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Suppression of Suorescence in a lossless cavity
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In this paper we theoretically investigate the behavior of a two-level atom in a lossless cavity driven by
an external field. Using classical electrodynamics to describe the external field while quantizing the cavi-

ty field, we find that the cavity field is excited to a coherent state whose amplitude is equal to that of the
external field, but shifted 180' in phase. This results in the disappearance of the atomic resonance
fluorescence (i.e., the atom stops interacting with the fields). When we quantize the external field the
effect persists. A fully quantized dressed-state approach provides some helpful insight and a nice analo-

gy to another problem in which the resonance fluorescence vanishes.

PACS number(s): 42.50.—p

I. INTRODUCTION

The radiative properties of atoms inside a cavity have
been the subject of intense investigation in recent years
under the broad heading of cavity quantum electro-
dynamics (QED) [1]. Most well known are the effects of
cavity enhanced and inhibited spontaneous emission in
the perturbative regime [1—5], and the nonperturbative
(strong-coupling) effect of "vacuum" Rabi splitting
[6—9]. Due to experimental constraints, investigations in
the nonperturbative regime have concentrated on many
atoms in the cavity with an eye towards decreasing that
number ultimately to one.

A major improvement in the capabilities of cavity
QED experiments with single atoms is expected once the
technologies of atomic cooling [10] and trapping [11]are
incorporated into the experiments. Then some of the
more exotic effects uncovered in theoretical work on cavi-
ty QED will be accessible in the laboratory. One model
system that has received a lot of theoretical attention
comprises a single atom coupled strongly to a single
quantized cavity mode, driven by an external coherent
field, and including cavity damping and spontaneous
emission. This forms an archetypical model for a quan-
tized dissipative dynamical system: a damped harmonic
oscillator coupled to a damped two-level atom. By allow-
ing for a flux of energy through the atom-cavity system,
this system can evolve to a nonequilibrium steady state
that exhibits many interesting and novel features. Such a
system has been shown to produce nonclassical light; the
cavity transmission shows photon antibunching, sub-
Poissonian photon counting statistics, and squeezing [12];
also, the photon coincidence rate shows a novel nonclas-
sical dependence on delay [13], and the incoherent por-
tion of the optical spectra can exhibit squeezing-induced
line width narrowing and squeezing-induced spectral
holes [14]. The atom-cavity system also exhibits a
single-atom absorptive optical bistability [15]and a bimo-

dality in phase for strong driving fields [16].
In this paper we explore a modified version of the

above model in an idealized limit. %e drive the atom
directly with an external coherent field and examine the
situation of perfectly reflecting cavity mirrors (lossless
cavity). A noteworthy feature arises in steady state.
Even though a coherent field exists within the cavity in
steady state, maintained by the perfectly reflecting mir-
rors, the atom decouples from this field, and the fluores-
cence turns off. For highly reflecting, but not perfect,
mirrors the fluorescence is strongly suppressed. It is
known that the fluorescence from an atom inside a cavity
is suppressed due to cavity enhancement of the spontane-
ous emission rate when the cavity linewidth is large com-
pared with the atomic linewidth and the dipole coupling
constant [5]. We treat the opposite limit in which the
cavity linewidth is much less than the atomic linewidth
and dipole coupling constant. The special significance of
this case is that for perfect mirrors an analytical treat-
ment can be given that includes quantum fluctuations-
the cavity field is precisely a coherent state.

In Sec. II we analyze the lossless cavity using a quan-
tized cavity field while treating the external driving field
classically. In the following sections we quantize both
fields and explore the problem from two related
viewpoints. In Sec. III we generalize the results for a
classical driving Geld to those for a quantized driving field
and show how the two pictures are related. By examin-
ing the eigenstates of the two-mode problem we demon-
strate the existence of trapping states —states that popu-
lation can flow in to, but not out of. In a steady state, the
population is distributed across these states coherently
and the atom ceases to fluoresce. In Sec. IV we examine
the problem from a dressed-atom point of view. In Sec.
V we look at the same dressed-atom picture using a pair
of composite field modes, one which interacts with the
atom and one which decouples from it. In the final sec-
tion we summarize the findings of the paper.
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II. QUANTIZED CAVITY MODE
WITH CLASSICAL DRIVING FIELD

We are interested in the interaction of a two-level atom
with two radiation modes, one a mode of an idealized
lossless cavity and the other a coherent external mode
that drives the atom (see Fig. 1). The cavity mode and
external field are tuned to resonance with the atomic
transition frequency coo. The atom is damped at the rate

y by spontaneous emission to modes other than the
privileged cavity mode. For an optical cavity in which
the field mode subtends a small solid angle, y is approxi-
mately equal to the Einstein A coefficient [9]. If the cavi-
ty mode subtends a large solid angle, y is significantly
smaller than the Einstein A coefficient [5]. In this section
we quantize the cavity mode, with photon creation and
annihilation operators I and 8, and we treat the
coherent external field classically with amplitude 8.

The interaction between the atom and the cavity mode
is described by the Jaynes-Cummings Hamiltonian (with
A'= 1) [17],

8=—,'tooo, +coo& a+ig, d(8 o' —Io+), (1)

where 0, is the atomic inversion operator,

g, =(2mcoo/V, }' is a cavity volume factor with V, the
volume of the cavity, d = (2~era l ) s is the projection of
the transition dipole matrix element onto the polarization
state of the cavity field, and o+ (o ) is the atomic rais-

ing (lowering) operator. The atomic operators obey the
commutation relations [o+,o ]=2o, and [o„o+]
=ko +. The Jaynes-Cummings model (JCM) with atom-
ic dissipation and a coherent driving field is described by
the master equation

where p is the reduced density operator for the atom-
cavity system and y is the spontaneous emission rate.
Arbitrary phases for the driving field and the dipole cou-
pling constant may be absorbed into the definition of the
operators. Thus, there is no loss of generality in using
real quantities 4 and d.

We can remove the explicit time dependences in Eq. (2)

by transforming to the interaction picture. If we let

p=Q pM, (3)

' and ho=coo( —,'&, +& 0), then we findwhere Q=e

dp =g, d [8 to —I&+,p]+ Cd(& —o ~,p)
dt

+ (2o p8+ —o+c7 p
—po+o ) .

2
(4)

a = —Ka+gV, (Sa)

v —(ga+ 8),
2

(Sb}

Equation (4) describes an idealized lossless optical cavity.
To include the effects of a leaky output mirror, a cavity-
damping term v(2a pd —d &p —pd &) must be added to
Eq. (4). Here, 2a is the cavity decay rate. Before explor-
ing the solution to Eq. (4), it is worthwhile to briefly in-

vestigate the origin of the suppression of fluorescence in a
damped cavity in the weak-field limit. In this way we

may see what the restrictions are for finite K and see the
connection to the enhanced spontaneous emission work
of Heinzen et al. [5]. We proceed by writing down the
approximate Maxwell-Bloch equations derived from Eq.
(4) with the addition of the cavity-damping term, for
weak driving fields. These semiclassical equations are

p = i [8,p]—+Cd(& e ' —o+e ',p)

+ (2o p8+ —o +& p
—p8+o ),

2

orescenc

(2)

where a= (a ) is the mean intracavity field and v = ( o )
is the atomic polarization. For weak fields, we assume
the atomic population remains mostly in the ground state
so that the inversion is (o, ) = —1. Note that the total
field seen by the atom, ga+8 in Eq. (Sb), is the sum of
the external driving field plus the intracavity field.

In free space there is no intracavity field and Eq. (Sb)
yields in steady state

Cavity Field
Two-Level

Atom The intensity of the fluorescence is proportional to
~ vf ~

= (28/y ) . In the cavity, however, the steady-state
solutions are

c V

External
Field

y/2

2

)+ 2g
Kf

(7b)

FIG. 1. The externally driven two-level atom-in-a-cavity sys-

tem under consideration in this paper.

The intensity of the fluorescence from the atom is

modified by a factor of (1+2g /ay) with respect to
the free-space result. The condition for a significant
reduction in the fluorescent intensity in a cavity com-

pared to the free-space case is
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~, «1.
2g

Note that this can be achieved by having either ~ very
small or y very small.

Let us explore the two limiting cases, a~O and y~O.
For z~O, the master equation is given by Eq. (4}. The
semiclassical equations yield v, =0 and a, = —8/g. We
show below that for a ~0, ( ~

1 & & 1~ )( I

—8/g & &
—@/g I ) is

the steady-state solution valid for all 8, not just for weak
driving fields ( ~1 & is the unexcited state of the atom, from
which there is no fluorescence; thus, for ~~0 the intensi-

ty of the fluorescence is zero for all strengths of the driv-
ing field). If a is not exactly zero, but is much smaller
than all the other rates, the condition for observing
strong suppression of fiuorescence is given by Eq. (8). In
this case, the fluorescence will not be suppressed for arbi-
trarily strong driving fields. Eventually the atom will sat-
urate ( lv, l ~0) and the fiuorescent intensity will be the
same as in free space (dominated by incoherent scatter-
ing). But for the atom in a cavity, much stronger driving
fields will be required to reach saturation. Note that the
suppression factor ay/2g is also the suppression factor
of the intracavity field on the lower branch of absorptive
optical bistability. This reduction of the intracavity field
is due to reradiation from the atom (absorption) and
suppresses the fluorescence.

For y~O, Eqs. (5) yield v, = —a8/g %0 and the field

approaches a, = —8/g. The polarization does not go to
zero as it does for ~~0, but it can still be arbitrarily
small compared to the free-space case; lv, ~ /~ vf ~

=ay/2g
goes to zero as y goes to zero. When ~&&g))y with
~y/2g ((1,we have the suppression of fluorescence not-
ed by Heinzen et ol. [5] in the cavity-enhanced spontane-
ous emission regime. In this bad-cavity limit, the master
equation does not yield a simple steady-state solution val-
id for all driving fields. In contrast, in the ~—+0 regime
we now show that a simple exact analytical solution is ob-
tainable and valid for all values of the driving field.

We are interested in the steady-state solution to Eq. (4).
An easy way to obtain this is to first eliminate the classi-
cal driving field by transforming p as follows (see also
Ref. [18]):

P=& ( —@/g, )p2)( —8/g, ), (9)

where 2)(a)=e' s ' is the displacement operator
[&(~)IO&=la&, where ~0& is the vacuum stateand ~a& is
a coherent state]. Using

& ( —@/g, )M)( —8/g, )=a —4'/g, , (10)

Eq. (4) becomes

PJC =Egad(8 & &o + ) (12)

has the atom-cavity dressed eigenstates for W & 1 quan-
ta"

IN(+)&= -(lN, l&+~lN 1,2&),
1

(13a)

with the ground state

lg&=lO, », (13b)

where ~N, i & (i =1,2) denotes the free-field-free-atom
product state lN & li &. The total Jaynes-Cummings
Hamiltonian [Eq. (1)] has eigenvalues

E~(g) =NCi)okg+d ~N (14)

This is easily verified by setting dP/dt =0 in Eq. (11)and
substituting Eq. (15}into the right-hand side to show that
it is explicitly zero. If we invert the transformation (9),
we obtain

p =S(—8/g, )l0, 1&&0,1g)t( —8/g, }

=
~

—a/g. , 1 & &
—e/g. , 1

~
. (16)

Thus, we find that in the presence of an external coherent
field 8 driving the atom, the steady-state configuration of
the atom in a lossless cavity is a coherent state for the in-
tracavity field of amplitude —8/g„with the atom in its
lower state ~1 &. The consequence of this configuration is
that the atom will no longer fluoresce.

To summarize, from an initial vacuum state for the
cavity mode and the driven atom in the lower state ~1 &, a

Noainteraethut

Atom and FieM Mode

DT8$8ed

Atom-PleM

(N- l)
12&

l2&

(N)

I l& -- N

which give rise to the familiar dressed-state ladder of
coupled atom-cavity states (see Fig. 2). Equation (11) de-
scribes spontaneous transitions between these states.
Once population is distributed among these states, the
spontaneous transitions proceed downward until all the
population eventually ends up in the ground state lg &.

Thus,

(15)

=g,d[8 to do+,P]—
dt

+ (2o Po+ o+8 P Po+d —), —
I 2&

I2&
(2)

l2&

which is the master equation for the JCM including spon-
taneous emission but in the absence of an external driving
fiel.

The Jaynes-Cummings interaction Hamiltonian

I l& Q

cyaantum
nsnnhgg

FIG. 2. Energy-level pictures for a two-level atom interacting
with a single quantized field.
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coherent field of amplitude —8/g, builds up in the cavi-
ty. When this amplitude is reached, the field
configuration is maintained by the perfectly reflecting
cavity mirrors (~=0). In steady state, the atom, which
radiated the cavity field, returns to its lower state

~
1) and

remains there even in the presence of the nonzero cavity
field and external driving field (which now cancel at the
site of the atom). Alternatively, one could say that in the
presence of the external driving field 6, the field mode
that couples to the atom is & '=2)( —8/g, )&$ ( —8/g, )
=0+8/g, ; this can be seen directly by combining the
first two terms in Eq. (4). The bare ground state
~g ),= ~0„1) (where the subscript labels the mode a) is
replaced by the ground state ~g), =~0, , 1)=2)( —@/
g, )~0„1). Preparing the system initially in the bare
ground state ~g ), distributes population coherently over
the new Jaynes-Cummings dressed states
IN(+)), =&(—8/g, )IN(+)), . This population then
makes its way to the ground state ~g ), via fiuorescence.
Once this state is reached, the system remains there; the
atom does not fluoresce and an intracavity coherent state
of amplitude —8/g, is present. Note that if the cavity
itself is driven by an external field or if energy is allowed
to leak out of the cavity, this result does not hold (the in-

tracavity field is not then in a coherent state). Significant
suppression of the fluorescence occurs under a variety of
other conditions, however what distinguishes the present
situation is that the suppression is completely to zero and
the field driving the atom is exactly a coherent state.

of this model is to shed a different light onto our previous
model involving a classical driving field.

In the interaction picture the master equation for the
two-mode, on-resonance, Jaynes-Cummings model with
atomic dissipation is an obvious extension of Eq. (4):

=g, d [a t& —a &+,p]+gbd [b & b&+—,P]Bt

+ (2& p&+ &+& p p&+& )
2

(17)

Instead of a displacement, as in Eq. (9), we combine the
modes a and b via a rotation

8=A cosO —B sinO,

b = A sinO+B cosO,

(18a)

(18b)

with

this can be shown by using [19]
2

e "Ye "=Y+0[x, k ]+ [x,[x,Y]]+ . (20a)

gbtanO=
ga

The new composite modes 3 and B are independent,
[ A, S )=0= [ A, S], and satisfy the commutation rela-
tions [A, A ]=1=[B,B ]. The unitary transformation
that realizes the rotation (18) is given by

Q(g) 8(A B —B A) (19)

III. QUANTIZED CAVITY MODE
AND A QUANTIZED DRIVING FIELD

and noting that

[A B BA, A]= B— — (20b)
To simplify the analysis in Sec. II, we did not quantize

the driving field. In this section we will quantize both
fields to show that the results of Sec. II still hold even in
the fully quantized model. In order to compare with the
treatment in Sec. II, we quantize the driving field by plac-
ing a cavity of infinite length in the direction of the driv-
ing field around the atom. We characterize one mode of
this cavity with the photon creation and annihilation
operators b and b, with [b,b ]= 1. The cavity volume
factor for this mode is gb=(2mcoo/Vb)' . Thus, as the
cavity becomes infinite in extent, gb~o. Now, if the
state of the b mode is a coherent state ~P)b with ~P~ =n,
then ghee will remain constant in the simultaneous liinit
V&~ ~ and n~~. Therefore, in the limit of an infinite

cavity, we need the classical limit n ~ ao in order for the
field to interact with the atom. The Jaynes-Cummings in-
teraction Hamiltonian 8ic=igbdb(b & b&+) is then—

replaced by the semiclassical interaction Hamiltonian

Pc =i@'d@(& —o+), where we takeg&P~A in the limit

Vb ~ and n —+~.
We will now surround the atom with two cavities of

different, finite lengths in order to define two quantized
modes, an a mode and a b mode. Again we want to treat
the idealized case of no cavity damping for either mode.
Strictly speaking, this poses a problem as to just how the
b mode (the driving mode) is excited in order to start the
interaction, but we will ignore this technicality. The goal

and

[A B BA,B]=A—.

Thus, we have

a =SAS H

(20c)

(21a)

and

(21b)

Under this unitary transformation, Eq. (17) becomes

P =gd[A ~& —A&+,p]dt

+—(2& p&+ —&+o p
—p&+& ),

2
(22)

where we have defined g=(g, +gb)'~ . This equation is
exactly analogous to Eq. (11) except that now it describes
a two-quantized-mode problem. We see that the compos-
ite B mode does not interact with the atom; only the corn-
posite A mode does.

It is interesting to note that the transformation Eq. (19)
is commonly used to combine two modes on a lossless
beam splitter [20]. Thus the atom, in a sense, acts like a
beam splitter, combining the two modes a and b into the
composite modes 3 and B. This "beam splitter" in-
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ln„mb)=%In„, nz) . (23)

(Note: The subscripts a, b and A, B do not label the pho-
ton numbers n and m, but rather they label the kets and
identify the mode they represent. ) Because of Eq. (18),
we find that, expressed in terms of the a, b modes, Eq. (19)
also takes the form

v@8)—ee(b b —b b) (24)

The choice of representation used is determined by
whether 5(8) acts on an (a, b) or ( A-, B)-mode state.

Formally we can write Eq. (22) as

teracts with the A mode, via the usual Jaynes-Cummings
interaction, and ignores the B mode.

By Eqs. (20), the two-mode Fock state I n„mb )
= ln ), lm )b in the (a, b)-mode representation is relat-
ed to the two-mode Fock state In„,me ) —= In )„ lm )e
in the ( A, B)-mode representation via the unitary trans-
formation S' as

our initial state

p(o) = Io„p, 1 ) &O„p, ll, (28)

and the atom initially in its lower state
I
1 ). With respect

to the ( A, B) modes, we have

p(o) =elo„,p, , 1 & & o„,p„ 1 le' .

For this initial state we can actually calculate p(0) quite
easily using the displacement operator. Writing

IP ) tt =2)q(P) Io)e and Vl2)ti(P) =M)tt (P)$ Q and not-
ing that Qlo„,oe, l) =Io„,oe, 1) (since the vacuum is
rotationally invariant) and

6(8)2™)(P)6t(8)= @""~ (30a)

i.e., a vacuum for the a mode, the b mode in a coherent
state

IP&b=e ""y P Im), &m!

(25)

where in general, the Louivillian super operator X might
contain operators of both modes A and B, as well as
atomic o. operators. Here the subscripts Acr denote the
fact that the B mode does not interact with the atom.
Formally, the solution of Eq. (25) is

we find [using Eqs. (18b) and (20b)]

Q(8)2)e(P)Q (8)=2)„(Psin8)2)e(Pcos8) .

Thus,

p(0)= ps~»ca 1&&ps~»ca ll

where

(30b)

(31a)

p(t)=e " p(0), (26) P, =P sin8 (31b)

which simply states that only the A mode and the atom
cause p(0) to evolve, while the B-mode parts maintain
their initial values. If p(0) was a product of density ma-
trices, i.e., p(0) =p„(0)IRIpe(0), where pe(0)
=Tr„,„,Tr„, [p(0)] and p„(0)=Tr~,d, [p(0) ], then
p(t) would remain a product of density matrices,
p(t) =p„(t)I3Ipti(0) for all times. Here

tp„(t)=e " p„(0) is the solution to Eq. (25) with p(t)
replaced by p„(t). Expressed with respect to the origi-
nal modes, p(t) will not, in general, factorize as such
when p(0) is given as a product of (a, b)-mode and atomic
density matrices [p(0) =p, (0)gb(0)p (0)]. This is be-
cause the Louivillian operator X,b expressed in terms of
the (a, b) modes will not preserve the factorization due to
the mixing of the modes by the rotation operator Vl. We
do, however, know something about the steady state
when expressed in terms of the new composite modes.
Since Eq. (22) describes a Jaynes-Cummings interaction
between the A mode and the atom, all atom —A-mode
terms in the density matrix must decay to the dressed
ground state lg„)= I0~, 1). Since the B mode is nonin-
teracting, we have pe(t) =Trz, d,Tr„, [p(t)]=pe(0).
Thus the steady state will be, with respect to the ( A, B)
modes.

and

P, =Pcos8 . (31c)

From the analogy with lossless beam splitters, this is the
well-known result that mixing a vacuum mode and a
coherent state on a beam splitter yields a product of ro-
tated coherent states (in the new modes) upon output
[21]. In this example, p(0)=p„(0)pe(0)p (0), where

p~(0)=lp, &~~&p, l pe(0)=lp, &tig&p, l, and p (0)
=

I
1 ) & 1 I. As noted above Eq. (27), the density matrix

p(t) will evolve as p(t)=pz (t)ptt(0), where

p„(0)=p„(0) p (0), and at steady state will settle into

Pss= log p tt 1&&og p,tt 1
I

(32)

We can express this in terms of the (a, b) modes by using
the inverse of Eq. (23) with 0 now written in its (a, b)
form. We then have [analogous to Eq. (29)]

p» ——e'(8) Io. ,p„,I & & o.,p„, lie(8) .

Again, we write lo„p,b, 1 ) =2)b(p, )lo„ob, 1 ) and [not-
ing that Vl (8)=Q( —8)] we proceed exactly as we did
following Eq. (29), but now with ( A, B)~(a,b ), 8~ —8,
and p~p, to yield

Pss=lg~ &&g~ lpB(0)
= lo„, 1 & & o„,I

I
ep, (o) . (27)

pss= I~.,Pb, 1 & &~.,pb, ll,
with

(34a)

Let us choose a particular example. To mimic the sin-
gle quantized mode description of Sec. II, we choose as

a = —P,sin8= —P cos8 sin8

and

(34b)
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P=P,cos8=Pcos 8, (34c)

—+exp — (a t —a) =2)( —8/g. ) . (36)
ga

Further, Ipcos8&b~lp&i, and does not change
throughout the calculation. It represents the undepleted
pump mode which we now can treat as classical and drop
from Ifss&. Thus

loess& &( —@/g. )lo. , l &=I( —@/g. )., 1& (37a)

and

Ipss & I( —8/g, )., I & {( —e/g. )., I I,
which is Eq. (16).

(37b)

IV. DRESSED-ATOM APPROACH
IN THE (a, b)-MODE REPRESENTATION

In this section we will use a dressed-atom formalism
[22] with both field modes quantized to develop some in-

sight into the results of the preceding section. The
dressed states of the atom-field system represented in Fig.
1 are the eigenstates of the Hamiltonian (with fi= 1)

analogous to Eqs. (31). Thus, beginning with the initial
state of the system as If(0) &

= lo„pb, 1 &, the system set-
tles down in steady state to Igss&=la„pb, 1 &, with a
coherent state of magnitude a in the a mode, a coherent
state of magnitude p in the b inode, and with the atom in
its lower state ll &.

That this is the generalization of Eq. (16) can be seen as
follows. As discussed earlier, as g„~o and P~ ~, we re-
quire gi,p~8 in order that a field in an infinite cavity in-

teracts with the atom. Formally, we realize this "thermo-
dynamic" limit by replacing gb b in

=igi, d(b & ho+—) by 8, to yield gsq"'"'" ~Pi,
=i 0d (8 —8+ ). Using pss =

I ass & {ass I Eq (33) allows
us to write Igss& as

loess&=+'(8)lo. ,pcos8, 1&=n( —8)lq'„& . (35)

Here, I1(ss&=lo„l& lpcos8&b is the analog of lg & in

Eq. (13c), the ground state of the single quantized mode
(the a-mode) problem. But now lpcos8&b represents a
slightly depleted pump, i.e., a coherent state of amplitude
p cos8, reduced from its initial value of p. If we note that
as gb —+0, 8=tan8=gb/g„and if we perform the ther-
modynamic limit by formally replacing gbb with 8, we

may write

6 t(8) =6(—8}=e

and the bare-field states as ln &, and Im &b (Fock states
with n, m equal to the number of photons in mode a, b),
then we may take as our basis states the free-atom —free-
field product states ln &, lm &bali &

—= ln„mb, i &. If the
two field modes are nearly resonant with the

I
1 & to I 2 &

atomic transition, then the states
I n, N n—, 1 &,

n =0, 1,2, . . . , N and ln, N n ——1,2&, n =0, 1,
2, . . . , N —1, where N =n +m, are all nearly degenerate
and are strongly mixed by the atom-field interaction. The
rotating-wave approximation (RWA) ignores any mixing
of states that difFer in the total photon number n+m.
This is equivalent to ignoring non-energy-conserving
transitions such as absorbing an a or b photon when mak-
ing a transition from I2& to ll&, or emitting an a or b
photon when making a transition from

I
1 & to I2&. Since

the dressing of the atom by the two radiation modes
mixes the nearly degenerate states, the dressed states of
the atom-field system are linear combinations of the free-
atom-free-field product states, in the form

N

IN(p)&= g C„(n,N n, l)ln—,N —n, l&
n=0

N —1

+ g C„(n,N n —1,2)ln—,N —n —1,2&,

(39)

a lk, i & =&k+ ilk+1, i &, a=a, b,
alk, i & =&K Ik —l, i &

(4Oa)

(40b}

with p=0, +1,+2, . . . , +N.
In Fig. 2 we represent the transition from the bare-

atom picture to the dressed-atom picture via energy-level
diagrams for a two-level atom interacting with a single
radiation mode. In Fig. 3 we show the equivalent picture
representing a two-level atom interacting with two radia-
tion modes, as described in this paper. For the bare-atom
picture, the atomic states appear for every combination
of photon numbers n and m that add up to the total
quantum number 0, 1,2, . . . , N. There are 0 quanta of
energy when the atom is in the ground state with no pho-
tons in either field. There is 1 quantum of energy when
the atom is in the excited state with no photons present,
or in the ground state with 1 photon in either field, and so
forth up the quantum ladder to N quanta of energy in the
system. The figure shows schematically the 2N+1 ener-

gy levels that will be mixed together by the interaction.
In the dressed-atom picture we see the splitting of the de-
generacies into 2N + I dressed levels.

From the action of the various operators on the prod-
uct states,

8—2coo&z +co~& 8+cdbb b

+ig, d(a t& —a&+ )+igbd(b & b&+ ) (38)—

8+I».= (}

0

(40c}

(40d)

[the Hamiltonian used in Eq. (17)].
If we label the bare-atom eigenstates as li & (i =1,2)

we find the matrix representation of the interaction part
of the Hamiltonian in the RWA to be
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NoninteracUmf

Atom and (a.b) Modes

Dressed
Atom-la. b) Modes

(NO)

l2&

(N-1 0)
l2& ~ ~ ~

l2& I 2&

(n N-n) (n-1 N-n+1)

I 1& I 2& I 1&

(n-1 N-n)

I 1&

l2&

(0 N-1)

(ON)

l2&

I 1& --N -'

+N

+1
-1

-N

(2o)
l2&

12&

(00)

l2&

12&

l2&

(o2)

l2&

E

I 1& Q
+2

+1
-1 g

+1
-1

FIG. 3. Energy-level pictures
for a two-level atom interacting
with two quantized fields.

(n m)

0I

qmmtum
number

0

l QaN

1 QaN

iQb)

0

[H;„,]=

0

bN —n

(N n)cob, —
—iQ,„

i Q,*„

b, + (N n)cob, —

lQN —n+1

i Qa*)

b + (N 1kob, t n—b~—
I, QbN

(41a)

where where [I] is the identity matrix and the matrix represen-
tation of the eigenvectors is

6=
COO COa (41b)

ba b a (41c)

and the Rabi frequencies are

n „—=vng d, a=a, b . (41d)

The eigenvalues A,N„associated with each eigenstate
~N(p)) are obtained by solving Schrodinger s time-
independent equation in the form

C„(N,0, 1)
C„(N 1,0,2)—
C„(n,N n, 1)—

(

C„(n —1,N n+ 1,1)—
C„(1,N 1,1)—
C„(O,N —1,2)

C„(O,N, 1)

(43)

([H;„,]—A~„[I])iN(p)) =0, (42)
Substituting Eqs. (41a) and (43) into Eq. (42) results in the
eigenvalue equation

—Z„„( . )—~n.„~'[(cob.—A,„„)( . . )—(In.~ )~'[(2~b. —~~„)( . . ) —[In.~ 21'((3~b. —~N„)( '

—
I ~n„I~[(Nabob, —

A,~„)]]. . )]])]=0, (44)

where the ( . ) refers to contributions that we need not decipher now. In a recent study of a three-level atom in which
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two transitions were pumped by a single field [23—25], the dressed eigenstate corresponding to the zero eigenvalue was
of very special significance. In the present problem we have two fields interacting with a single transition. There is a
striking similarity between these two problems, and perhaps the A,&&=0 eigenstate will have a special distinction in the
present problem also. Let us investigate that possibility. For A.~~=0, Eq. (44) becomes

I'(( . . ) —[IQ I'[2( ) —(IQ I' f&(. )
—. . —(IQ I'[N]) . . &)]$}=0 (45}

A~„—C„(N,O, 1)+iQ,"~C„(N 1,0—, 2)=0,
—i Q,~C„(N,O, 1 )+(6 A~„)C„—(N 1,0,2)—

(46a)

Obviously, if cob =co, we will have an identity and k&„=0
will be an eigenvalue. Therefore, we take the frequencies
of the two radiation modes to be equal. Then Eq. (42)
gives

—3
4COp~

3c
(48)

where co„„=E&„—E& &„and the transition dipole mo-
ment between dressed states ~N(p}) and ~N l(v)—) is

D„„=(N —1(v) ~d~N(i. ) )

i Qb—,C„(N 1, 1,—1)=0,
i Qq, —C„(N 1,0, 2—) —A ~„C„(N—1, 1, 1)

(46b)
=d g C" (n, N n ——1, 1)C„(n,N n ——1,2) .

n=1

(49)

+iQ,*~,C„(N 2, 1—,2) =0, (46c) Now, recalling Eq. (47) we see that

y()„=0 (50)

i Qb~— ,C„(1,N —2, 2) —A~„C„(1,N 1,1)—
+i Q'( „C(O,N —1,2) =0, (46f)

i Q„C—„(1,N 1, 1)+(5—A—~„)C„(O,N —1,2)

i Qb~C„(0—,N 1, 1)=0,—

i Qb~C„(—O, N —1,2)—A~„C„(O,N, 1)=0 .

Setting A,z„=l,z&=0 in Eqs. (46) we find

C~(n, m, 2) =0

(46g)

(46h)

(47)

for all n, m, and the Co(n, m, 1) are nonzero.
By definition, the dressed states are the stationary

states of the Hamiltonian [Eq. (38)] describing the atom,
the two radiation modes, and their interaction. There-
fore, if nothing else is allowed to interact with this sys-
tem, these states will never change in time. If we now in-
troduce the vacuum field modes which have been ignored
until now, the dressed atom will spontaneously radiate.
This resonance fluorescence will be described by a cas-
cade of population down the quantum ladder of dressed-
state groups. The nature of the dipole coupling is such as
to allow transitions only from N to N —1, with no spon-
taneous transitions within each subgroup. The transition
rates between neighboring dressed groups are just the
Einstein A coei5cients calculated by Fermi's golden rule
to be

i Qbz—„C„(n,N n —1,2—) —A&„C„(n,N n)—
+i Q,'„C„(n—1,N —n, 2)=0, (46d)

i Q,„C„—(n, N n, 1—)+(b, A&„)C„(n——1,N n, 2)—

iQb~—„+,C (n —1,N n+1, 1)—=0, (46e)

for all N and v, while y„z is nonzero. What this means is
that if the frequencies of our two field modes are equal,
over time all population will decay into the set of dressed
states labeled by ~N(0)), and will not be able to leave.
Once this happens, there will be no further atomic dy-
namics, i.e., the fluorescence will cease.

In the three-level atom study [23—25] a similar result
was discovered. In that case, the dressed-state dipole mo-
ment went to zero because of a cancellation of two terms.
There was a quantum interference between the two tran-
sitions. Intuitively what happened was the single pump
mode forced the two atomic transitions to emit 180' out
of phase with each other so that they destructively inter-
fered. Hence, there was no resonance fluorescence. 1n
the present problem, each individual term in the dipole
sum is zero. This occurs because the cavity mode is
forced to develop 180' out of phase with the pumping
mode. When these two fields impinge on the atom they
destructively interfere before interacting with the atom.
In the dressed-atom picture the population becomes
trapped in a manifold of nonradiating states.

V. DRESSED-ATOM APPROACH
IN THE ( A, B )-MODE REPRESENTATION

For completeness, we may now discuss the dressed-
state formalism as it applies to the ( A, B)-mode descrip-
tion of Sec. III. From the transformation defined by Eq.
(18) and using co, =cab =a&z, the Hamiltonian (38) in the
( A, B) mode becomes

Q=coq(A tA+B tB+ —,'o, )+gd(A o —Ao+) . (51)

As in Sec. III, we have a Jaynes-Cummings interaction
between the atom and the A mode, and a noninteracting
B mode. Analogous to Eq. (39), we may write the dressed
states in terms of Jaynes-Cummings states for the
atom —A-mode interaction and Fock states for the B
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mode as

1N(IM)&=1N(kn)&=1n(k}&„1N —n &

where from Eqs. (13) we have

In(+) &~ = - (In &~ 11 &+iln —1&~ I2&)
2

(52)

(53)

the atom —A-mode dressed states (1n (+ ) & „~ 1g & „=10„,1 & ), with the 8 mode unchanging
(1m &a~1m &s). The net result is that the ground state
of the atom —A-mode, 8-mode system is a linear com-
bination over m of the 10„,ms, 1 & states. From Eq. (52)
we may write these "Xth-level ground states" as

with n = 1,2, . . . , X, and a ground state of
Io( —)&g=lg&g=lo&„ll&=—10„,1& [26]. The pth sub-
level of the ¹hmultiplet is detuned from %~0 by
+g ~n

In Fig. 4 we graphically represent these atom—
(A, B}-mode dressed states. In Fig. 4(a} we depict the
"noninteracting" and "dressed" atom —A-mode states
and the 8-mode states separately. Note that the
atom —A-mode pictures are identical to the atom-field
picture in Fig. 2, while the noninteracting 8 mode is
merely a Fock energy ladder. In Fig. 4(b) we combine
these two pictures to obtain the same dressed-state pic-
ture as we did in Fig. 3 using the (a, b) representation.
This new interpretation lends insight into the origin of
the central, unshifted states labeled 1N(p, =o)&, into
which we found that everything flows. In every instance,
these states are the ground state of a Jaynes-Cummings
ladder for a particular value of 1m &s. That is, when
spontaneous emission is allowed to proceed normally, the
atom —A-mode interaction results in a cascade down each
of the Jaynes-Cummings ladders to the ground state of

IN(0)&=lg&„INs&=IO„, Ns, l& . (54)

Transforming these states to the physical (a, b)-mode
representation using the inverse of Eq. (23) we write

10„,N„1&= e '(8) 10.,N, , 1& (ssa)

=6'(8) 10.,0, , 1&
&N!

't N
='k t(8) 6(8)10.,0, , 1&,

&N!

(ssb)

(ssc)

from which we may write

(b jocose —8 sine)
&N! a~ b~ (57}

Since [8,b ]=0 we can use the binomial theorem to write

where we have used the fact that the vacuum is rotation-
ally invariant to write 10„0i„1 & =Q(8)10„0s,1 &. Now,
from Eqs. (18a), (18b), and (21b) we find

Q (8)b 'Q(8)=b cose it ts—ine, (56)

Atom and A Mode

Dressed

Atom-A Mode

Noninteracting
aad

Dressed

B Mode

l2&

12&

(2)

l2&

11) ———(

(n)

Noainteractinsf
Atom and (A.B) Modes

Dressed
Atom-(A. B) Modes

rr
r r 0 0

r 0
r r r

r r 0 r
P—12& —12& l2&r

(o) (1) . (2)
r—11& —l2& I 1& = l2& I l&~- ——————

m=2 r m=2
(o)~ (1)—I 1& l2& I 1&m=1 r m=1~ (o)

I 1&m=0
(n)

FIG. 4. Energy-level pictures for a two-level atom interacting with two quantized fields represented by the ( A, B) modes described
in the paper. In (a) the atom —A-mode system is shown separately from the B-mode system. In (b) the two systems are shown togeth-
er to obtain the picture given in Fig. 3.
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N

~N(0) &
= —g ( —& sin8)"(b cos8)

v'N' k=o
1/2

N!
k!(N k)) I g b (Sga)

k!(N —k )!
( —sin8)"(cos8) "~k„(N—k)„,1& . (58b)

A simple calculation shows that with the initial state
given as ~g(0) &

= ~O„Pb, 1 & (as in Sec. III), the initial
population is distributed over these ~N(0) & states as

1&&(0)IN(0)&I'=e '~.;.s~~

N!

Po = g ) & y(0) ~N(0) & ~'=e
N

(60)

A probability of 1 —Po is then distributed among all of
the other states. As the system evolves toward steady
state,

~ f(0) & ~ ~Pss &
= ~0„,(P cos8)~, 1 & [see Eq. (32)].

The steady-state distribution is then given by [using Eq.
(54) for ~N(0) &]

N(0)&(2 ~IP (61)

so that the population is spread coherently across these
"Nth-level ground states" with a mean excitation level of
N= Pcos8i .

VI. SUMMARY AND CONCLUSIONS

When a classical field interacts with an atom in free
space (ordinary resonance fiuorescence), the ensuing tran-
sitions occur between pairs of neighboring doublets in the
Jaynes-Cummings ladder of eigenstates. In a steady
state, as long as there is a driving field, the free-space
atom wi11 fluoresce.

We have shown that when the atom is placed inside a
lossless cavity, the effects are very different. The total
field that acts at the site of the atom is now the sum of
the intracavity field plus the driving field. For a coherent
driving field, the atom-cavity system adjusts itself so that
in steady state the two fields are both coherent and 180
out of phase; they therefore cancel at the site of the atom
and the atom ceases to fluoresce.

To gain further insight into why the fields destructively
interfere in steady state at the atom, we quantized the
driving field and looked at the problem from a dressed-
state point of view. In addition to providing insight into
the turning off of the resonance fluorescence, this step
also proved that the result is valid in both classical and

quantum-mechanical pictures. In order to connect the

two pictures, we regained the classical field result by tak-

ing the limit of a large number of photons in the driving
field with a vanishing coupling of the atom to this field.

(59)

such that the initial probability for the distribution across
these levels is

In the "physical" (a, b)-mode picture, we see that the
eigenstates of the combined atom-field system, the
dressed states, form a 2N+1 multiplet for N excitations
in the system [Fig. 3(b)]. The central eigenstate, of ener-

gy Neo, is a linear combination of states which have the
atom in its ground state, i.e., no excitation in the atom.
Population flows into these central eigenstates and be-
comes trapped there. In steady state the population is
distributed across these central eigenstates to form a
coherent state of amplitude —8/g within the cavity.
Since the atom is in the ground state, it cannot radiate
and so essentially decouples from the fields.

In this two-quantized-mode dressed-state picture, we
also considered the problem from the point of view of
composite modes A and B, formed by linear combina-
tions of the "physical" modes a and b. From this vantage
point the origin of the central eigenstates became ap-
parent. The two-mode problem broke up quite naturally
into an A mode that interacts with the atom through the
usual Jaynes-Cummings interaction, and a B mode that is
decoupled from both the A mode and the atom (as long
as the fields are on resonance). Thus for each B-mode
photon in the system, determined from the initial field
distribution, there is a standard Jaynes-Cummings ladder
of doublets. For the Nth B-mode photon, the Jaynes-
Cummings ground state of the A-mode —atom system
forms the central eigenstate of the (a, b) description [see
Fig. 4(b)], i.e., a kind of "Nth-level ground state. " The
initial state ~O„Pb, —

&, the atom-cavity subsystem in its
"bare vacuum" with the pump in a coherent state, is dis-

tributed across all of the (A,B) eigenstates. Again, a
population flows into the "Nth-level ground states" and
becomes trapped, leading to the eventual decoupling of
the atom from the fields.

If we had chosen the driving field to be in some con-
tinuous distribution (P) of coherent states, then p(0)
could have been represented by an integral over P(P)
times the right-hand side of Eq. (28). In this case, the
complete suppression with a =0 and the partial suppres-
sion with ~%0 of the resonance fluorescence described in
this paper would still hold exactly, however the steady-
state cavity field would have become an integral over
P(P) times the right-hand side of Eq. {34a). If we allow

the driving field to have a stochastically varying phase,
then the results presented above would hold when the
time constants for the atom —driving-field interaction
(1/y and 1/g& or 1/@d) are each much less than the

time constant associated with the stochastic phase.
If there are nodes within the cavity and the atom is

placed at one of these nodes, it will not couple to the cav-

ity (g, ~0). Since we have assumed a nonzero cavity-

coupling constant throughout this paper, the solution

4/g, is not appropriate here. For zero coupling con-
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stant, we must go back to the original equations, prior to
any division by g, . In this case we will, of course, get the
free-space result [see Eq. (6)].

The suppression of fluorescence from an atom in a cav-
ity is known in the context of absorptive optical bistabili-
ty and cavity-enhanced spontaneous emission (y, g « tc).
We have described the cavity-induced suppression of
fluorescence in the limit y, g »~~0, where the suppres-

sion holds for arbitrary strengths of the driving field. If
the driving field is taken to be classical or a coherent
state, the cavity field is analytically found to be a
coherent state whose amplitude is equal to that of the
driving field, but shifted 180' in phase. The effect
presented here is another interesting example of the
difference between the radiative properties of an atom in
free space and an atom in a cavity.
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