expansion. On the projectile center, the
complete n =2 and 3 shells are included. However, we
find that the n =3 shell, which represents endoergic
channels, is only populated by a few percent at the max-
imum. Thus the present system is very simple and almost
ideal for studies of basic capture mechanisms. No
double-transfer or transfer-excitation terms are included,
which are well-justified approximations, since, e.g. ,
double-capture cross sections are very small [6].

In Fig. 1 we compare results for total-capture cross
sections from the two-electron model with experimental
results of Zwalley and Cable [5]. Note that the measure-
ments of Crandall [6] within their uncertainty (about
+20%) are in agreement with [5]. The solid curve refers
to a calculation employing the peaking approximation of

1.50

1.85

~ 1.00

0.75

0.50
~ I

0.1
Velocity (a.u. )

FIG. 2. Total-capture cross sections for the two-electron and
one-electron models compared to the experimental results of
Zwalley and Cable [5] (squares). Solid line, two-electron model;
dashed line, one-electron model.
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FIG. 5. Probability for capture (U =0.2) to the 2p state (solid

line) and the 2s state (dashed line) for the two-electron (left) and
the one-electron (right) models.

FIG. 3. Total-capture cross sections for the two-electron
(solid line) and one-electron (dashed-dotted line) models at
higher energies and the prediction of the Bohr-Lindhard model,

Eq. (17) (dashed line). Squares are the experimental data of
Dmitriev et al. [17).

tron must be released from the target at an internuclear
separation distance R„,where the forces felt by the elec-
tron from the target and the projectile balance. Then
capture may take place at a smaller distance R„where
the potential energy of the projectile is sufficient to bal-
ance the induced translational kinetic energy —,'v of the
electron. The probability for capture to take place was
taken to be the ratio of the collision time R, /u to the
electron orbital time a„/u„=1, which gives the capture
cross section

R, Z
Bohr —Lindhard R 2 8 P

7
(17)

Since potential-energy curves and electron translational
factors are included in the collision codes, one may ex-
pect that the Bohr-Lindhard model compares reasonably
well with the calculations at intermediate energies. In
Fig. 3 we compare the two models and the result of Eq.
17, and we observe that the behavior is quite similar for
v =2-8. Both model calculations here show a decay in
average according to a v power law, very close to the
Bohr-Lindhard model. Note also the fair agreement of

CD

~2
b

/

/ s

/

/
g

/

~ ~ ~ I

0.1
Velocity (a.u )

FIG. 4. Ratios of the partial cr(2s) and o.(2p) cross sections.
Solid line, two-electron model; dashed line, one-electron model.
Experimental points: Matsumoto et al. [7] (closed squares) and
Roncin et al. [10] (open square).

our calculations with the experimental results of Drni-
triev et al. [17].

A more-sensitive test of theoretical models is obtained
when comparing partial and differential cross sections.
The absolute values of these quantities have not yet been
measured, but the fractions o 'lu have been reported
by Matsumoto et al. [7] from energy-gain experiments
and lately by Roncin et al. [10]. We observe in Fig. 4
that the two-electron model slightly underestimates the
fraction, but is in better agreement with the data than the
one-electron model, which overestimates the fraction.
We note the possibility that the discrepancy between the
two-electron model and the experiments may be removed
by exact evaluation of the correlation integral, cf. Eq.
(16).

The origin of the better agreement of the two-electron
models can be ascribed to correlation and relaxation
effects during the capture process. In fact, if we neglect
the correlation coupling of Eq. (13), the total-capture
cross section at v =0.2 reduces from 1.42X 10 ' cm to
1.07X10 ' cm, which is close to the results of the
one-electron model. In Fig. 5 we show the capture prob-
ability at this velocity as a function of impact parameter
b. We observe that correlation and symmetrization
effects give larger contributions to the cross section in the
b region from 1 to 3. This contribution can also be
identified in differential cross sections. We observe that
the "curve-crossing" contribution at b = 5 becomes
slightly larger for the two-electron model.

In conclusion, we have compared results from two-
electron and one-electron models of B +-He(ls ) col-
lisions. The two-electron model gives the best agreement
with experiments, as expected, but in general both models
seem to be applicable in this study of single capture to
multiply charged ions. The latter conclusion stands in
contrast to the conclusion drawn by Fritsch and Lin [18]
from a study of C -He collisions, but other mechanisms
may play a role for this system. In a future publication
[19], the two-electron-model results will be cotnpared to
experimental results for differential cross sections for cap-
ture into B +(2p, ) states in planar collisions.
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