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The effect of squeezing on the degenerate parametric oscillator is studied. It is shown that when the

ordinary-vacuum reservoir is replaced by a squeezed-vacuum reservoir, the maximum 50% limit of the

second-order squeezing inside the cavity can be crossed. It is also shown that the mean number of pho-

tons increases considerably. An exact steady-state solution for the Fokker-Planck equation for the field

mode is also presented. The photon distribution for the intracavity field and the higher-order variances

have been obtained by using the solution of this equation.

PACS number(s): 42.50.Dv, 42.65.Ky, 42.60.Da

I. INTRODUCTION

The subject of squeezing of an electromagnetic field re-
ceives attention because a field in a squeezed quantum
state has fluctuations reduced below the quantum limit in
one quadrature component at the expense of enhanced
fluctuations in the canonically conjugate quadrature [1].
A quadrature of the electromagnetic field with reduced
fluctuations has attractive applications in optical com-
rnunication, photondetection techniques, gravitational-
wave detection, noise-free amplification, etc.

Because of the inherent two-photon nature of interac-
tion, the parametric processes have been studied as a
source of squeezed radiation. Takahashi [2] first pointed
out that a degenerate parametric ainplifier (DPA) de-
creases quantum fluctuations in one quadrature phase of
the signal at the expense of increased fluctuations in the
conjugate quadrature. With the introduction of squeezed
states, several authors have considered this system [3—5].
In a DPA, 100% squeezing of a single-mode field can be
achieved. Further, the output field is in an ideal squeezed
state.

The y' ' nonlinearity is typically quite weak, and so in
experiments the nonlinear crystal is placed inside an opti-
cal cavity [6] to increase the interaction time. In this os-
cillator configuration, the field experiences losses through
one or two partially reflecting end mirrors. Milburn and
Walls [7] have shown that the best squeezing attainable in

the internal modes of the cavity is a reduction in fluctua-
tions by a factor of 2 at the oscillation threshold, which
was also confirmed by Lugiato and Strini [8]. It has been
shown by Yurke [9], however, that the output field from
a parametric oscillator is perfectly squeezed.

A limit of 50~o squeezing of the intracavity field in a
degenerate parametric oscillator (DPO) arises from the
leakage through the out-coupling mirror and the inevit-
able arnplification of the vacuum fluctuations in the cavi-
ty. Since a vacuum field has no definite phase, squeezing
of the cavity field is degraded. If, on the other hand, one
replaces the ordinary vacuum "environment, " one ex-

pects that the fluctuations entering the cavity would be
biased in the two quadratures, and for a particular phase
choice squeezing can be enhanced. Such a scheme has
also been proposed by Gea-Banacloche [10] in the con-

text of a single-mode laser. In this paper we show that by
using this arrangement, the limit of 50% squeezing of the
intracavity field can be surpassed. We also show that un-
der certain limits on the parametric gain-to-loss ratio and
on the squeeze parameter, the photon statistics of the
cavity field are identical to the ideal two-photon squeezed
vacuum.

The organization of the paper is as follows. In Sec. II
we have calculated the equations of motion for the first-
and second-order moments of the field from the density-
matrix equation of motion when the field modes are cou-
pled to the "squeezed vacuum" instead of the ordinary
vacuum. The time-dependent solutions of these moments
are then used to evaluate the time-dependent squeezing.
In Sec. III an exact steady-state solution of the Fokker-
Planck equation in the Q representation has been ob-
tained. In Sec. IV the photon distribution function for
the cavity field is obtained and its dependence on the
squeeze parameter and parametric gain-to-loss ratio is
discussed. In Sec. V the higher-order variances have
been calculated using the steady-state solution of the
Fokker-Planck equation. Finally Sec. VI contains a dis-
cussion of our results and conclusions.

II. DEGENERATE PARAMETRIC OSCILLATOR

In a degenerate parametric oscillator a strong pump
field of frequency 2' interacts with a nonlinear medium
inside a cavity and gives rise to a field of frequency co.

This process is described at exact resonance and in the
rotating-wave approximation by the Hamiltonian (in the
interaction picture)

H=i [ tcexap(iP) —a exp( —iP)] .

where a and a are the annihilation and creation opera-
tors for the signal field, tc is the coupling constant, and P
is the phase of the pump field. In the following we
choose /=0 for simplicity. We consider one end mirror
of the optical cavity to be partially transmitting, through
which, instead of the ordinary vacuum, a multimode
squeezed vacuum centered around the frequency co cou-
ples to the field inside the cavity. The equation of motion
for the density matrix is given by [11]
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p=a[Hp] —+cosh (r)(a ap —2apa +pa a) —+sinh (r)(aatp —2a pa+pagt)
2 2

+ e-"'sinh(r)cosh(r)(aap —2apa+paa)+Xe2'esinh(r)cosh(r)(atatp —2atpat+patat),
2 2

(2)

where y is the cavity relaxation rate, r is the squeeze parameter, and 8 is the reference phase for the squeezed field.
From Eq. (2) we calculate the equations of motion for the first- and the second-order moments of the field as

(3)

( a &
= —4a (a a &

—y ( a & +ye
' sinh( r )cosh(r }—2a .

(a a &
= —2x'(a &

—2a(a &
—y(a a &+ysinh (r) .

The time-dependent solutions of these equations are

(a &, =e y' [(a &()cosh(2)rt) —(a &()sinh(2a't)] .

(4a)

(4b)

[(a +at &],=[e y'[ —2(ata &osinh(4at)+((a &()+(a &())cosh(4at)

—y sinh(2r)cosh(4)rt)cos(28) —4ya. sinh(2r)sinh(4at)cos(28)+2y sinh (r)sinh(4)tt)

+8ytr sinh (r)cosh(4)rt)+4ytr cosh(4)rt)+ 16@' sinh(4xt) ]

+y sinh(2r)cos(28) —8ya sinh (r) —4yaI /(y —16m ) . (6a}

(a a &,
= Ie y'[(a a &Ocosh(4at) —

—,'((a &0+(a &0)sinh(4Kt) —y sinh (r)cosh(4at)

2—4yt(. sinh (r)sinh(4)rt)+ sinh(2r)sinh(4at)cos28
2

+2ya sinh(2r)cosh(4' t)cos(28) —2ya. sinh(4)rt) —8)r cosh(4at) ]

+y sinh (r)—2ya sinh(2r)cos(28)+8tr21/(y2 —16)r2) . (6b)

where (a &0 and (a a &0, etc. represent the initial mo-
ments of the field.

Defining the filed quadratures as

a, =
—,'(a +at), (7a)

a2= —.(a —a ),
2l

(7b)

the variances of these Hermitian amplitudes are

(ga ) =1((g & +(gt & +2(gtg& —(g+gt& )+',

(&a') = '(&at&, +&at'& —2&a—ta &,
—(a+at&')+-'

(8)

On substituting the values of (a &„(a &„(a &„(a
and ( a a &, in the above equation, we obtain the follow-
ing expressions for the time-dependent-quadrature vari-
ances:

(ga )2 ()I}a )2e
—Y(1 2s)t—

e
—y(1 2s)t—

4

X
cosh(2r) —sinh(2r)cos(28)

(1—2s)

(ba) ), =G, (ba) )0+bF)(1—G, ),
(Aa2 ), =G2(b a 2 )0+3F& (1—G2),

(12a)

(12b)

6 e
—y(1+2s) t

, —e 7 (13a)

where s =2)r/y is the ratio of the parametric gain to the
parametric loss and (ha) )0 and (ba2)0 represent the ini-

tial variances of the two quadratures. An analysis of Eqs.
(10) and (11) can be made by taking the "squeeze phase"
choice 8=m/2. The uncertainties in the output quadra-
ture phases then have the simple form

(ga )2 —(ga )2e
—y(1+2s)t

1

+ 1(1 —y(1+2s)t)
4

cosh(2r}+ sinh(2r)cos(28)
(1+2s)

(10)

6 e
—y(1 —2s)t

2
—e

are the gain factors for the two quadratures and

—2J'

(bF) ) =-,'
4 1+2s

(13b)

(14a)
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(bF2) =
—,
'

+2r

1 —2s
(14b)

3 0

2.4
represent the added noise in the two quadratures, respec-
tively. The plot in Fig. 1 shows (b,a, ) versus yt for
different values of the squeeze parameter r. As t ~ oo, G,
and G2 ~0, and at the pump threshold, i.e., s =0.5,

(ha ) =-'e

(ba2)2, ~ oo .

(isa)

(15b)
1.2

These equations, for r =0, obviously confirm the previ-
ous findings for the DPO, i.e., the maximum reduction in
fluctuations that may be achieved in an ideal DPO is a
factor of 2 for a device operated in the region of thresh-
old. For r )0, i.e., when the external field is in a
squeezed-vacuum state, squeezing is larger than 50%. It
is interesting to note that the factor e "appearing in Eq.
(15a) is the same factor by which the fluctuations in the
outside vacuum are squeezed. This squeezing is further
increased by a factor of —,

' coming from the parametric
process. That is, the total squeezing is simply the prod-
uct of the factor by which the outside vacuum is squeezed
and the factor —,

' by which an ordinary DPO squeezes the
field in the steady state. In the steady state, the mean
number of photons can be obtained from Eq. (6b) as

& ata &„=[sinh (r) —s sinh(2r)cos(28)

+2s ]/[1 —4s ] . (16)

0.25

0.20

0.1$

In Eq. (16) the first term represents the mean number of
photons in a squeezed vacuum and the third term gives
the mean number of photons in the DPO. The phase-
dependent contribution (second term) arises due to cou-
pling of the intracavity field due to the squeezed reser-
voir. Equation (16}therefore tells us that the mean pho-
ton number is not just the sum of the number of photons
in the DPO and the number of photons entering the cavi-

0.6

0.0

0.0
I

0.2 04
I

0.6

I

0.8

FIG. 2. n vs r for the DPO, s =0.25. (a) Coupled to a
squeezed-vacuum reservoir. (b) n in the reservoir. The baseline

(c) shows n in the absence of a squeezed reservoir.

III. FOKKER-PLANCK EQUATION
AND ITS EXACT STEADY-STATE SOLUTION

USING THE Q REPRESENTATION

In this section we derive the Fokker-Planck equation
using the Q representation instead of the commonly used
P representation. This disadvantage of using the P repre-
sentation is that it becomes non-positive-definite for the
nonclassical states like the number state or the squeezed
state. The Q representation can be used to evaluate the
expectation values of the antinormally ordered operators
which are essentail for the determination of quadrature
variances of the field.

The representation for the antinormal distribution
function in terms of the density operator is

ty from the squeezed reservoir. This point is further elu-
cidated in Fig. 2 in which the mean photon number is
plotted against the squeezed parameter r Cur. ve (a)
shows n from Eq. (16) while curve (b) shows n in the
reservoir. The baseline (c) indicates the mean number of
photons in the DPO with an ordinary vacuum reservoir.
In this setup, then, considerable amplification is achieved.

(ha f
0.10 Q(a, a*)=—&a~pea &,

1 (17}

0.05

0.00

0.0 0.6 1.2

I

2.4
I

3.0
&8(a,at)&= f6(a,a*)Q(a,a')d a, (18)

where ~a & is a coherent state.
The expectation value of any antinormally ordered

function 8(a,at) may be determined from Q(a, a*) from
the relation

FIG. 1. (Eal } vs yt for s =0.49, 8=m/2 and (a) r =0, (b)
r =0.1, (c) r =0.5, (d) r = 1.

We take expectation values of Eq. (2) with respect to the
coherent state and obtain the equation of motion
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(}Q t} t} 2
a'

a +2a' ++ a+ +cosh (r)
Ba 2 Ba 2

t}F
BX2

(1—2s)(C) +C2+s)x) —( I+2s)C3xz

C3 —(C) +C2+s)(C, —C2 —s)

a2+~e ' sinh(r)cosh(r) Q+c.c.
2 Ba

(19)
where

(25b)

(X =X1+lx2

Q =X1 EX2

It follows from Eqs. (20a) and (20b) that

t} t t}
l

t}a ' Bx, Bxz

(20a)

(20b)

(2la)

Here a can be expressed in terms of real and imaginary
parts,

C, =cosh (r),
C2 =sinh(r)cosh(r)cos(28),

C3 =sinh(r)cosh(r)sin(28) .

The solution of Eqs. (25a) and (25b) is given by

—ptx t
—p2x&+(p3+p4)xtx&

where

(26a}

(26b)

(26c}

(27)

and

t} t t}
+&

t}x (}x
(21b)

We denote the function Q(a, a') by F(x),x2), when
expressed in terms of real variables x1,x2. It follows
from Eq. (19) that F(x „x2 ) satisfies the following
Fokker-Planck equation [12]: 3

(4)

(1+2s)( C) —C2 —s)

(C, +C2+s)(C, —Cz —s) —C3

(1—2s)(C) +C2+s)

(C) +C2+s)(C) —C2 —s) —C3

(1 —2s)C3
(+)

(C, +Cz+s)(C) —C2 —s) —C3

(28a}

(28b)

(28c)

()F 2 (j 2 ()Ax;+ gB; F,
t}t ) (}xt ) t}x)

(22) subject to the condition that

(29)
where

A, =+(I+2s),

A z
=+( I —2s),

B))=~[cosh (r)+sinh(r)cosh(r)cos(28)+s],11 4

B22 =~[cosh (r) —sinh(r)cosh(r)cos(8) —s ],

B,2=BE) = cosh(r}sinh(r}sin(28} .
2

(23a)

(23b)

(23c)

(23d)

(23e}

Condition (29) is satisfied when (i) s =0 or (ii) 8=0,
m/2. In the following, therefore, we restrict our analysis
to the phase choice 8=0 or m/2. Under this condition,
C3 =0 and the solution for Q(a, a') is given by

(P)Pp} —(p)/4)(a+a ) +(p2/4)(a a)'—1/2

Q(a, a")= e (30)

Here we have determined N from the normalization con-
dition, i.e.,

+oo —Px —Px
(31)

dF A1B22x1 —A 2B12x2 F,
A 12B21

—B22B11
(24a)

BF
BX2

A 2B11x2—A 1B21x1 F.
B21B12 B11B22

(24b)

On substituting the values of A; and B;J from Eqs.
(23a)—(23e), we get

gF (1+2s)(C,—Cz —s)x, —(1—2s)C3x2

c', —(c,+c,+s)(c, —c,—s)

(25a)

In the steady state, BF/t3t =0, and Eq. (22) reduces to the
following pair of differential equations:

We now have an exact steady-state solution of the
Fokker-Planck equation for the field mode. In the ab-
sence of nonlinear coupling, i.e., for )t=0, Eq. (30)
reduces to the complex Q representation for an ideal
squeezed-vacuum state,

~~a,a, r~=n ( } [ —~a( —()/2)(a +a )tanh(r)]e
7T

(32)

Apparently, the Q representation for a DPO coupled to a
squeezed vacuum through cavity relaxation is quite simi-
lar in form to Eq. (32) for an ideal squeezed vacuum. It
should be noted, however, that the cavity field is not in an
ideal squeezed state. This result agrees with an earlier re-
sult obtained by Collet and Gardiner [13] in which they
predicted a perfect squeezed vacuum by shining the light
from a DPO into an empty cavity. In the following sec-
tions we will use this solution to evaluate the photon
statistics and higher-order squeezing.
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IV. PROBABILITY DISTRIBUTION FUNCTION

The photon distribution function p(n) for the field can
be determined by using the relation

g2n
p(n)= [Q(a,a*)e' ]Ba"Bu*" a=a =0

(34)

p(n)=&n(pF~n & . (33)

In terms of the Q representation, this distribution func-
tion can be written

which can be determined from the knowledge of Q(a, a*)
an d from the properties of coherent states [14]. On sub-

4stituting the value of Q (a,a*) from Eq. (30) into Eq. (3 ),
we get the following form for p (n ):

~'

[—(P&/4)(a+a*) +(P2/4)(a —a ) +(a) ]

n!N (i~"(itr*"
(n)= 1

a=a =0
(35)

After carrying out the nth-order differentiation of the
above function and applying the condition a=a*=0, we
get the photon probability distribution function

(p p )//2

p(n)= (P, —1)"
2"n!

'k
n n 1 —

P~
X g k H2(„k/(0}H2k(0)k 2n

1 —4sp(n)=
1 $2

S

2(1+s) n

n n
X g k Hp( k/(0)

k 0 2"

XH2/, (0)( —1)
k

(37)

(36)
This is the general result for the photon distribution

function for a DPO coupled to a squeezed-vacuum field
through an end mirror. In the following we discuss two
limiting cases for this distribution.

(i) For r =0, Eq. (36) reduces to
n

r ))—
—,
' ln(1 —2s), (38)

all odd ordered terms in Eq. (36) are zero and the photon
distribution function reduces to that for a squeezed vacu-
um:

(- I)"[I/2tanh(r)]'"
(0) f

n! cosh(r) " (39)

0 foroddn .

In this limit, therefore, the photon distribution function
of the field is identical to that for an ideal two-photon
squeezed state. In Fig. 3, p(n) is plotted versus n for
different values of the squeeze parameter r. Clearly, as
condition (38} is approached, oscillations begin to appear
in p (n} and the distribution function looks similar to that
for an ideal two-photon squeezed state [15].

p(n)= .

l

This gives the photon distribution for a DPO, which, to
our knowledge, has not been reported earlier. The effect
of cavity damping is now apparent from Eq. (37), wherein
we see that there is a finite probability for an odd number
of photons.

(ii) In the limit when

0.25 V. HIGHER-ORDER STEADY-STATE SQUEEZING

P(n)

0.20

015

0.10

In this section we obtain steady-state expressions for
the higher-order variances —in particular, fourth and
sixth order —of the field. As defined by Hong and Man-
del [16], a field is squeezed to Nth order if its Nth-order,
normally ordered variance &:(b,a; }:& is less than the
coherent-state value.

A. Fourth-order squeezing

0.05
The state of the field is squeezed to the fourth order if

it satisfies

0.00

10 15 20 25 where

(40}

FIG. 3. p(n) vs n for s =0.49, 8=~/2 and (a) r =0, {b)
r =0.5, (c) r =1.

&:(&a, )4: &
=

—,', [&a'&+ & a t'&+6& at'a'&

+4& a ta' &+4& a t'a
& ] . (41)
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The steady-state expectation values of the operators in
Eq. (41) can be calculated from the expression of
Q (a, a*). Thus, by using Eq. (17), we get

00

- 0.4

2
C)+Cq —s —1

1+2s
(42) -0.8

B. Sixth-order squeezing
- f.2

The state of the field is squeezed to the sixth order if it
satisfies -1.6

q —=[(:(&;)':)+—", (:(&;)'.)+ —",, (:(&;) )] 0,
(43)

—2.0-
0.0 0.1

I

0.2

2 K/7
0.3 0.4

I

0.5

where in a similar manner as before we can calculate the
expectation value of the sixth-order moment, which is

FIG. 4. qz vs s for s =0.49, 8=~/2 and (a) r =0, (b) r =0.1,
(c) r =0.5.

(:(ha, ):)= [8(C, +Cz)+24C, Cz(C, +Cz) —24s (C, +Ct )
—24s(C, +C2)

—12(C ) +C t )—24C t C2 —24s (s + 1)—6s —1 ]/16( 1+2s) ~ (44)

In Fig. 4 we have plotted the higher-order variances
versus the parametric gain-to-loss ratio s for the phase
choice 8= m /2 and for different values of the squeeze pa-
rameter r. Since higher-order squeezing depends upon
the value of the squeeze parameter r, which is also evi-
dent from these figures, showing that fractional increase
in the value of r increases the initial fourth- and higher-
order squeezing. The DPO enhances the initial higher-
order squeezing as we increase the value of the paramet-
ric gain relative to the loss. We get maximum steady-
state squeezing near the pump threshold.

VI. CONCLUSION

I

the steady state and at the threshold is simply the prod-
uct of the factor —,

' exp( —2r) by which the outside vacu-
um is squeezed and a factor of —,

' arising from the ordi-
nary degenerate parametric oscillator [see Eq. (15a)].
Further, the cavity field is amplified and the mean photon
number increases considerably. We have also calculated
the photon distribution function p(n) and have studied
its dependence on the squeezing parameter r and on the
parametric gain-to-loss ratio s. We have also studied
higher-order squeezing in the DPO and have shown that
higher-order squeezing depends upon the squeeze param-
eter r.

We have analyzed the effect of a squeezed-vacuum
reservoir on a degenerate parametric oscillator. It is
shown that the maximum 50% limit of second-order
steady-state squeezing inside a cavity can be surpassed
when operating in the region of the oscillation threshold.
It is shown that the total squeezing inside the cavity in
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