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Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system
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We report experimental observation of multiphoton resonances and Bloch-Siegert shifts in a strongly

driven classical two-level system. The system is an optical ring resonator, and the levels are two orthog-
onal linear polarizations. The Rabi frequency and the Bloch-Siegert shift were measured for both the
one- and three-photon cases. Satisfactory agreement was achieved with theory developed for a quantum

two-level system. The experiment demonstrates that these coherence phenomena can be observed in a

purely classical system.

PACS number(s): 42.50.Hz, 32.80.Bx

I. INTRODUCTION

We report the observation of multiphoton resonances
and Bloch-Siegert shifts in a macroscopic classical two-
level system. The interpretation of the effects observed in
the experiment is based on the equivalence between the
equation that describes the time development of this sys-
tem and the Schrodinger equation for a driven two-level
quantum system.

The driven two-level system has been extensively stud-
ied. In 1965, Shirley developed a formalism for a quan-
tized atom in interaction with an oscillating classical field

using Floquet theory [1]. Although his approach was
semiclassical, he interpreted it as a classical approxima-
tion to the fully quantum treatment of the field. This in-

terpretation is clear if it is recognized that Floquet states
are essentially equivalent to dressed states in the limit of
a large number of photons in the field. His formalism
had no recourse on the rotating-wave approximation
(RWA) and so is exact, even for strong fields. Within the
context of this formalism he used perturbation theory to
calculate the multiphoton Rabi oscillation frequency and
Bloch-Siegert shift. In more recent years, the Bloch
equation and the dressed-state formalism were used to
calculate high-field coherence phenomena. Rabi oscilla-
tions, Bloch-Siegert shifts, multiphoton transitions, and
the ac Stark effect have been extensively investigated for
atoms and molecules in the optical regime [2], in mi-

crowave resonance [3,4], and in radio-frequency (rf) spec-
troscopy [5—8].

Although he developed his formalism for a quantum-
mechanical two-level system, Shirley pointed out that
"the Bloch-Siegert shift and all multiple quantum transi-
tions derived above should appear in classical argu-
ments, " and referred to Feynman, Vernon, and
Hellwarth [9], who showed that the semiclassical
Schrodinger equation for the two-level system is
equivalent to the classical vector equation dr/dt =co Xr,
which is of course the basis of the Bloch vector approach
[2,5].

It is also known that in the slowly varying envelope ap-
proximation (SVEA) the Maxwell equations for the clas-
sical electromagnetic field lead to an equation of the same

form as the Schrodinger equation [10—13]. This is the
basis of studies into analogies in optics and quantum
mechanics and makes it possible to create an optical sys-
tem with two coupled states which is described by an
equation identical to the Schrodinger equation for a
quantum two-level system [14—16].

We have already reported the observation of some
coherence phenomena in such an optical implementation
of the driven two-level system; namely adiabatic follow-

ing, Rabi oscillations, and Autler-Townes doublets
[14,17]. Here we report the observation of multiphoton
resonances and Bloch-Siegert shifts, together with a de-
tailed discussion of the experimental method which was
also used in previous experiments [14,18]. We show that
the application of Shirley's and Stenholm's theories [1,5]
for the quantum two-level system gives satisfactory
agreement.

As already mentioned, we note that the theory of
coherence phenomena has been developed extensively in
the past. We do not intend to develop new theory in this

paper; we show, rather, that an optical system can be
made for which the same theory applies. The advantage
of the optical system is that it is macroscopic, and conse-
quently all parameters can be changed.

II. THE OPTICAL TWO-LEVEL SYSTEM

The classical two-level system used in this experiment
is equivalent to one already reported [14—16,18] and is
sketched in Fig. 1. In a planar optical ring resonator two
electro-optic modulators are placed, one with its polar-
ization axes along x and y (EOM1), and the other with its
axes along x +y and x —y (EOM2). The modulators in-

troduce a phase difference between the pair of light waves
that are linearly polarized along their axes. This phase is
proportional to the voltage applied to the modulator.

In this system we consider one longitudinal mode at an

optical frequency co „,. For the empty resonator, the po-
larization modes x and y are degenerate. But if modula-
tor EOM1 introduces a phase difference between the x-
and y-polarization modes, this results in slightly different
mode frequencies, which we denote co,p, + 8' and

co p$
8' respectively. As the modes have principal fre-
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FIG. 1. Classical realization of a driven two-level system
based on two orthogonal polarization modes in a ring resonator.
EOM1 and EOM2 are electro-optic modulators, placed at an
angle of 45' to each other. The polarization labels x and y are
indicated.

quency co, „ the different frequency of the polarization
modes can be expressed by letting the amplitude x of the
x-polarized mode oscillate at frequency W i.e.,
x(t)~e ' ', so that dx(t)ldt = iWx—(t). The same ar-
gument for y leads to y(t)~e+' ' and dy(t)ldt
=+iWy (t). Using these amplitudes, the state of the sys-
tem can be written as a complex column vector x,y, fol-
lowing the Jones vector formalism. The time derivative
of this vector can now be written as

x
l

dt

W 0 x
0 —W y

x

dt

W S x
S W y

(2)

The eigenvalues of the matrix are the frequencies of the
eigenmodes, and are given by co+=+( W +S )' . They
form an avoided crossing with minimum level separation
up=2 W as illustrated in Fig. 2.

Note that the same equation can also be derived for the

This equation just describes the frequency deviation of
the x and y polarization mode compared to the optical
frequency co,pt When the frequency shifts of the x+y
and x —y polarization modes due to EOM2, which we
shall call +S and —S, are included, one finds

amplitudes of the two propagation modes in the ring
(clockwise and counterclockwise}, using a partial reflector
and rotation of the ring instead of electro-optic modula-
tors. This model has been studied in mode-coupling
theory for ring lasers [19,20], and has been used for ear-
lier two-level experiments [14,17,21].

If an oscillating field with frequency co and amplitude
2b [22] is applied to EOM2, so that the frequency shift S
is 2b cos(cot), then the time development of the system
[Eq. (2)] becomes

x W

y 2b cos(cot)

2b cos(rot ) x
—W y

(3)

Note that in introducing the driving field, we choose an
oscillating term for S, so that a counter-rotating term is
present in the driving field.

If Eq. (3} is multiplied on both sides by A', one finds ex-
actly the Schrodinger equation for a quantum two-level
system with level separation ~p=2W, driven by an oscil-
lating interaction at frequency co and amplitude 2b. The
matrix in Eq. (3) multiplied by A is the Hamiltonian of
the quantum-mechanical system. This is an example as
to how the slowly varying envelope approximation in
electromagnetism leads to equations of the same form as
the Schrodinger equation. In the present case the SVEA
corresponds to the assumption that the change of the in-
tracavity field after a roundtrip is negligible (the intracav-
ity field is described by position-independent amplitudes
x and y). This is a reasonable assumption as typical fre-
quencies in the experiment, such as the rf frequency of
the driving field, are well below the free spectral range of
the resonator.

Apparently the system can be described by the same
equation as a quantum two-level system in interaction
with a classical field. Therefore we can apply theory
developed for the latter system. We will recall the results
for the one- and three-photon Rabi oscillation frequency
and Bloch-Siegert shift from Shirley [1], Stenholm [23],
and Swain [24].

For small driving fields (b Ice &&1) and near resonance
(wc=co), it is reasonable for many cases of interest to
make the rotating-wave approximation (RWA). The off-
diagonal elements may be written as 2b cos(cot)
=be '"'+be+'"'. In the RWA, one of these terms (the
counter-rotating term) is neglected, and then the problem
is exactly solvable. The result is an oscillating amplitude
for both levels, called Rabi oscillation, which occurs at
frequency

Q)=2b . (4)

We shall call this the one-photon Rabi frequency, because
a driving-field frequency equal to the transition frequency
corresponds to a one-photon transition. Off-resonance
the generalized Rabi frequency is given by

FIG. 2. Avoided crossing in the two-level system. The fre-
quency of the modes is m, the frequency splitting due to EOM1
is 2$; and the detuning due to EOM2 is S.

where 6 is the detuning. In the experiment, however, the
Rabi frequency is always measured on resonance, so that
Eq. (4) applies.

If the counter-rotating term is taken into account, the
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Rabi frequency is still given by Eq. (4), but the resonant
transition frequency becomes smaller. This shift is called
the Bloch-Siegert shift [25]. In first-order perturbation
theory, valid for weak fields (b/co «1), the new transi-
tion frequency becomes

I
N —N0

b2
(6)

III. EXPERIMENTAL SETUP

The experimental setup used to measure the Rabi fre-
quency and Bloch-Siegert shift consists of the classical
two-level system as outlined in Sec. II, together with
means to drive and probe the system, and is sketched in
Fig. 3. The basis of the setup is a folded planar ring reso-
nator with six curved high-reflecting dielectric mirrors.
We used a ring resonator for convenience; in principle,
the experiment could have been equally well performed
with a linear (Fabry-Perot} resonator. The free spectral

HV
M1
I OSC

AMP

FIG. 3. The experimental setup. M 1—6, high-reflecting
dielectric mirrors; HeNe, frequency stabilized HeNe laser; ISO,
optical isolator; POL, polarizer; EOM, electro-optic modulator;
RF, radio-frequency signal generator; AMP, amplifier; LC, res-
onant LC circuit; HV, high-voltage source; PZT, piezomounted
mirror; RAMP, ramp generator; PD, photodiode; OSC, oscillo-
scope.

For larger field strengths, where perturbation theory is
inappropriate, Stenholm gives a continued-fraction solu-
tion [23] to which Swain gives an analytical approxima-
tion [24]. The continued fraction solution has been test-
ed, for example in magnetic resonance experiments [8].

When the transition frequency is an odd multiple of
the driving frequency, multiphoton resonances occur.
This results in a multiphoton Rabi oscillation. For a
three-photon resonance the Rabi frequency, within
third-order perturbation theory, is

b03=
2N

while the three-photon transition frequency as a function
of field strength, thus incorporating the three-photon
Bloch-Siegert shift, is in second-order perturbation
theory given by

36
N0= 3N

2N

Stenholm gives a continued-fraction expression for the
three-photon resonance frequency at high-field strength
and again Swain gives an analytical approximation
[23,24].

1 V

4 2V FsR'
A, /2

(10)

In order to detect the resonances, the spectrum of the
ring was measured. This was done by injecting light from
a fixed-frequency (633 nm) He-Ne laser, matched to the
TEM00 resonator mode, through one of the mirrors. The
polarization of the injected light was chosen to be along
one of the axes of EOM1. The light leaking through one
of the other mirrors was analyzed with a polarizer,
aligned parallel to the polarization of the injected light,
and detected with a photodiode. In this way, only one
state of polarization is injected with light, and its output
subsequently detected.

We looked for resonances in this mode by scanning the
roundtrip phase. This was done by scanning the length
of the ring with a piezomounted mirror over a couple of
wavelengths. While scanning, the photodiode signal was

displayed on an oscilloscope. The scan frequency was
small compared to all other frequencies occurring in the
experiment, so that the detection is in effect stationary.
The finesse of the resonator was about 50.

If no rf field is applied, the spectrum observed is as in

Fig. 4(a). A resonance occurs at a particular ring length
or roundtrip phase. The resonance of the other polariza-

range of the resonator, NFsR=2~c/L, was 2mX66. 5

MHz.
Two mirror pairs (M 1,M2 and MS,M6) were used to

optimize the beam waists inside the two electro-optic
modulators placed inside this ring. One of these modula-
tors, EOM1, was a high-voltage modulator with a half-
wave voltage V&/2 =4.0 kV. It was placed with one of its
polarization axes in the plane of the ring, and was con-
nected to an adjustable dc voltage source. A voltage Von
this modulator introduces a phase difference nV/V. &&2

between the x- and y-polarized modes. Since a phase
shift of 2n. corresponds to a frequency NFsR, a voltage V
on the modulator leads to a transition frequency

V
0 2V FSR '

A. /2

The other modulator, EOM2, has a half-wave voltage
V&/2=215 V. It was placed with its axes at an angle of
45' with respect to EOM1. A coil was connected to this
modulator, forming an LC circuit with the capacitance of
the modulator. A rf signal at the resonance frequency of
the circuit (4.35 MHz} was applied to a part of the coil.
In this way the voltage amplitude from the rf source was
transformed to a voltage across the modulator which was
approximately 13 times higher. This enabled us to use
low rf powers to create a large voltage across the modula-
tor. The maximum voltage used in the experiment, using
1-W rf power, was about 130 V; higher values led to
problems due to heating of the modulator crystal.

The field strength b can be calculated from the voltage
across EOM2. When the ac voltage across EOM2 has an
amplitude V, the maximum frequency difference between
the x +y and the x —y polarization mode is

co„s„V/2V„&2. This should be equal to the sum of the
off-diagonal elements in Eq. (3) which is at maximum 4b,
so that
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FIG. 4. Spectra of the ring resonator. (a) Spectrum of the x
polarization with zero rf field. (b) Spectrum of the y polariza-
tion with zero rf field. (c) Doublet in the x polarization, caused
by one-photon Rabi oscillation. (d) Same for small detuning
from one-photon resonance. (e) Doublet due to three-photon
Rabi oscillation. (f) Same for small detuning from three-photon
resonance.

tion mode occurs at a different length of the ring because
of the phase difference between the modes induced by
EOM1 [Fig. 4(b)]. The distance between the resonances
determines the transition frequency coo, and could be
changed by the voltage on EOM1.

If a rf field is applied to EOM2 and the transition fre-
quency is tuned to the driving field frequency, a doublet
appears in the spectrum [Fig. 4(c)]. We interpreted this
as caused by the Rabi oscillation, and assumed the Rabi
frequency to be equal to the splitting. When the transi-
tion frequency was changed slightly, the doublet became
asymmetric [Fig. 4(d)], the splitting now corresponding
to the generalized Rabi frequency [cf. Eq. (5)]. We inter-
preted resonance as occurring when the doublet is sym-
metric.

When the transition frequency was approximately
three times the driving-field frequency, the one-photon
resonance is far off-resonance, so that the doublet be-
comes highly asymmetric, consisting of a large and a
small peak. When the driving-field amplitude was
sufficiently high (b/co= 1}, the larger peak is again split,
due to the three-photon Rabi, frequency, resulting in a
spectrum like Fig. 4(e). By detuning from the three-
photon resonance, this doublet could also be made asym-
metric [Fig. 4(I)]. In Figs. 4(e} and 4(I) we have chosen by
way of illustration the case of a small three-photon split-
ting, which is hardly resolved. This has the advantage
that the assignment of the three peaks is directly clear.
In the actual experiment discussed in Sec. IV the three-
photon splitting was made much larger, so that it was ful-
ly resolved. The interpretation of the observed splittings
in Figs. 4(c)—4(I) as Autler-Townes doublets [5] can be
understood from the fact that the rf driven two-level sys-
tem is probed with an optical field (Fig. 5).

FIG. 5. The origin of the one-photon Autler-Townes doublet.
The level splitting is coo. When one of the levels split by the
Rabi oscillation at frequency 0, is probed to a third level which
is an optica1 laser frequency coop& away, two resonant frequen-
cies occur.

IV. EXPERIMENTAL RESULTS

The one-photon Rabi frequency and resonant transi-
tion frequency were measured by first making the transi-
tion frequency coo equal to the driving-field frequency co.

The transition frequency was then tuned to resonance by
making the resulting doublet symmetric. On resonance,
the Rabi frequency was determined by measuring the
doublet splitting. Since the splittings were fully resolved,
we performed no deconvolution.

In Fig. 6(a) the one-photon Rabi frequency is plotted as
a function of the dimensionless driving field strength
b/co. The measured values are in accordance with the
linear relationship predicted by Eq. (4), which is also
shown in this figure. Since the amplification of the LC
circuit on EOM2 was not known precisely, we fitted this
value to get' the correct slope, thus calibrating the field
strength. The resulting value of the field strength was,
however, within 10%%uo of the estimated value. The errors
in the measured values are mainly due to instabilities in
the system, which caused the splitting observed in the
spectrum to fiuctuate.

The measured one-photon resonant transition frequen-
cy is plotted in Fig. 6(b) in a consistent way against b/co
using the same calibration. For high fields, it differs
significantly from the perturbation expression [Eq. (6),
drawn in the figure]. It is, as would be expected, in better
agreement with the approximation to the continued-
fraction solution given by Swain [24]. The large error bar
for high driving-field amplitudes is due to the severe
broadening of the resonance, as already pointed out by
Cohen-Tannoudji, Dupont-Roc, and Fabre [6].

Subsequently, the three-photon Rabi frequency and
resonant transition frequency were measured, by looking
for resonance with co0=3co. In Fig. 6(c) the three-photon
Rabi frequency is plotted as a function of field strength,
together with the curve expected [Eq. (7)]. The three-
photon resonant transition frequency is plotted once
again as a function of b/co, in Fig. 6(d), together with the
theoretical curves from perturbation theory [Eq. (8)] and
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FIG. 6. The Rabi frequency and the resonant transition frequency as a function of the dimensionless driving field strength b/~.
The driving field oscillates at co=2m. X4.35 MHz. The points are experimentally observed; the lines are theoretical curves. (a) One-

photon Rabi frequency. (b) One-photon resonant transition frequency. (c) Three-photon Rabi frequency. (d) Three-photon resonant

transition frequency.

Swain [24]. Both figures show satisfactory agreement
with theory. It is somewhat surprising that for the
three-photon Bloch-Siegert shift the perturbative expres-
sion is rather close to the analytical approximation to the
continued-fraction solution.

Direct comparison may readily be made between the
Shirley model and the rather more familiar semiclassical
picture appropriate to multiphoton absorption from
lasers [26]. The intermediate Floquet states have their
counterpart in nonresonant virtual intermediate states
and multiphoton resonance and level shifts are again
found. In each formulation there are restraints imposed

by symmetry. A pair of levels connected by a one-photon
electric dipole transition will only show odd-rnultiple-

quantum transitions, while levels of the same parity only
demonstrate even-multiple-quantum transitions. Similar
behavior is found for the classical atom where due to the
symmetry of the system only the odd-photon resonances
occur. However, experimental evidence was found of
two-photon resonances when the prevailing symmetry
was broken by applying a dc offset to the rf modulator
EOM2.

V. CONNEC1 ION WITH OTHER TWO-LEVEL
SYSTEMS

A natural question arises as to how this two-level sys-
tem relates to other two-level systems. The response of

our system depends on the electric field inside EOM2,
and as a result of an oscillating electric field a Rabi oscil-
lation with a certain frequency is observed. We can com-
pare this with the response of a system with an electric
dipole moment, such as the atomic [26] or molecular case

[7], by calculating the "dipole moment" of the ring. For
a system with an electric dipole moment M„ the Rabi
frequency, resulting from an oscillating electric field with
amplitude 6, is [2]

2M)8
Qi =

In our system, the rf voltage on EOM2 is applied to a
crystal whose electrodes are approximately 5.0-rnm apart.
A rf amplitude of 67 V, which corresponds to an
electric-field strength of 13.4 kV/m, gave a Rabi frequen-

cy of 5.0 MHz. With Eq. (11), this leads to a dipole mo-
ment of 0.037 Debye [27].

For a resonant frequency of =4 MHz the dipole mo-
ment of 0.037 Debye yields an Einstein A coefficient
=1.4X10 ' s ' and a lifetime of 7X10 s for the
upper level [28]. Consequently spontaneous decay would
not be expected any more than it would be in rf spectros-
copy of atoms and molecules. What is important, howev-

er, is the Einstein 8-coefficient of =8X10 cm J ' s
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which allows the classical or rf atom to be driven by a
resonant or near-resonant field.

As a typical atomic or molecular dipole moment is
eao=2. 5 Debye [27] (where e is the elementary charge
and ao is the Bohr radius of an atom), this means that if
the same electric field as inside EOM2 were applied to an
atom, the Rabi frequency would be approximately 70
times larger. The fact that the frequency of the driving
field in our classical system can be chosen low, enabled us
to make b/co of order unity. This is large enough to see
the high-field effects, and corresponds roughly to the
same b/to value involved in the rf spectroscopy experi-
ments [8]. In our system an even larger value of b/ta
could be made, with the same field, by using a lower
driving-field frequency or, as can be seen from Eq. (10),
by use of either a modulator with a lower half-wave volt-
age or a resonator with a larger free spectral range, i.e.,
by using a smaller resonator. The limiting factor here is
the finesse of the resonator, which must be large enough
to be able to resolve the Rabi splitting.

It should be noted that our system does also allow an
interpretation in terms of magnetic dipole resonance
(spin- —, system}. This point of view, and its connection
with the electric dipole resonance interpretation is dis-
cussed in Ref. [15].

VI. CONCLUSION

We have demonstrated multiphoton transitions togeth-
er with their Bloch-Siegert shifts in a classical macro-
scopic optical system. One electro-optic modulator was
used to create two polarization eigenmodes with a certain
frequency difference, and another to couple them with an
oscillating field. The measured Rabi frequencies and
transition frequencies for the one- and three-photon reso-
nances agreed reasonably well with the theory for quan-
tum two-level systems. It should be stressed that no free
parameters were available to fit the theory to the experi-
ment other than a minor "correction" to the field
strength. The experiment clearly demonstrates that these
effects can be observed in a purely classical system.
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