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Negative binomial states of the field-operator representation and production
by state reduction in optical processes
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Properties of the radiation fields in negative binomial states are investigated. The density matrix of
the field is related to the density matrix p, of the chaotic field via a'p, a ~'. Various quasiprobability dis-
tributions and the thermofield representation for negative binomial states of the field are derived. The
production of negative binomial distribution in a number of nonlinear processes is demonstrated.

PACS number(s): 42.50.Ar, 42.50.Md, 42.50.Dv

I. INTRODUCTION is equal to

In classical probsbility theory, some of the discrete dis-
tributions that are commonly used are Poisson,
geometric, binomial, and negative binomial. In quantum
optics, some of these discrete distributions have played a
very important role as far as the statistics of the radiation
fields is concerned. For example, fields in coherent state
(thermal state} are known [1] to lead to Poisson
(geometric or Bose-Einstein} distribution for the number
of photons. Binomial distribution was also introduced
and has the interesting property in limiting cases: it cor-
responds to a field in either a Fock state or in a coherent
state [2,3]. Negative binomial distribution for the photon
fields has also been studied [4]. This has the attractive
feature that in limiting cases it corresponds to fields in
coherent and thermal states. Another discrete distribu-
tion, namely, logarithmic distribution [5] for photon
numbers has been investigated with regard to the non-
classical character of the radiation fields. The logarith-
mic distribution is a special case of the negative binomial
distribution with the term n =0 removed [6].

The negative binomial distribution (nbd) is defined by
[7]

1Q= ——1 (1.5)

1V

p (n) = „P"(1-P)""; n =0, 1,2, . . . , N (1.6)

has the properties

&n)=NP, &n ) —&n) =NP(1 —P),
(1.7)

Recently the states of the field with distributions (1.1)
and (1.6) have played an important role [2—5] in quan-
tum optical problems. We can define the density matrix
of the field as

p=g p.b(n)~n ) & n
~ (1.8)

Note that Q signifies deviations from the Poisson distri-
bution and is always positive since p lies between zero and
one. Thus the fluctuations are super-Poissonian. In con-
trast the binomial distribution defined by

P b(")

where

n+s
Ps+1( 1 P}n

J

where ~n ) represents the Fock state of the field. We can
also define a more general state by including ofF-diagonal
elements as follows:

p=g [p b(n}p b(m)]' e " ~n)&m~, 4„„=0,(19)
n, m

s ~0, 0&P&1, n=0, 1,2, . . . , 0o . (1.2)

& n )=(1+s), & n') —
& n )'=

The parameter Q defined by

&n') —&n)'
&n)

(1.3)

(1.4}

Note that the case s = —1 corresponds to the trivial dis-
tribution 5„oand hence will not be considered. The dis-
tribution (1.1) has mean and variance given by

where 4„is the phase associated with the oS'-diagonal
elements.

A number of papers have been devoted to the states
like (1.8) and (1.9) and to the interaction of fields in such
states with matter [3,4]. It is obviously of interest to find
out how states like (1.8) and (1.9) can be produced in prac
tice.

We have found a very instructive operator representa-
tion of the negative binomial distribution. This represen-
tation enables one to discuss how such states can be pro-
duced by the process of state reduction which we discuss
in Sec. III. We also discuss in Sec. IV other methods of
producing negative binomial distribution using nonde-
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generate parametric amplifiers. In Sec. V we discuss a
new class of density matrices for the radiation fields.

00

p= g —P'+'(1 —P)"a'ln+s & & n +s la '
sl

II. OPERATOR REPRESENTATION
AND THE QUASIPROBABILITY DISTRIBUTION
FOR THE NEGATIVE BINOMIAL DISTRIBUTION

s(1 It) s aa

=p'+' " y (1—p)"+'ln +s & & n +s la '
s! n=0

=P'+' ', a' g(1—P)"ln &&nla ',+) (1—P)
s! n=s

We start from Eqs. (1.1) and (1.8)

(2.1)

=P'+' a' g (1 P—)"ln)&nlat'(1—R)
S. n=0

(1—
) ', t, 1

s! s!n,' (2.2)

Noting that aln &=&n ln —1);&n la =Vn &n —ll, we
can rewrite (2.1) as where

TABLE I. Characteristics of commonly used photon number distributions and their quasiprobability distributions.

Sl.
No. Distribution Density matrix p p(n) Mean Variance
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Bose-Einstein
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00
1

p, = y p(1 —p)"I. &&. l

n=0
(2.3)

In order to obtain the Wigner function for negative bi-
nomial states we use the relation [11]between the Wigner
function 4(a, a') and the P function

Here p, represents the chaotic state of the field with
mean number given by ( 1 lP —1)=n, W. e thus find the
very interesting relation [Eq. (2.2)] between the negative
binomial and thermal state of the field. The moments of
the photon number operator are given by

Rs(1 )
s

(ati'ai') = Tr[p, (a } +'(a) +'],
s!

On substituting (2.7) in (2.13) we get

2lal'n,

n(2)'(n, +—,
')'+' „=0 n, +2

(n +s)!
n!n!s!

(2.14)

4(a, a*}=—fP(ao, ao)exp( —2la —aol }d ao . (2.13)
2

(p +s)!ni'

s! (2.4} which can be expressed in terms of the degenerate hyper-
geometric function [12],Fi

The quasiprobabilities associated with the negative bi-
nornial distribution can be obtained from the representa-
tion (2.2). For example, the P function associated with p
is found as follows —we start with the P representation
for the density matrix p, for the chaotic field [1,8]

C&(a,a') =
—2lal

iFi s+1;1;
~(2)'(n +-')'+' n, +—,

'

(2.15)

lal /n

p, =f la)&aid a e
1Tn

and hence

(2.5)
a ~ a (a +1) y
b 1! b(b+1) 2!

a(a+1)(a+2) y
b (b +1)(b +2) 3!

(2.16)

a'p, a '= f al ' e 'la)(a d a .2s 2

Kn
(2.6)

P(a)= 1 lal ' —lal'/n,
e

~(n, )'+' s! (2.7)

Note that (2.7) implies that the distribution of the intensi-

ty I which is proportional to lal is the gamma distribu-
tion I'e /f'(s +1). The Q function defined by [9]

Therefore the P function for negative binomial states of
the field is

These quasiprobabilities are useful in the study of
amplification and attenuation of a field in the negative bi-
nomial state. In Table I we compare important proper-
ties of different photon number distributions (Poisson,
Bose-Einstein, binomial, and negative binomial). We also
present different quasiprobabilities such as the P func-
tion, Q function, and the Wigner function associated with
the corresponding states of the field.

III. PRODUCTION OF NEGATIVE BINOMIAL
STATES BY STATE REDUCTION

Q(a)=&alpla&,

can be obtained by noting that

ala)=ala), alla)=e '
l e'i ~l la)a

Calculations show that

(2.8}

(2.9)

We next consider how negative binomial states can be
produced in optical processes. We will show the utility of
the state reduction methods. Consider, for example, the
process of m-photon absorption from a thermal beam of
photons. The m-photon absorption can be described by
the effective Harniltonian

Q(a)= e lal elal e
1 z (j '

z —lal /(n +&)

n.(n, + 1)(n, )'s! Ba'Ba"

(2.10}

The derivatives in (2.10) can be expressed in terms of
Laguerre polynoniials [10]

2
e rl~l —

( y) m!e
—rl~l L, (ylal2)m!,

Q~EPlg~ 4 PP1

(2.11}

and hence

H, fr=A(ga S +H. c. ), (3.1)

where g is the m-photon matrix element. S is the opera-
tor which accounts for the excitation of the atom with
the absorption of m photons. To lowest order in the cou-
pling constant, the wave function of the system at time t
rs

lg(r) & = ling &Ig &
—i(g«S'+H. c. )l@g &lg &, (3.2)

where if+ ) ( lg ) ) is the initial state of the field (atom).
Suppose at time t the atom is measured to be in the excit-
ed state le ) =S lg ), then the state of the field to order
g t is reduced to

Q( )= 1

vr(n, +1)' n, +1

(2.12)

pfi id a lqii &&OUI
™ (3.3}

This is apart from a normalization constant. Thus if the
initial state of the radiation field is a thermal state p„
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then (3.3) goes over to

(3.4)

+—,'(a a b—b ) . Then in terms of the Fock states

~n, m ) of a two-mode radiation field the parameter s be-
comes equal to (m —n) and (4.2) can be written as

Thus the negative binomial state of the field can be gen-
erated by state reduction [13,14] in the process of m

photon absorption from a thermal beam
Alternatively one can consider the following micro-

maserlike [15] situation —consider a cavity at a ftnite, but
low temperature. The initial state of the field is a thermal
state. Consider now the passage of a beam of well-

separated two-level atoms in ground state through the
cavity such that at a giuen time only one atom is in the
cavity, i.e., the transit time through the cavity must be
small compared to the time separation between atoms.
The interaction is given by (3.1) with m =1 and the evo-
lution for short times is given by (3.2) with ~1(/a ) (fa ~

to
be replaced by the density matrix p, for a thermal field.
Assume that the atom spends short enough time (r„,„„,)

so that the perturbative result (3.2) is applicable with
m =1. Suppose that the exiting atom is found to be in
the excited state, then by the process of state reduction
the state of the field is reduced to (3.4) with m = 1. By re-
peating this process with m successive atoms, one can
reduce the state of the field to (2.2) with s =m. The
above two methods are based on the assumption that the
atoms spend only a short time in the interaction region so
that g~„,„„,((1.

IV. PRODUCTION OF NEGATIVE BINOMIAL STATES
USING PARAMETRIC AMPLIFICATION

We next show that the negative binomial states of the
field can be produced in the process of parametric
amplification by suitably choosing initial conditions. To
see this we consider SU(1,1) coherent states. Perelemov
[16] has considered in detail the coherent states associat-
ed with the group SU(1,1) defined by the generators
K+,EC3 with commutation relations

[K,K+ ] =2K2, [K2,K+ ]=K+, [K2,K ]=—K

(4.1)

The SU(1,1) coherent states are defined by
1/2

~g)
—(1 ~g~

)( + )/2

I (n +s+1}
I (n +1)I (s+1} (4.4)

which can also be expressed as

~g) =exp[y(a b ab—)] ~0,0), g=tanhy .(a )'
sI

(4.5)

Thus the states ~g) are essentially negative binomial
states of a two-mode radiation field in which the proba-
bility of finding n signal photons obeys the negative bino-
mial distribution. Note that i (atbt ab) i—s the interac-
tion Hamiltonian for parametric amplification and hence
a parametric amplifier can produce the state ~g) provided
the input to the arnpliftier is such that the difference be
tween the idler and signal photons is s.

We next consider an alternative scheme which also
uses the parametric interaction between two modes. This
follows from considerations based on the thermofield rep-
resentation [18—20] of the density matrix (2.2). In
thermo-field-dynamics [18,19] one associates with a den-
sity matrix p a state vector

~
g)' '(0 & a & 1 } in an extend-

ed Hilbert space. One doubles the degrees of freedom.
The association is such that the expectation values are
identical, i.e.,

(4.6)

Here A is the observable in the original Hilbert space. If
originally we consider the density matrix associated with
a single mode a of the field, then the state vector ~P) in-

volves two modes, say, a and b. Thus the chaotic field p,
with the average number of photons n, can be represent-
ed by the state vector

~t(t', ') = exp[8(a b —ab)]~0,0), (4.7)f2a)1/2

where ~0, 0) is the vacuum state of the two-mode field

and where
a

I. n+1 I. 2k tanh8=
n,

1+n,
fa (4.8)

igi2n
I (n +1)I (2k)

(4.3)

which is the same as the negative binomial distribution
(1.1) with s =2k —1. The SU(1,1) algebra can be realized
[17] in terms of the two modes a, b of the field, i.e.,
K+ =atbt, K =ab, K2= —,'(ata+btb+1), C= ——'

(4.2)

where
~
k, n +k ) are the eigenstates of K3 and the

Casimir operator C =K 3
—

—,
' (K+K +KA K+ ) with ei-

genvalues k+n and k(k —1), respectively. The allowed
values of k are —,', 1,—,', 2, . . . . The diagonal elements have
a distribution given by

~g' '&=g~n, n & .
n

(4.9)

Note that in (4.6} A will be a function of the operators a
and a . Thus it is clear from (4.6) that

(4.10)

The choice of a depends on the system under considera-
tion. For dissipative systems it appears that one has to
choose [19] a= l. Since the negative binomial state is

generated from the chaotic field [Eq. (2.2)] it is clear that
the state vector for a = 1 can be written in the form
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' t/2

~lit"')„bz= exp[8(a b a—b}]~0,0} .
s!n,'

(4.11)

It is interesting to note that the thermofield representa-
tion of the negative binomial state can be obtained from
Schumaker-Caves squeezed state [17]—we have to an-
nihilate s pairs of a and b photons out of the Schumaker-
Caves squeezed state. The representation (4.11) is to be
contrasted from the state (4.4). In the state (4.4), the
number of photons in the mode b is distributed according
to negative binomial distribution and the difFerence in the
number in the two modes is held fixed; whereas in the
representations (4.10) and (4.11) the two modes appear
symmetrically and the number ofpairs has a negatiue bi
nornial distribution.

V. A GENERAL CLASS
OF THE FIELD DENSITY MATRICES

P(a) =JV'~a( 'P(a),
2$

(5.2)

Q(a) =~e
$ e$ (5.3)

1 B
sp(a) =exp —— Q(a),

2 BaBa'

( ts s+1}
P

( a ta ) ( a ts + la s + I )
p

where

(5.4)

(5.5)

(5.6)

where JV is the normalization constant determined by
Trp=1, Trp=1. Note that p=p if p is chosen as a
coherent state, i.e., p=~a)(a~. The density matrix (1.9)
is also a special case of (5.1). The relations between the
quasiprobabilities associated with p and p can be ob-
tained. Calculations show that different quasiprobabili-
ties and some of the lower-order moments are related by

(G}=Tr(pG), (G} =Tr(pG) . (5.7)
We close this paper by considering a general class of

the states of the field. The relation (2.2) suggests that it
would be interesting to study a class of states generated
from a given density matrix p by

p =JVa'pa t', (5.1}

We also note that the state (5.1) can be obtained by state
reduction methods if we start initially with a field in the
state p.

A large number of the states of the field are represent-
ed by density matrices p of the form

p=[ ,'(e r —1)] —'r exp 2e —&cosh '(cothy) )u(a —ao) +)M'(at —ao )~+r(at —ao )(a —ao)+—

e e'=4(r 4(p~ )—,
where the parameters are related to the lower-order moments of a and a

(a ) =ac, (a ) = —2p'+ac, (a a ) =r 1+~ao~—

(5.8)

(5.9)

The state (5.8} includes as special cases coherent states, thermal states, superposition of thermal and coherent states,
two photon coherent states, and squeezed states for dissipative systems. The Q function for the state (5.8) is Gaussian
[21]

Q(a, a'}= )tt(a —ao} +p'(a' —ao) +so~a —
ao~

exp
sr(H —

4~)tt~ )'~ (ro —4lpl )
Vo=r+ —,

' (5.10)

and thus Q (a } associated with (5.1) is easily obtained. The Gaussian character of (5.10) is quite useful in the calculation
of mean values like (5.6) and (5.7).

In conclusion we have given a compact operator representation for the density matrix associated with the negative bi-
nomial distribution. We have also presented different methods which can produce negative binomial states of the field.
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