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One-dimensional laser cooling below the Doppler limit
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A theoretical analysis is given for one-dimensional laser cooling below the Doppler limit of J =
2

ground-state atoms. The laser field consists of a pair of counterpropagating, linearly polarized, low-
power beams, whose polarization directions differ by an angle 8 (0 & 8 ( s'/2). For 0 ~ 1, the
effective optical-pumping time is shown to increase strongly near the nodes of the standing wave,
and the cooling force can be much larger than that for 8 = s/2. Moreover, for 8 ~ 1, it can be
shown that the stimulated part of the atomic diffusion is reduced considerably as compared with
that for 8 = s/2. As a consequence it is possible to achieve an equilibrium atomic distribution
that, for 8 ~ 1, is characterized by a mean kinetic energy that is lower than that predicted to
occur for 8 = z/2. The equilibrium velocity distribution is not necessarily Maxwellian, and thus the
temperature of the atomic ensemble may not be well defined. The achievable kinetic energy is so
small that the cooled atoms may be trapped in the vicinity of the laser-field nodes.

PACS number(s): 42.50.Vk, 32.80.Pj

I. INTRODUCTION

In the past several years it has been demonstrated both
experimentally and theoretically that the laser cooling of
neutral atoms can lead to an equilibrium atomic kinetic
energy Ep much smaller than that given by the Doppler
limit for two-level atoms, that is Ek && ht', where I' is
the spontaneous decay rate of an excited atomic state. It
has been shown that the sub-Doppler-limit laser cooling
is directly related to effects arising from the multilevel
structure of the atomic ground state (Refs. [1—7]). Effi-
cient sub-Doppler-limit cooling is obtained using a very
weak laser field satisfying

f «& +I', (1 1)
where f = Ep/h is the Rabi frequency, and p the dipole
moment of the atomic transition. The laser field has an
amplitude E and a frequency ~l, detuned from the atomic
resonant frequency ~~ by an amount 6 given by

(1.2)

Although experiments are carried out for three- [8—ll]
and two-dimensional [12] field configurations, detailed
analytical calculations that have been performed for one-
dimensional cooling [1,2, 4] (an atom is driven by a pair
of two counterpropagating laser beams) give a fairly ac-
curate description of the major features of the cooling
process. It has been shown that sub-Doppler-limit laser
cooling is produced in the so-called lint lin configuration,
when the laser field consists of a pair of counterpropa-
gating beams having orthogonal polarizations. For this
configuration, the polarization gradient of the laser field
plays a central role in the cooling process. This gra-
dient results in different optical pumping rates and ac
Stark shifts of the ground-state sublevels, both of which
are spatially modulated. When an atom moves with a
nonzero velocity along the laser-beam direction, it can

be optically pumped, on average, from ac-Stark-shifted
levels of lower energy to ac-Stark-shifted levels of higher
energy, provided the sign of the atom-field detuning is
chosen properly (so-called Sisyphus effect [1]). This op-
tical pumping results in a damping of the atomic veloc-
ity. In general, the larger the spatial modulation of the
difference in ac Stark shifts between the levels and the
longer the optical pumping time, the stronger the fric-
tional damping force. For weak fields, the optical pump-
ing time 7p can be made much larger than the excited-
state lifetime I' i resulting in a friction force that, for
slow atoms, is much stronger than that in the case of
Doppler cooling.

In the case of parallel linear polarizations for the fields,
there is no-field polarization gradient and the friction
force is similar to that for Doppler cooling. One might
think that as the rotation angle 8 between the field's po-
larization vectors varies from 0 to z/2, the effectiveness
of sub-Doppler-limit cooling would gradually increase,
achieving its maximum for 8 = s/2. This conclusion is
not necessarily correct. For small angles, 8 « 1, the in-
tensity of the laser field varies considerably in space, and
the optical pumping time strongly depends on the posi-
tion of the atom. Although the ac Stark shifts differ only
slightly for small 8, the fact that the optical-pumping
time is increased significantly near regions of low field in-
tensity can lead to a cooling force much stronger than
that corresponding to 0 = s'/2. Moreover, owing to
the decrease in the difFerence of ac Stark shifts, the mo-
mentum diH'usion coefBcient that characterizes stochastic
heating of atoms is much smaller for small angles than for
0 = z /2. The increase of the force and decrease of the dif-
fusion may eventually lead to a lower equilibrium atomic
kinetic energy for smaller angles, than for 8 = &, for a
range of field intensities. It should be noted, however,
that, if the field intensities are chosen to minimize the
atomic kinetic energy, optimal cooling occurs for 8 = 2.
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It is the purpose of this paper to derive equations de-
scribing laser cooling of atoms having a J =

2 ground
state for arbitrary relative polarization angle 0, In de-
riving the results, one finds that standard computational
techniques involving continued fractions or iterative so-
lutions are not practical for a range of atomic velocities.
An alternative analytical approach is used to solve for
the atomic-state density-matrix elements.

In Sec. II a qualitative picture of sub-Doppler-limit
cooling is given for an arbitrary relative polarization an-
gle 8 between the fields. The Fokker-Planck equation for
the density matrix in the Wigner representation is de-
rived in Sec. III. The results for the force, diffusion, and
achievable temperatures are discussed in Sec. IV. Conse-
quences and implications of the results obtained in this
paper and related phenomena are discussed in Sec. V.

9 1/z g+ 1/

(a)

8+'/z

II. QUALITATIVE PICTURE 9 g+ 1/z

8 . 8
ei —cos -e~ + sin -e„,

2 2
8 . 8

eg ——cos -e —sin -e
2

(2.2)

(2.3)

where the angle 8 between the polarization vectors is re-
stricted to 0 & 8 & 1r/2.

The laser fields interact with an ensemble of atoms
whose ground states g are characterized by total angular
momentum J&

—1/2. The ground states are linked by
the nearly resonant laser fields to excited states e having
total angular momentum J, = 1/2 or 3/2 [see Figs. 2(a)
and 2(b), respectivelyj. Both cases are similar in many
respects. To be specific, in the qualitative discussion we

The laser field is represented by a pair of plane waves

counterpropagating in the z direction. The direction of
linear polarization of each field is shown in Fig. 1. The
total electric-field amplitude is given by

E(t; r) = ei(Ee ' '+'"' + c.c.) + eg(Ee ' ' '"' + c.c.),

(2 1)

where the real amplitude E does not vary with time.
In general, the unit polarization vectors eq and eq have
different directions, so that

FIG. 2. Atomic level scheme and Clebsch-Gordan coefFi-
cients for (a) Jq =

2
~ J, = 2, and (b) Jg =

transitions.

pe —ie& (2.4)

and amplitudes Ey given by

0
Ey = TV 2E cos (kz + — e

2
(2 5)

This system can be regarded as consisting of two two-
level subsystems: g —1/2 ~ el/2 and gl/2 ~ e —1/2,
driven by the standing waves Ey given by Eq. (2.5) and
linked to each other by the transitions involving emission
of spontaneous photons.

The force exerted by the fields on the atom is given by

(2.6)

consider the case J, = 1/2.
It is convenient to represent the field (2.1) as a sum of

two circularly polarized fields with polarizations ey such
that

, lX where Hsr is the atom-field coupling given by Eq. (A5)
of the Appendix, and where ( ) indicates a quantum me-

chanical average. In the weak-field limit defined by (1.1),
one can adiabatically eliminate atomic density-matrix el-

ements involving the excited state and obtain the force
in the form

(2.7)

where

FIG. 1. One-dimensional field configuration. Two linearly

polarized fields counterpropagate in the z direction with an

angle 8 between their polarization vectors.

ugo' 2i EOI"JI", t ——— ——
2

cos csin(2kz) (2.8)
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F t =F+p++F-&-
2hbk f sin 8 cos(2kz)II.3(bz+rz 4

(2.9)

The driving term

R+ —R = r„—sin 8 sin(2kz) (2.18)

The quantities appearing in Eqs. (2.8) and (2.9) are de-
fined as follows: the Rabi frequency f has the form
f = ~2EIJ, /h; Uo is an effective potential given by

hbf~
UO ——

z z/
cos 8 cos(2kz);+

F+ and F are equal to

(2.10)

2hkb f~
F+ F sin 8 cos(2kz); (2.11)

3 b'+I' 4

p+ (p ) is the population of the m~ ——1/2 (m~ ——1/2)
ground-state magnetic sublevel; and II is the population
difference

II = p+ —p (2.12)

Consistent with the weak-field limit used to derive
Eq.(2.7), the ground-state sublevel population is con-
served, i.e.,

P++P- = & (2.13)

Equation (2.7) is valid only in the limit, of relatively small
velocities,

/kvf « max(I', /b/), (2.14)

Ry = = r„cos(kz + 28),9 b~+r~ 4
=

~ (2.15)

which is the only limit considered in this paper.
According to Eq. (2.7), the force consists of two com-

ponents, an "external" part F,«which is independent
of the internal state of the atom, and an "internal" part
F;„t,, which depends on the population difference II of the
ground-state sublevels. The internal part can be written
in terms of a force Fy acting on each sublevel popula-
tion. On averaging the force over an optical wavelength,
the contribution of the external part vanishes, while that
of the internal part depends on the Fourier component
of II, which varies as cos(2kz). Thus a determination of
the spatially averaged force reduces to a determination
of II(z).

The population difference II is driven by the differential
rate (R~ —R ) at which atoms are optically pumped to
the + and —ground-state sublevels, where, as shown
explicitly in Sec. III, Ry are given by

coincides with the difference of light shifts of ground-state
sublevels. It is a periodic function of atomic position and
is small in the vicinity of nodes (kz z'/2+ z'n) and anti-
nodes (kz xn) of the field (the positions of "nodes"
and "antinodes" to which we refer are those which would
appear for parallel-polarized fields). The driving term
vanishes for 8 = 0, implying that sub-Doppler-limit cool-
ing does not occur for parallel polarizations of the fields.
For 8 g 0 the driving term increases with increasing 8
and reaches its maximum value for laser beams having
orthogonal polarization (8 = 2).

The local optical relaxation rate R~~ for the popula-
tion difference of the sublevels is equal to

Ri„——Ri + R = r„'[I+ cos 8 cos(2kz)]. (2.19)

In the case of orthogonal polarization 8 = &, this rate
does not depend on position z. However, for small angles
8 && 1, R~, is strongly position dependent, and is very
small near the nodes of the field (that is, relaxation of
the ground-state sublevel population difference is slow in
these regions). Although the driving term (2.18) is also
small in the vicinity of the nodes, the competition of these
two small quantities leads to a considerable gradient of
the population difference. It is the rapid variation of Ri,
near the field nodes that may lead to qualitatively new
features in laser cooling.

To understand the qualitative features of the spatially
averaged force, we first consider atoms having v = 0. Al-
though these atoms do not experience the averaged force,
it follows from Eqs. (2.7) and (2.17) that, for sufficiently
slow atoms, the spatially averaged force can be obtained
in terms of the gradient of the population difference of
v = 0 atoms. From Eq. (2.17) one finds this population
difference to be given by

sin 8 sin 2kz
(2.20)

For 8 = z/2, II(z, v = 0) = —sin(2kz). Defining a char-
acteristic scale z„over which II varies as

(2.21)

one sees that z„ki when 8 = n/2 (see curve 1 in Fig.
3). However, for small angles 8 « 1, a new length scale
is introduced into the problem. Far from the field nodes
(~kz —2(l + 2n)~ )& 8, n = 0, +I, . . .) the population
difference is small:

with II(z, v = 0) = —8tankz, (2.22)
9(b' + I'/4)

2I'f 2 (2.16) while, in the vicinity of the nodes, II(z, v = 0) takes the
form

II
v = (R+ —R ) —(R+ + R )II. (2.17)

and fy = Eyp/h The population diff. erence relaxes back
towards equilibrium at the rate (R+ + R ). Under the
weak-field condition (1.1), in steady state the population
difference evolves as

Oe"'""="=
(8/2) +" (2.23)

where e = kz —(1+2n)x/2. One can see from Eq. (2.23)
and curve 2 in Fig. 3 that, in contrast to the 8 = ir/2 case,
for small 0, near the nodes the population difference is of
order unity and varies very rapidly on a scale z„
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I lead to stronger averaged force. Owing to the depen-
dence of Ri, on 0, both the capture range defined by
(2.24) and the magnitude of the force depend strongly
on 0.

For the fields with orthogonal polarization (8 = m/2),
one has R&, ——rz, and Eq. (2.24) takes the form

n = kvrp (( 1. (2.26)

In this limit one obtains the well-known result [1] for the
friction force

I I I I I I I I I l I I I I I I I I I l I I I I I I I I I I I

1 2 3

2hkf hn

3(h'+ I'/4) ' (2.27)

Next we consider an atom moving in the z direction
with a very small velocity v, such that II does not vary
considerably during an optical pumping period, that is,

v (( +loczsc ~ (2.24)

In this limit the velocity-dependent part II„ofthe pop-
ulation difference grating which gives rise to a non-
vanishing averaged force can be obtained from Eq. (2.17)
by a standard one-step iteration, and is given by

idII(z, v = 0) 2kvr&(cos8+ cos2kz)11„=—.R;.,' dz (1+cos8cos2kz)s

(2.25)

Atoms having velocities v satisfying inequality (2.24) give
rise to a spatially averaged force that varies linearly with
v (so-called "capture range" of the force [13]). One can
see from Eq. (2.25) that a decrease in the optical relax-
ation rate and an increase of the population difference
gradient lead to larger 11„(seeFig. 4) and might thus

R
O

D
Q
O
CL

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3

FIG. 4. Velocity-dependent part of the population differ-
ence 1I(z, v) that contributes to the spatially averaged force,
as a, function of kz for several values of 8 aud o = kvr~ (1).
8 = —,n = 1.0 x 10; (2) 8 = 0.2, o = 1.0 x 10; (3)
8 = —,n = 5 x 10; (4) 8 = 0.2, n = 5 x 10

kz

FIG. 3. The population difference II(z, v = 0) of the
ground-state sublevels as a. function of kz for 8 = — and2
8 = 0.2. The value kz =

2 corresponds to a field node.

For small 8, both the local optical relaxation rate
and the spatial scale over which the population differ-
ence varies decrease near the field nodes, so that Bio,

i8z/2 and z„8/2. It follows from Eqs. (2.19) and
(2.24) that the capture range is given by

ng&8 (2.28)

and is much smaller than that for 0 = &. In this capture
range, however, the strong gradient of II and long optical-
pumping time in the vicinity of the field nodes give rise
to a spatially averaged force

2hkfzSn
38(b'z+ I'2/4) ' (2.29)

which is larger than that for 8 = 2. For small 0 and v

the entire contribution to the force originates when an
atom moves near the field nodes.

The iterative approach used to arrive at Eq. (2.25) is

only applicable when condition (2.24) is satisfied. In the
case of orthogonal field polarization, condition (2.24) is
satisfied provided that n = kvrp (( 1' however, for 0 (( 1

this condition is satisfied only for n = kvrp 0 ~ Thus
for 0 (( 1 there exists a range of velocities

1))n))8, {2.30)

for which the iterative approach fails. These velocities
are high enough to prevent t,he population difference of
the ground-state sublevels to undergo considerable re-
laxation during the passage through the field node, but
low enough for this process to occur at a spatial scale
smaller than the optical wavelength. For this velocity
range, a theoretical approach based on a Fourier series
expansion for II is not of much practical use either, since
the number of terms involved is prohibitively large. New

analytical techniques are needed, which are described in
the subsequent sections.

Nevertheless, it is possible to obtain a qualitative pic-
ture of the velocity dependence for the force in the range
(2.30) by introducing the concept of an eeffticvoeptical
relaxation rate R,~ defined by

R, ,(t')dt' = 1,
Reff

(2.31)

where t = (z —zo)/v, and R~, is given by Eq. (2.19).
Equation (2.31) simply states that the probability of op-
tical pumping in the time interval (t —R,&, t) is equal
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~n. - '„'["+ (-,'~)'"] « '„', (2.32)

which does not depend on 0 and increases with increasing
velocity. The spatial scale of the population difference is
now given by z, = vR, & ni's/k (see curve 4 in Fig.
4). The largest contribution to the spatially averaged
force is produced in a single optical-pumping cycle when
an atom passes the field node. In the range of velocities
(2.30) the averaged force is given by

hkf bsin '8
3~3(h'+ I'/4)

(2.33)

and is independent of v.
A graph of I' vs 0 for small n « 1 is shown in Fig. 5.

The force first increases with increasing 8, and reaches
its maximum value for a small angle 8 n'' . Then
it decreases, approaching the value F(8 = x/2, v) as 8
tends to n/2.

We now turn our attention to the momentum diffusion
coefficient D, which consists of two parts:

to unity. For the range of atomic velocities satisfying in-

equalities (2.30), in the vicinity of the nodes, integration
of Eq. (2.31) leads to the effective optical relaxation rate

0

HF(~)F(~ - )) —(F(~))(F(~ - -))ld'

F+
DInd =

ff
(2.37)

where F+ is given by Eq. (2.11).
For 8 « 1, the force F+ is 8 times smaller than that

for 8 = z. On the other hand, in the vicinity of the field

nodes, R,~ «rz . The overall effect is a decrease of the
averaged difFusion coefficient with decreasing 8, given by

Ob2-
D;„d(8,v) D,p (2.38)

for very slow atoms satisfying Eq. (2.28), and

(2.36)

This contribution is directly related to the multilevel dy-

namics, since it is brought about by fluctuations in the
time periods an atom stays in sublevels m' = +I/2 of
the ground state. For relatively small velocities satisfying
the condition a « 1, the correlation time of the forces
in Eq. (2.36) is given by R,z, and D;„dis approximately
equal to

sp + Dind, (2.34)

The first contribution D» is related to the fiuctuations
concerned with emission of spontaneous photons. This
contribution is quite similar to the momentum diffusion
coefficient in a two-level system. For ~kv~ « I', it de-

pends only slightly on angle and velocity, since the spe-
cific features of sub-Doppler-limit cooling and multilevel
dynamics do not play a significant role in the diffusion
processes brought about by these fluctuations. The av-

eraged contribution D» can be roughly estimated by

g2$2
Dind(8, v) Dsp (2.39)

for intermediate velocities (2.30). Thus, for small 8, the
induced momentum diffusion coefficient D;„d(8«1, v)
is much smaller than D;„d(8= m/2, v). It also exhibits
significant dependence on velocity v in the range 03 «
a « 1. The consequences of the 8 dependences of F and
D are discussed below.

Dsp (2.35) III. EQUATIONS FOR THE GROUND-STATE
SUBLEVEL POPULATIONS

The second contribution D;„dis produced by the Auc-

tuations of the stimulated force exerted on the atom, and
is given by

r «
~
r» r

~
r r r

0.8

O

0.4
Lll
O
K
O
LL.

In this section, using the Wigner representation [14],
we derive the equations for the populations of the ground-
state sublevels. We consider atoms having ground- and
excited-state angular momenta J& ——

2 and J, =
2 or 2.

Using the general equations (see, for instance, [14,4]) for
the density matrix p(z, p), where p = Mv is the atomic
momentum, and z is the center-of-mass position, and tak-
ing into account the weak-field condition (1.1), one can
adiabatically eliminate excited-state matrix elements and
obtain a closed set of equations for the density-matrix el-
ements of the ground state [1, 4]. The derivation of the
equations is given in the Appendix and is quite similar
for the two values of J, . Assuming that the atomic mo-
mentum is much larger than that of the photon, that is

0.0
0.0 0.5 1.0

r I

1.5
p&& hk, (3 1)

FIG. 5. The spatially averaged laser cooling force as a
function of angle 8 for small a = I-vrp = 1.0 x 10

one finds the following equations for the ground-state
sublevel populations:
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0 l 3hkb Opy—py ——
2 2

—cos
~ ~—+ kz py + cos +—+ kz

~ p+ — sin(p0 + 2kz)
2 p

+ I' t9p

hk2( ~ P+ 0 pp+
~

[14 —11 cos(p0+ 2kz)] + [6+ cos(+0+ 2kz)]
20 Op Op

for J, = 2, and

(3.2)

—pp = —cos
~ p —+kz

~
py+cos

~
+—+kz

( p~—)
3hkb

[sin(+0+ 2kz) + 3sin(+0+ 2kz)]
Opy

p

+ ~
[70 —13cos(p0+ 2kz) —27cos(+0+ 2kz)] 2 + 2[6+ cos(+0+ 2kz)]

cl py
p' p'

(3.3)

for J, = —,where d /dh = i9 /Bt + vD /Oz. Equations
(8.2) nnd (S.d) provide e complete description of the time
evolution of the atomic distribution of ground-state sub-
levels as a function of atomic center-of-mass position and
momentum, in the limit of weak field (1.1) and small pho-
ton momentum (3.1). The first two terms on the right-
hand side of the equations describe the spatially depen-
dent population exchange between the sublevels owing to
the optical pumping. The term with cl/clp can be inter-
preted as a gradient of an effective potential determined
by the spatially dependent ac Stark shifts of the levels,

and

d 1—II = — —tb sin0sin2kz —(1+cos0cos2kz)II
dt

3hkb ( . 0$ . DIII
+ ~

sin 8 cos 2kz —cos 0 sin 2kzr p p)

h'k2 ( t9211
+ (2 —3 cos 0 cos 2kz) p'

hbf
Sy = —

2 2 cos(p0+ 2kz)
3 b2+12 4

for J, = ~, and

(3.4) —3 sin 0 sin 2kz p' (3.9)

@(z p) =n++u- (3.6)

for an atom to have momentum p and position z, and the
population difference density

hbf
[cos(p0 + 2kz) + 3 cos(+0 + 2kz)]

12 b' + I'2 4

(3.5)

for J, = 2. Finally, the terms containing the second
derivatives with respect to p correspond to the momen-
tum diffusion process caused by emission of spontaneous
photons.

To find the atomic momentum and position distribu-
tions it is useful to introduce the probability density

where the "optical pumping" time rz is defined by Eq,
(2.16). Similar equations can be obtained for J,
using Eq. (3.3).

In general, Eqs. (3.2) and (3.3) or (3.8) and (3.9) can-
not be further simplified. However, if the atomic kinetic

energy Ei, = p /2M is much larger than the effective
potentials Sy, that is if

p 2hbf
2M 3(b'+ I'2/4) ' (3.10)

the atoms move almost freely and localization effects are
weak. This implies that the time scale rE that character-
izes the time variation of @(z,p) satisfies the condition

11(z,p) = ~, —~ (3.7) rEkv )) 1. (3.11)

d 1

dt

3hkb . t9$

r
~~ cIII )

cos 0 sin 2kz —sin 0 cos 2kz
p Dp)

h'k2 ( g2g
+ (2 —cos 0 cos 2kz)

i9p

@211&—sin 0 sin 2kz
Dp )

(3.8)

Then, using Eq. (3.2) with J, = 2, one arrives at
As a consequence, the probability g(z, p) = p+ + p de-

pends only slightly on z. Below we neglected this de-

pendence [15]. The problem is then reduced to a deter-
mination of the atomic momentum distribution g(p) =
tP(z, p). To obtain @(p) as a solution of Eq. (3.8), one

must know the population diff'erence density II(z, p). The
steady-state distribution for the population difference

IIss is established on a time scale R,& given by Eq.
(2.31). Although, as has been discussed in Sec. II, R,ir

may vary significantly with atomic position and velocity,
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it can be shown (see below) that R,& « r~ I.n determin-
ing g(p) from Eq. (3.8), one is then justified in replacing
II in that equation by its steady-state value IIss. Tak-
ing into account the condition EI, )) Sy and neglecting

terms containing (911/Op, and b)~$/Operand (9zll/Dpz in

Eq. (3.9) [owing to conditions (3.1) and (3.10), respec-
tively], one finds the steady-state solution of Eq. (3.9) in
the form

1,f, 3hkb rI~(z p)i)
Ilss(z, p) = dz'

~

—sin 8sin(2kz —z')g(z, p) + sin 8 cos(2kz —z')
2a p

I' Op )

x exp —(2a) [1+cos8cos(2kz —z")]dz" (3.12)

where

cl = kv7p. (3.13)

Substituting IIss(z, p) in the form (3.12) into Eq. (3.8) and neglecting derivatives of order higher than 2, one arrives

at a Fokker-Planck equation of the form

—& = —[-F4+»" + —(D..&)],
d (9 Bi/) 8
dt b)p

'"
Op Op

(3.14)

where the force I" is given by

2hkbfzF = cos8sin2kz+ (2n) sin 8cos2kz
3 b'+1' 4

00 S I

x dz'sin(2kz —z') exp —(2n) [1+cos8cos(2kz —z")]dz"
0 0

(3.15)

the sub-Doppler-limit "stimulated" contribution D;„dto the momentum diffusion produced by the fluctuations of the
instantaneous dipole forces by

1 (3hkb sin 8
D;„d=

i ~

cos 2kz dz' cos(2kz —z') exp
~

—(2a) [1+cos 8 cos(2kz —z")]dz"
2cxrp ( r ) 0 0

(3.16)

and the "spontaneous" contribution D,z to the momentum diffusion associated with emission of spontaneous photons
by

I
h kz sin 8sin2kz

D,z —— 2 —cos 8 cos 2kz + dz' sin(2kz —z') exp —(2n) [1 + cos 8 cos(2kz —z")]dz"
2Tp 2A 0 0

(3.17)

Under assumption (3.10) considerable variation in atomic kinetic energy occurs on a time scale larger than (kv)
In other words, condition (3.11) is satisfied. In this limit, the force and diffusion averaged over a wavelength determine
the time evolution of the distribution g. Averaging Eqs. (3.15)—(3.17) over a wavelength, and substituting the results
into Eq. (3.14), one can arrive at

Bg 8 — — (9$ ct= —[ FQ + D;„d —+ —(D,i2$)],
p p p

where the spatially averaged force F is given by

hkf2bsin 8 . , (cos8F = — sin(2ar)e 'Ip
~

sin(nr)
~
dr,

(3.18)

(3.19)

and the averaged difFusion coeKcients are

cos8 . ( (cos8
I2 p:

( s s 2 + —sin 8 e cne(2ar)Is sin(ar)
~

—Is
~

sin(ar) I
sir I,A r

(3.20)

/'cos 8 (cos 8
e ' cos(2ar)Ip i sin(ar) + Iq

~

sin(ar)
~

dr,a (3.21)
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where Io and Iq are modified Bessel functions [16].
For J, = z, one can also obtain equations similar to Eqs. (3.14) and (3.18). For example, the force F is given by

hkbf2F = 2 cos 8 sin 2kz —(4u) ' sin 8 cos 2kz

dz' sin(2kz —z') exp —(4u) [1 + cos 8 cos(2kz —z")]dz" (3.22)

and the averaged force F by

cos 8F =
s sin(4ur)e 'I() sin(2ur)

~

dr .
2Q'

For the sub-Doppler-limit stimulated part of the momentum diffusion coefBcients one finds

1 3hkb sin 8 &D;„d- cos 2kz cos(2kz —z') exp —(4u)2a r 2I' [1 + cos 8 cos(2kz —z")]dz" dz', (3.24)

and

hkb fzsin 8
2I'(b'+ I'/4)

cos 8 cos 8
e cos(4Q'r)IO s111(2Q'r) + Ig sill(2a r) ~

dr,
2Q'

r2Q

(3.25)

while the spontaneous contribution D,p to the momentum diffusion is given by

h k2
D p: 41 19cos 8 cos 2kz

407.
„

2sin 8sin2kz

OO g'

x dz' sin(2kz —z') exp —(4u) [1 + cos 8 cos(2kz —z"))dz"
0 0

(3.26)

and

('cos8 . ) cos8
(D,s) = dl —4sin d s cns(4csr)Ic

~
sin(2nr)

~

—Is sin(2nr)) dr j20 b'yl' 4 0 (, 2u ) 2u
(3.27)

IV. DISCUSSION

In this section, if not stated otherwise, we consider
1J, = ~.

A. Force and diffusion

For 8 =
2 one can use Eqs. (3.19)—(3.21) to obtain

expressions for the force and momentum diffusion coeK-
cients in a closed form for arbitrary values of the dimen-
sionless velocity o; = kvv&. For the averaged force one
recovers the well-known result [1]

2h'k'f'r (
2 9(b +I'/4) 4(1+4u')) '

(4.3)

and their qualitative behavior coincides with that of dif-
fusion coefficients obtained in Ref. [4].

For an arbitrary angle 8, it is possible to obtain an-
alytical expressions for the averaged force and diffusion
coefficients in the limiting cases of small and large veloc-
ities. Numerical solutions for the force and the diffusion
coef5cients as a function of n are presented in Figs. 6 and
7, respectively.

vr 2hk f2bu

3(b2 + I'2/4)(I + 4u2)

The diffusion coeKcients are given by

hkbf
2 u(bz + I'2/4)(l + 4u2)

(4.1)

(4.2)

X. Low eelocitiea n g( 1

In this limit, for very low velocities

g3

6
(4.4)

and one can take the integrals in Eqs. (3.19)—(3.21) to obtain
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3hk2»
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2hkf boF = —
3g(P2+ 1'2/4)

(4.5)
2r kf'~~F = —

3
~

g(b2 + 1 2/4)

and
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For 8 « 1, far from the nodes of the standing wave [!kz-
z(1+ 2n)! 1] the velocity-dependent part of the force

(4.9) is of order 0zhkzbv/r and is much smaller than
that of the force obtained for 0 = ir/2. However, in the
vicinity of the nodes, where

c = kz ——(1+2n) « 1,
2

the force takes the form

2hkbf2 (2C(82/4 —E2)
!3(b'+ r'/4) & ("+0'/4)

(4.10)

8'n(8'/4 —c')
2(g2 + 02/4)3

(4.11)

The first term in Eq. (4.11) is velocity independent and
corresponds to the gradient of the effective potential U,ff

given by

tr =
3(b, + r, /4) IE~

—
2

ln(~ + 0'/4) (4.12)

24hk~bv

g2P
(4.13)

The second, velocity-dependent, term can be seen in Fig.
4 (curve 2). In the very vicinity of the node e « 8, it
represents a very strong frictional force

2. Large velocity, n )) 1

In the high-velocity limit, the force takes the form

0hk f26 sin 0hf I'S sin
4.18

6n(62 + I'2/4) 27v(b~ + rz/4)2 '

which is valid for any angle 0. The force (4.18) decreases
with decreasing 0.

The diffusion coeKcient is given by

2hk f I' sin 8 186 l
9(bz + rz/4) 16nz r~

and decreases with decreasing 0 and increasing velocity.
Results for the entire range of velocities are shown in

Figs. 6 and 7. The velocity dependence of the force in

the case of small angles 0 differs dramatically from that
obtained in the case 8 = n/2. For a given n the force

F(8 = ir/2) is smaller than F(ir/2 & 8 & ni~z). An

important new feature of the diffusion coe%cient is the
strong dependence of its sub-Doppler-limit part D;„don

angle 8. For 8 = ir/2 and !6!)) I' this part is the domi-

nant one, as it is bz/rz times larger than the contribution

D» brought about by the emission of spontaneous pho-
tons. However, D;„ddecreases with decreasing 0, while

D» does not vary significantly with 8. As a result, the
diffusion coefBcient D decreases with decreasing 0. More-

over, for a range of angles 0 && 1, one finds

D;„d(D» (4.20)

1 (3hkb8 1

27; q
I' ) c'+0z/4 (4.14)

For e & 8, D;„d(8 « 1) is of the order of D;„q(0
ir/2) and provides the major contribution to the averaged
diff'usion coefficient (3.16).

For the intermediate range of velocities

031))a)—
6

(4.15)

the averaged force takes the form

2hk fzb0z

3~a(b'+ r2/4)

Thus, for 0s/6 & n « 1 the force (4.16) does not depend
on the velocity and decreases with decreasing 0. The
diffusion coeKcient varies as

h'k'f'r ( 9.546'0' )
9(6 + r /4) ( r n'~

and decreases with decreasing 0 and increasing velocity.

while for !e! & 8/2 it changes sign and leads to heating.
However, after averaging over the position around the
node the combined effect is still that of cooling given by
Eq. (4.7). Thus one can see that for small 8 a strong fric-
tional force is produced in vicinities close to the standing
wave nodes.

The nonaveraged sub-Doppler-limit stimulated contri-
bution D;„dto the momentum diffusion is proportional
to 82 far from the nodes and is much smaller than that
in the case 8 = n/2. However, near the field nodes [i.e. ,

when condition (4.10) is satisfied], D;„dis given by

even for small velocities.

B. Equilibrium momentum distribution

(4.21)

and neglecting the dependence of D» on velocity, one
finds the distribution g,q(P) to have the form

PF=dp'
D )

(4.22)

Calculating the mean equilibrium kinetic energy Eeq as

&~ —Ea eq (4.23)

where E~ = (hk)z/(2M) is the recoil energy, one arrives
at the results presented in Figs. 8 and 9.

The mean kinetic energy as a function of dimensionless
laser field intensity I defined by

For J, =
2 and 6 ) 0, the equilibrium momentum

and spatial distribution g,q(z, p) characterized by mean
kinetic energy E~ ——pzq/(2M) results from the balance
between the cooling force and diffusive heating. Rigor-
ously, the equilibrium distribution is a solution of Eqs.
(3.2) and (3.3); however, it may be possible to approxi-
mate this distribution using the Fokker-Planck equation
(3.18) with a diffusion coefficient D(8, p) and a drift, term
F(8, p). The resulting distribution g,q(p) is not necessar-
ily of Gaussian form. Introducing a dimensionless atomic
momentum
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I2
Eeq = ER I —6
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IIb« —Itb«(0) exp( —P /2I sin 8)

and the mmean kinetic energy is given by

E~ —ERI sin 8.
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&64&'q"
~/2 & 8 » i

the equilibrium energy is given by Eq. (4.36) and varies
as sin 0. If the angle gets even smaller, that is, if

(64b2 ) » 8 » o.5 (4.40)

E,q is given by Eq. (4.33) and does not depend on 8.
Finally, for very small angles

Fs )0.5 , i
»8&i —

ib'I r
(4.41)

one has

and

8I~I'~

9hz(I8z —4)(I8z —6)
(4.42)

( 3~P& ""
@„(P)= y„(0)~ 1+,

E
(4.43)

The mean kinetic energy (4.42) increases sharply with
decreasing 8, and laser cooling is possible only for 8 &
(2/I)'~'

One can see that the minimal equilibrium energy is
achieved for a small angle 8 satisfying the condition
(4.40). From Eq. (4.33) one has

where

vr 5.6b
q g ~ly]g (4.44)

(4.45)

is the mean equilibrium energy reached for the laser
beams with orthogonal polarizations. Taking into ac-
count Eq. (4.38) one can see that the energy F,'"'" ob-
tainable for small angles can be significantly smaller than
&q(8= z)

The results presented above for the equilibrium en-

ergy distribution have been derived using the Fokker-
Planck equation (3.18) with the drift and diffusion coef-
ficients averaged over the optical wavelength. However,
one can deduce from Eq. (4.44) that, for small 8, the
energy E, '" is smaller than the maximum of the effec-
tive potential Uo. Consequently, an atom having this
energy must be strongly localized [17]. This means that,
rigorously speaking, the equilibrium energy distribution
g(z, p) should strongly depend on the center-of-mass po-
sition z, and that localization effects must play a signifi-
cant role in the calculation of E~. Although the results
obtained using the averaged Fokker-Planck equation are
quite similar for J, = 1/2 and 3/2 atoms, the localization
effects make these two systems very different. It has been
shown earlier that atomic motion in the vicinities of the
laser field nodes is responsible for a, dramatic increase of
the frictional force and decrease of the sub-Doppler-limit
momentum diffusion that may eventually lead to mean

energies (4.44) and strong localization. For J, = 1/2 the
potential Uo has its minima at the field nodes. Thus an
atom trapped in a region

1 r'5.6S &"
2& grI»zr

near the field node may experience a very strong fric-
tional force and may be cooled to the energies given by
Eq.(4.44). However, the effective potential Uo of the
J, = 3/2 atom has its minima at the antinodes of the
laser standing wave. As soon as an atomic kinetic energy
becomes smaller than 2UO(z = 0), an atom is trapped in
the vicinity of t;he antinode where both the force and the
sub-Doppler-limit diffusion coefFicient are proportional to
8 and are small. As a result, one should have been ex-
pect to obtain weaker localization (bz ir/6I.") and the
equilibrium kinetic energy of order E,q(8 = 7r/2) for a
wide range of angles 8 .

V. CONCLUSIONS

We have seen that in the one-dimensional field con-
figuration with almost parallel linear polarizations of the
counterpropagating laser beams the considerable increase
of the effective optical relaxation time and the popula-
t, ion difference gradient near the nodes of the field may
lead to significant cooling and localization of the atomic
particles having Jz ——2. Identical effects would occur
if the linearly polarized fields were replaced by two cir-
cularly polarized standing-wave fields (polarizations e+
and e, relative phase shift 8 (( 1). Although the cal-
culation has been limited to t,he Jz ——

2 ground state,
one would expect a similar qualitative behavior for other
values of J&. To account, for the rapid spatial variation
of the ground-state population difference, new analytical
approaches are needed since methods based on Fourier
series or expansions about v = 0 may converge very
slowly. The need for new analytical techniques is under-
scored if the results are generalized to two-dimensional
cooling. In this case, for certain field configurations, we

find a dependence of the friction force which varies as
F~ y

~ n~ y ln(nz + nz), where n~ y
—k5z yTp.

As an example of a method by which one can measure
directly the dependence of the spatially averaged cool-
ing force on angle 8, we should like to cite the recent
experiment of Grynberg, Vallet, and Pinard [18]. They
measured the changes in field intensity as two copropa-
gating waves traverse a medium of J =

2
ground-state

atoms as a function of the frequency difference 6' be-
tween the waves. The changes in field intensity can be
related directly to the spatially averaged friction force
that would appear in the sub-Doppler-limit laser cooling.
The two fields they used were linearly polarized with an
angle 8 = s'/2. The characteristic width they found in
their experiment is consistent with the capture range that
would appear in the sub-Doppler-limit laser cooling. In
the similar type of measurement, by changing angle 0 be-
tween the field polarization directions one might see the
increase of the signal gradient about 6' = 0 correspond-
ing to the increase of the cooling force for small angles
found in this paper.
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with p = Mv and M denoting the atomic momentum and
mass, respectively. In the rotating-wave approximation,
the atomic Hamiltonian H t is given by

H, i ——M ) )J„rn,)(J„rn,).
me ——Je

(A3)

APPENDIX: DERIVATION OF EQS. (3.2)
AND (3.3) For J, = 2, the interaction part of the Hamiltonian H f,

which describes atom-field coupling, has the form

In this paper we consider atoms having ground and
excited-state angular momenta J&

——
&

and J, =
&

or 2.1 1 3

The atomic density matrix satisfies the equation H, r =hf (e
cos

I

—+ kz
I lei/2)(g-1/2(

—= —[p, H] + Rel(p),
dp

dt h

where the Hamiltonian B is given by

(A 1) 8—cos — + kz 8 y/g gy/2 (A4)

(A2) where z is the atomic center-of-mass position. In the case
J, =- onehas

hf (e ( (e 5(
H r = cos

~

—+ kz
~ (es/2)(gl/2)+ [el/2)(g 1/2) ~

—cos
~

——+ kz
~ ~ )e s/2)(g 1/2)+ )e 1/2)(gi/2))

(A5)

The relaxation due to spontaneous-emission processes is included in the term Rel(p).
Using the weak-field condition (1.1) one can adiabatically eliminate the excited-state populations and excited-

ground-state coherences [4]. For the density matrix in the Wigner representation defined by

p(z, p) = (qzqz) 'f ( pp 'qq, p —zq)z'z*~ dq

in the J, =
2 case, one finds the quasistationary solution

(A6)

1
Pe+i/2 gal/2(p, z) + ~ [Pgql/2 gal/2(p 2hk, z)e + Pgpl/2 g+1/2(P+ 2hk, z)e ' + "'

]6 yiI' 2

(A7)

and

2

Pe+i/2 e+1/2(p& z) p &

( 2 2 [2Pgpl/2 gal/2(pz z) cos(+e + 2kz)
6 I' bz + I'2 4

+Pgpl/2 gal/2(p+ hk, z) + Pgpl/2 gal/2(p —hk, z)] + C.C. (AS)

The ground-state populations evolve as

d if i(p ~ &+kgb) 1 —i(P ~ 8+km)
d Pg+1/2 g+1/2(p, z) = + [Pe+1/2 g+1/2(P —2hkz z)e + Pe+1/2 g+1/2(p + 2hk, z)e ' + +"'

] 6 c.c.t 6
1

+-I' K1+ g')P.yl/2 yl/2(p+ hkg, z) + (1 —g')P.kl/2 kl/2(p+ hkg, z)]~a, (A&)

where the integral term accounts for the repopulation of those levels resulting from the emission of circularly and
linearly polarized photons from the excited state [14]. Substituting Eqs. (A7) and (AS) into Eq. (AQ) for the ground-
state sublevel populations, one arrives at the closed set of equations
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d I'fz—py(p, z) = —
2 & 2p~(p, z) + cos(+8+ 2kz)[p~(p+ hk, z) + py(p —hk, z)]

dt
' 6 b'+I' 4

2b+—sin(~8+ 2kz)[py(p+ hk, z) —py(p —hk, z)]

+ {(I+ q )[pp(p+ hk(q+ 1), z) + py(p+ hk(q —1),z)

+2py(p+ hkq, z) cos(p8 + 2kz)] + (1 —q )[p~(p+ hk(q + 1),z)

+p+(p+ hk(q —1),z) + 2p+(p+ hkq, z) cos(+8 + 2kz)])dq,

where py —
pgyy/g gy]/g.

For an atom having J, =
&

the corresponding equations are

(A10)

d I'f2—py(p, z) = —
z 8py(p, z) + [3cos(+8+ 2kz) + cos(p8+ 2kz)][py(p+ hk, z) + py(p —hk, z)]24b +r 4

2b+—[3sin(+8+ 2kz) + sin(p8+ 2kz)][py(p+ hk, z) —py(p —hk, -)]

((I + q )(Gp+(p+ hk(q+ 1), z) + 5p+(p+ hk(q —1), z)

+py(p+ hkq, z)[9cos(+8+ 2kz) + cos(p8+ 2kz)])
+2(1 —q )[p~(p+ hk(q + 1),z) + p+(p + hk(q —1), z)

+2p+(p+ hkq, z) cos(+8+ 2kz)))dq (Al 1)

Equations (A10) and (All) are exact under the weak-field assumption (1.1). If, in addition, one assumes that an

atomic momentum is much larger than that of the photon, that is

p» hk, (A12)

one can expand these equations to second order in hk to arrive at Eqs. (3.2) and (3.3) for J, =
z and z, respectively.
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