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Corpuscular theory of intensity noise with gain compression

J. Arnaud
Equipe de Microoptoelectronique de Montpellier, Universite de Montpellier II,

Universite Sciences et Techniques du Languedoc, Place E. Bataillon, 34095 Montpellier CEDEX2, France
(Received 1 July 1991;revised manuscript received 3 September 1991)

When light from a laser is fully absorbed by an ideal detector, the detected current exhibits a fluctua-
tion called here "photonic noise. " The spectral density of intensity noise, defined as the difference of the
photonic-noise spectral density and a term corresponding to the shot-noise level, is negative for sub-
Poissonian statistics. The usefulness of the relative-intensity-noise concept is that it is independent of
any linear attenuation. A simple circuit theory of intensity noise based only on energy conservation and
the Nyquist formula (zero-point fluctuation) leads to expressions of the spectral densities that agree with
quantum theory even for sub-Poissonian photon statistics. When the optical gain and loss are frequency
independent, the circuit theory reduces to a corpuscular theory that keeps track of the time rates of
change of electron and photon numbers treated as continuous variables. Consideration is given to laser
diodes in which the rate of electron-photon conversion depends nonlinearly on both the carrier and pho-
ton densities. The cross-spectral density between electrical-voltage and relative photonic fluctuations is
independent of internal or external optical losses. Standard rate equations are inaccurate in the case of
gain compression. Very general yet simple formulas for intensity noise are applied to room-temperature
GaAs laser diodes, using recently calculated optical parameters.

PACS number(s): 42.50.Lc, 42.55.Px, 42.50.Ar

I. INTRODUCTION

When light from a laser is applied to a detector, the
detector output current fluctuates. Let us assume that
light is fully collected and the detector is ideal, that is,
has a bandwidth much larger than the light spectral
linewidth, does not introduce any spurious noise, and
each photon generates one electron. The detector output
electronic-rate fluctuation is called here photonic noise
Unlike "intensity noise, " photonic noise accounts for the
corpuscular aspect of light, in the same as electronic
noise accounts for the corpuscular aspect of electricity.
The laser intensity-noise spectral density is defined as the
difference between the photonic (two-sided) spectral den-
sity and the average electron rate, corresponding to the
shot-noise level. This quantity is negative in the case of
sub-Poissonian photon statistics. This reflects the fact
that "intensity noise" is not itself a directly measurable
quantity. A radio-frequency spectrum analyzer following
the detector measures the photonic spectrum, which ex-
tends in principle to infinity but is limited from a practi-
cal standpoint by the detector response time to perhaps
100 GHz.

The present paper offers a semiclassical theory of pho-
tonic noise that describes the time evolution of the elec-
tron number N and photon number P treated as continu-
ous variables. The expression obtained for the fluctua-
tion of the outgoing photonic flow agrees with
Yamamoto's quantum theory within the quasilinear ap-
proximation (Chap. 11 of Ref. [1],and Ref. [2]). Our re-
sults agree also with the quantum theory of laser diodes
driven by a constant voltage given by Karlsson [3] that
takes gain compression into account. Previous papers
based on quantum theory (Haken [4], Lax [5], and

McCumber [6]) assumed injected current fluctuations at
the shot-noise level, but usually the injected current is
nonfluctuating.

Let us clarify what is understood by "gain compres-
sion. " The optical gain 9' in general depends on both the
optical-field strength (or equivalently on the number P of
photons in the cavity) and the population inversion or
carrier number N. The dependence of 9 on optical fre-
quency v or temperature T is not treated in this paper.
Lasers normally operate above threshold, in which case
saturation mechanisms ensure that the relative light-
intensity fluctuations are small. Saturation may occur ei-
ther because the optical gain decreases a result of an in-
crease of P, or else as a result of a decrease of N caused
by an increase of P through stimulated emission, with
some time delay involved. In laser-diode terminology,
the former saturation mechanism is called "gain
compression" [7—9]. While this effect can often be treat-
ed as a small correction in laser theory, this is the main
effect relevant to microwave oscillators. A tunnel diode,
for example, exhibits a negative slope in its current-
voltage characteristics near some appropriate bias. When
this diode is connected in parallel with a load conduc-
tance smaller in absolute value that the diode negative
conductance and a tuned circuit, oscillation occurs.
However, as the oscillation voltage grows, the current-
voltage characteristic is explored beyond its linear part
and the fundamental component of the oscillating current
decreases. This behavior can be described by a reduction
in the absolute value of the negative conductance, that is,
by "gain compression. " The controlling parameter here
is P, proportional to V' V if V denotes the complex volt-
age across the circuit and the star complex conjugation.
It is important that the two saturation e8'ects be dis-
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tinguished. One could think at first that the dependence
of 0 on X is equivalent to some dependence of 9' on P at
small frequencies since time delays then are unimportant.
This, however, as we shall see, is not the case, and there-
fore the Van der Pol equation is not an appropriate mod-
els for lasers, even at low frequencies.

A key observation made by Yamamoto (see Chap. 11
of Ref. [1]) is that photonic rates from ideal laser diodes
do not fluctuate at small frequencies if the injected
current is a constant. This is because for a counting time
interval that is long compared with the average recom-
bination time, almost every injected electron is converted
into a photon within that time interval, provided no elec-
tron is lost through spontaneous recombination and no
photon is lost by the process of optical absorption. It is
essential here to appreciate the difference existing be-
tween the fluctuations of the photon number P and those
of the outgoing photonic rate that we denote Q, a
difference that was overlooked in earlier quantum
theories. The classical photonic flow from the laser cavi-
ty is correlated with the shot-noise fluctuation. It is easy
to understand how this occurs: If the shot-noise rate
happens to be large at some time, the optical cavity
suffers an increased loss of photons and therefore the
photon number gets reduced after some period of time.
As a consequence, the classical emission from the laser
cavity, which is proportional to the number of photons in
the cavity, is reduced. This classical fluctuation may
therefore compensate for the assumed shot-noise excess
rate and, in some circumstances, cancel it out.

Previous semiclassical theories of laser noise culminat-
ed in a paper by Lax [10],where the reader will find refer-
ences to earlier works. (Lax considered frequency-
dependent conductances, but this more general situation
is not discussed here. Note that what physicists call
"vacuum fluctuations" is, in our work as in Lax's paper,
represented by the Nyquist's currents associated with ab-
sorbers of radiation. ) Lax first treated the case of pure
gain compression, and obtained a valid linewidth formula
(the distinction between internal and external fields is not
required for evaluating the linewidth). Next, he con-
sidered the situation applicable to laser diodes where the
controlling parameter is the population inversion or car-
rier number E. However, the noise source in the carrier
rate equation was not derived from the semiclassical
theory. This information is provided by Eq. (1) below.

A different kind of semiclassical theory appeared in
1982 mainly through the work of Henry (see Chap. 2 of
Ref. [1]) which we call "standard rate equations" (SRE)
because this is the most commonly used formalism. A
handy presentation of SRE, as well as references to early
quantum-theory derivations of the "Langevin forces, "
can be found in Agrawal and Dutta's book [7]. In his
semiclassical theory, Henry does not make use explicitly
of Nyquist's noise sources as Lax did, but he assumes that
spontaneous emission adds photons to the oscillating field
at a rate equal to the reciprocal of the lifetime of a pho-
ton in the laser cavity (for full population inversion).
Fluctuation of the injected current at the shot-noise level
is implicit. What the theory provides is the intensity-
noise spectral density. Thus, in order to obtain the

detected-current fluctuation, a shot-noise term must be
added. This theory can be modified to account for
injected-current fluctuations below the shot-noise level
simply by modifying the Langevin term in the carrier rate
equation. The price to pay for this generalization is that
the spectral density of the intensity noise may be nega-
tive. But formally these modified rate equations (MRE)
give the same predictions for measurable quantities as
quantum [2] or circuit [11—14] theories in the absence of
gain compression. When gain compression is taken into
account, however, the modified rate equations themselves
become invalid [15],and this is perhaps the major finding
of this paper. Of course, when only fluctuations well
above the shot-noise level are considered [16],the distinc-
tion between intensity noise and photonic noise is un-
necessary.

Semiclassical theories usually describe light on the
basis of a probability A, (t) that a photon be detected at
time t, the light intensity A, (t) being an independent ran-
dom function of time (doubly stochastic point process)
[17]. According to this representation, the photocurrent
noise cannot be below the shot-noise level. In the corpus-
cular theory presented in the present paper, the classical
photonic flow from the laser cavity is correlated with the
shot-noise fluctuation. This corpuscular theory does not
make use explicitly of the concept of the self-excited
point process [18] and remains very simple. It is akin to
Lax's seiniclassical theory [10], but gives explicitly the
carrier-equation noise source.

Classical variations will be denoted by 6, e.g. , AX, AP.
The variation 5R of the rate at which electron-hole pairs
are converted into photons, or, conversely, photons into
electrons, consists of the variation hR of some classical
function R (N, P) of N and P, plus a fluctuation ~(t) at
the shot-noise level, which is simply related to Nyquist
currents [19,20] as we show below. When electrons
diffuse from one electron reservoir to another with small
energy steps (kT «hv), ~(t) may be set equal to zero.
In contradistinction, spontaneous Auger recombination
involves fiuctuations ~(t) at twice the shot-noise level be-
cause two electrons at a time recombine with holes in
that process.

The key proposal [11]is that the rate R at which elec-
trons and holes recombine in an active element is given
by

R =Re[ V*(YV+c)]/h vo,

where h vo is the photon energy, Y the admittance of the
active element, V the complex voltage, V* its complex
conjugate, and c(t) the Nyquist current in the narrow-
band representation [21]. The term YV follows from
Ohm's law, and the c term from KirchhoFs law. Equa-
tion (1) thus is rather trivial in hindsight, since it simply
expresses the corpuscle conservation law, the photonic
rate being defined as the ratio of electromagnetic power
and photon energy. Equation (1) is applicable as well to
detectors, in which case Y is a constant. The fluctuation
~(t) mentioned earlier is the Re(V c)/hvo term of Eq.
(1). It can be considered a stationary process, provided
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the variations of
~

V~ are small. Equation (1) and the Ny-
quist formula form the full physical basis of the theory
presented in Refs. [11—15], Chap. 3 of [1],and here. Gain
compression, however, was not considered in the earlier
papers. It is the purpose of the present paper to present a
semiclassical theory of photonic noise that takes gain
compression into account. A number of observations
concerning previous semiclassical theories are presented
below.

Constant injected currents imply constant output pho-
tonic rates under ideal conditions, as we discussed earlier,
whether or not there is gain compression. In the case of
pure gain compression (that is, when 9' depends on P but
not on N), however, the carrier rate equation becomes ir-
relevant. Then, suppressing the injected-current fluctua-
tions apparently does not affect the output photonic rate
fluctuations, in contradiction with the principle stated
above which requires that photonic rate fluctuations
should vanish. This observation led some authors to sug-
gest that suppression of the injected-current fluctuations
could be ascribed to a modification of the Nyquist
currents associated with the active element. What is real-
ly happening is that in the limit presently considered, the
fluctuations of N blow up to the point where the quasilin-
ear approximation is no longer a valid one. In other
words, the assumptions that 9 does not depend on N and
that spontaneous emission is negligible are not consistent
with the quasilinear approximation. Note that the term
QzAN, where Qz denotes the partial derivative of 0 with
respect to N, and hN the deviation of N from its steady-
state value, vanishes also when EN=0, that is, when a
constant voltage is applied to the intrinsic laser diode [3].
But this is an entirely different situation: the injected
current now necessarily fluctuates.

Even though this paper is not concerned with phase
noise, a word on this subject is needed to explain why

many authors found it plausible that the case of pure gain
compression familiar to microwave engineers could be an
acceptable laser model. The laser linewidth depends pri-
marily on slow frequency fluctuations (phase diffusion).
When a controlling parameter such as P or N deviates
from its steady-state value, both the real and the imagi-
nary parts of the active element admittance Y deviate
from their steady-state values by, say, EG and hB, re-
spectively. The (real) frequency deviation 5v. is easily ob-
tained by specifying that both the real and the imaginary
parts of the total admittance vanishes [22]. To obtain the
laser linewidth, it is not necessary to solve the carrier rate
equation when the ratio 58/AG is independent of hN
and b,P, that is, in the three following cases (subscripts
denote partial derivatives): (a) Y~ =0 (laser diodes
without gain compression); (b) Yz =0 (microwave oscilla-
tors); and (c) Y~/Y~ is a real constant, e.g., b,8 =0. In
those cases, the Schawlow-Townes formula applicable to
the linear regime is to be multiplied by a term of the form
(I+a )/2. In general, however, the carrier rate equation
is required and the expression for the laser linewidth is
more complicated. This is why we view the agreement in
form of the above linewidth formulas as coincidental.

The paper is organized as follows. Section II presents
the circuit-theory principle in a simple form. Because en-

ergy conservation is enforced at every step, it is easily
verified that the detected current is equal to the injected
current at low frequency and large powers. It is further
shown that the independent Nyquist currents of the cir-
cuit theory are equivalent to independent shot-noise fluc-
tuations of corpuscles.

The corpuscular theory is used in Sec. III to evaluate
at zero frequency photonic noise, electrical voltage fluc-
tuations, and cross-spectral density. The expression for
the electrical-voltage —photonic-noise correlation seems to
agree with recent experimental results [23,24]. Gain
compression may lead to sub-Poissonian photonic noise
even when the injected current suffers from fluctuations
at the shot-noise level, a new result of practical interest.
Arbitrary baseband frequencies and injection conditions
are considered in Sec. IV. As many authors noted before,
even a small amount of gain compression importantly
damps the relaxation oscillations. Nonzero electrical ad-
mittances (e.g., the admittance of blocking layers) con-
tribute to the relaxation oscillation damping. The electri-
cal noise adds up to the noise due to spontaneous emis-
sion.

Optical losses, either internal to the laser diode or
external to it, are treated in Sec. V. According to the
usual optical engineering concept of "intensity noise, "
measurable fluctuations may be split into an intensity
noise that behaves as a classical modulation and a shot-
noise term. This semiclassical picture is shown to be a
valid one even for sub-Poissonian photoelectron statistics,
in which case a negative intensity-noise spectral density
can be formally introduced. Furthermore, the cross-
spectral density between electrical voltage and relative
photonic noise is found to be independent of the loss. It
is shown in Sec. VI that when the gain does not depend
explicitly on the optical field, every measurable quantity
can be obtained from the modified rate equations, but
MRE are inaccurate in the case of gain compression.

Formally, the corpuscular theory is easily generalized
to any number of electron and photon reservoirs connect-
ed in arbitrary manner. To ascertain whether the result-
ing formalism corresponds meaningfully to some physical
situation, one must go back to circuit theory. We consid-
er in Sec. VII active elements connected in parallel with a
single cavity and, in Sec. VIII, two optical cavities
resonating at sufficiently different optical frequencies.
The two-cavity system is stable in the presence of gain
compression only. An application is made in Sec. IX.
The conclusion is given in Sec. X.

II. CIRCUIT AND CORPUSCULAR THEORIES

The circuit theory [11,13] rests only on the formula
proposed by Nyquist [20] for the fluctuations associated
with a conductance G, and on the law of energy conserva-
tion. A concise presentation is given in this section. In
the case of frequency-independent gain and loss, the cir-
cuit theory can be written in the form of a rate equation
for corpuscles —electrons and photons being treated
equally.

As shown in Fig. 1, our laser oscillator model consists
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where P denotes the number of photons in the resonator,
defined as the electromagnetic energy divided by the pho-
ton energy, a large number. Equation (2b) says that the
rate of increase of the photon number P as a function of
time is equal to the rate at which photons enter the reso-
nator. The resonator losses are treated separately. The
first equality in Eq. (2b) is, of course, exact, but the ex-
pression of P is valid only near the resonant frequency.

Referring to the schematic in Fig. (lb) and using
Kirchhoff's law, I, =I —I&, we obtain the photonic rate
equation

(b)
dp
dt

=R —Q, R =Re(V*I), Q =Re(V'Iz) (3)

N

0

(c)

FIG. 1. (a) Laser-detector configuration showing the current
source driving the laser and the detected current. (b) Schematic
appropriate to the circuit theory. The laser active material is

represented by a negative conductance 6 and a Nyquist current
source c. The admittance iB,(v) represents the laser optical
cavity. The detector is represented by a positive conductance

Gq and a Nyquist current source e&. (c) Schematic applicable to
the corpuscular theory. N and P represent, respectively, the
electron and photon numbers; J(N) the rate at which electrons
are injected into the laser diode; R (N, P) the rate at which elec-

trons are converted into photons; and Q(P} the photonic rate.
Spontaneous emission is not shown. The detector is assumed

ideal (Q =D).

of a negative conductance G, a tuned circuit resonating at
frequency vc represented by a susceptance B,(v}, and a
positive constant conductance G&. The subscript d
stands for "detector, " since in most cases the load is used
to measure the laser power.

The tuned circuit consists of a capacitance C and an in-
ductance L in parallel, with LC(2nvo} = 1. Let
+2hvoV(t) denote the complex voltage across the cir-
cuit and +2hvcI, (t} the complex current entering into
it. The square root, where h vo denotes the photon ener-

gy, is introduced for later convenience. Provided the
time variations are small over an optical period, we have
approximately

dV
dt

I,
2C

(2a)

dP =Re( V I, ), P =CI Vl
dt

(2b)

This expression can be justified formally from a power-
series expansion of the bicomplex admittance (see Appen-
dix A of Ref. [13]),with the ratio of baseband frequency

f and average optical frequency vc as a small parameter.
Let both sides of this expression be multiplied by V*,

where the star denotes complex conjugate, and add the
complex conjugate. We obtain

where R denotes the rate at which photons are generated
by the negative conductance and Q the rate at which pho-
tons are absorbed by the positive conductance. For slow
variations, dP ddt =0 and, obviously, R (t)=Q (t).

Consider next conductances converting light to
electron-hole pairs or, conversely, electron-hole pairs to
light. According to Nyquist, a fluctuating current r'(t) of.
double-sided spectral density,

S, (v) = Ih vG
I

(4a)

should be associated with any conductance G expressing
either stimulated absorption (G =G, &0) or stimulated
emission (G=G, (0). For electrons obeying the Fermi-
Dirac statistics at temperature T (that is, with a single
Fermi level), one easily shows that Eq. (4a) is equivalent
to the thermal equilibrium form given in Nyquist's paper
[19].

For the narrow-band processes considered in this paper
centered at frequency vo, Nyquist's current may be de-

scribed by a white complex random function of time,

(t) =Re[+'2hvo[c'(t)+ic"(t)]exp( i2nvot) I
—. (4b)

With that understanding, the double-sided spectral densi-
ties of c' and c" are [21]

(4c)

and e', c" are uncorrelated. The normalized currents
c', c" vary slowly in comparison with the optical frequen-

cy, but may nevertheless be considered white. In a nu-
merical simulation, the values of e' and ~" would be
selected randomly and independently for each time slot
T. A slot duration T of the order of 1 ps, much longer
than the optical period but much shorter than any time
relevant to the laser dynamics, is appropriate.

The detector is modeled by an absorbing time-
independent positive conductance G&. A physical model
is a collection of atoms, all of them in the ground state.
When these atoms are submitted to light at frequency vo,

some electrons are raised from the ground state to the
ionization state, taken to have an energy hvo above the
ground level, each photon generating one electron. It is
assumed that these electrons are quickly drawn out of the
active region and do not affect noticeably the conduc-
tance.

Usually the detector is located many wavelengths away
from the light source rather than directly connected to it,
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Q(t) =Re[ V'(t)Id(t) ],
I~(t)=Gd V(t)+cd(t), cd(t)=e~( t)+tc d( )t

Q(t) =Gd
I «t) I'+

I v(t) ~~d(t),

Q(t):(Gd I—C)P(t)+~(t) .

(Sa)

(5b)

(Sc)

(Sd)

In the final expression only the real part of the complex
Nyquist current enters. In the second term of Eq. (Sc) it
was permissible to replace V by ~ V~ because ed(t) is a
white process. The capacitance C and the photon num-
ber P =C~ V~ are introduced in Eq. (Sd} for later conveni-
ence.

In general, y(t} depends on the realization of V(t)
But because the relative variation of

~ V~ is small in the sa-
turated regime considered, y(t) is approximately a sta-
tionary process of spectral density

Z, =G,
/
V/'=Q . (6a)

as shown in Fig. 1. The separation between the laser
diode and the detector is, however, immaterial as long as
the transmission medium is single moded (focused Gauss-
ian beam, lossless single-mode optical fiber, or coaxial
line) and the detector is perfectly optically matched.

Because the positive conductance 6d models an ideal
detector, the outgoing photonic rate Q(t) coincides with
the detected electronic rate D (t) in the absence of optical
losses:

R (N, P) = Q(N, P—)P,
where

a(N, P) =——G(N, i Vi')lc, P =Ci Vi'.

(9a}

(9b)

Because the relative variations of N and P are small in
the saturated regime, it is permissible to consider first-
order expansions with respect to N and P and write

This relation (given in the Introduction with a different

sign convention for the current) can be written as

R = —G(N IVI'}IVI'+~, &„=—Gfv/'=R . (7b}

Here again the approximate expression of the spectral
density of the shot-noise process ~(t) rests on the fact
that the relative variation of

~ V~ is small.
In the case where 6 is the sum 6, +6, of a positive

conductance 6, expressing stimulated absorption and a
negative conductance 6, expressing stimulated emission,
the expression of the spectral density of ~ reads more
generally

Z.=(G.—G, )IVI'=(2n, —1)R, n, = G,lG—
where np is the population inversion factor (also denoted
n, or n,p and called "spontaneous emission factor" }.

The classical part of the photonic rate R [the first term
in Eq. (7b)] may be written as the product of P and a gain
9 according to

Upper bars denoting average values will be omitted when
no confusion with instantaneous values may arise. The
first-order variation of Q(t} denoted 5Q is from Eq. (Sd):

hR —=R (N, P) R(N, P) =—RttbN+RpdP,

hN=N —N, hP =P —P,
(10a)

(lob)

5Q =Qpb, P+y(t), (6b)

where

Qp =Gd IC —= 1/rp, EP =P(t) P, — (6c}

R =Re(V'I), I = —GV+c . (7a)

is called the photon lifetime.
Note that 5Q enters the photon-number rate equation

[Eq. (3)]. Therefore, the two terms in the right-hand side
of Eq. (6b) are correlated. This is an essential departure
from conventional corpuscular theories in which 5Q is
written as the sum of a classical term bPlr and an in
dependent shot-noise term y, sometimes ascribed to the
detector photocurrent.

Relations analogous to Eq. (6) apply to the admittance
Y modeling the active region of the laser diode, whose
steady-state value is a negative conductance 6. The situ-
ation is more complicated than for the detector, however,
because Y depends on the carrier number N, and possibly
on

~ V~ or P in the case of gain compression. It may also
be that, as N or P depart from their average values, the
admittance Y acquires a small imaginary part (see the In-
troduction). But this imaginary part drops out from the
rate equations for photonic noise and it need not be con-
sidered here. With the sign convention of Fig. 1(b}, we
have

where the subscripts indicate partial derivatives, evalu-
ated at the average values N, P. The erst-order expansion
in Eq. (10) is valid if (ENz) « (N ) and
(b,P ) « (P ) . The variances of N and P can be evalu-
ated by integrating over frequency the detailed expres-
sions given later for the spectral densities. These in-
tegrals always exist.

Our main objective is to express the rate fluctuation
5R = b,R +~ in terms of b,P plus independent noise
terms. To achieve that goal, we need to eliminate hN by
using the electron-rate equation

dN =J(t) S(t) R(t—) . —
dt

The three rates J,S,R on the right-hand-side of Eq.
(11)consist of an average part, a classical variation, and a
fluctuation. The rate J at which electrons are injected
may have a specified part (modulation) and depend on N
if the electrical source has a nonzero admittance. It may
be affected by random fluctuations, thermal or shot noise,
depending on the kind of electrical driver used. For gen-
erality the spectral density of the injected-current fluctua-
tion is written S.=gJ, where g would be unity for fiuc-
tuations at the shot-noise level, but is usually negligibly
small.

The spontaneous emission rate S is some function S (N)
of the carrier density N and is affected by a fluctuation
s(t). If we assume for a moment that the diode is
constant-voltage driven, N is a constant and the fluctua-
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J—S=R=Q . (12)

At low frequency the output photonic rate Q(t) is
equal to the photon generation rate R (t), as we have seen
earlier. On the other hand, the carrier rate equation, Eq.
(11), shows that at low frequency (dN/dt =0) and large
injected currents (S « J), R (t) is equal to the injection
rate J(t). The theory therefore predicts that for slow
variations and high injected currents, the photonic rate
Q (t) is equal to J (t). In this proof it was unnecessary to
introduce explicitly the Nyquist currents or the depen-
dence of the optical gain 9 on the carrier number N or on

V (nonlinear gain). The conclusion that Q(t)=J(t) un-
der ideal conditions (Chap. 11 of Ref. [I]) follows here
from energy conservation, enforced at every step of the
theory independently of the specific form of the noise
sources.

Let us now consider small deviations at angular fre-
quency Q (d/dt~j Q) We obtai. n from Eqs. (3), (6), and
(11)

5J—5S jQbN=5R =5Q—+j QbP . (13a)

tion 5S of S reduces to a(t}. The word "spontaneous"
means that the recombination events are independent of
each other .The spectral density of the a(t) process, how-
ever, depends on the nature of the recombination events.
If the elementary event is the recombination of one elec-
tron and one hole (radiative spontaneous recombination),
the spectral density is at the shot-noise level. But in the
Auger effect, two electrons recombine at a time. Since N
must not change, the electrical driver instantaneously re-
places these two electrons and the spectral density of a(t)
is at twice the shot-noise level (the same fluctuation re-
sults when an electron generates exactly two electrons by
secondary emission). The spectral density of a is written
$,=(,S.

Finally, as we discussed above, R (t) is the rate at
which electrons and holes recombine in the active ele-
ment by the process of stimulated emission to generate
photons in the oscillating mode. R is a function of N and
P, plus a fluctuation ~(t) whose spectral density is given
in Eq. (8).

Before going into further detail, let us consider the
steady-state and the low-frequency expressions. For the
steady-state values we have from Eqs. (3) and (11)

and~', a, ~,y are independent. For simplicity we will take
in the following g, = 1 (radiative spontaneous recombina-
tion) and n, —1 because the detector temperature Td is
such that kTd «hvo, but g and n remain as parameters.

The system of equations in Eq. (13) enables one to
evaluate the photonic noise 5Q = b,Q+ y and the fluctua-
tion 5U of the voltage across the diode from
AU= U~hN.

If Eq. (14) is introduced into Eq. (13b), we obtain

(Jz —Sz jQ)b—N+&' &=R—&bN+RpbP+~
= ( Qp+j Q )AP + ft . (15)

Let Eq (1.5) be divided through by R =Q, and intro-
duce the following dimensionless parameters:

x =gb,N/N, p = b,P/P—, (16a)

+s
S

and the complex parameter

y= ~(s —r, Jtv+j r, Q) =y'+ jy" .

(17a)

(17b)

If the intrinsic diode is loaded by an electrical admit-
tance Y,(Q), the term r, J& in Eq. (17b} may be written,
from Ohm's law,

NU~
r, JN ———y (Q), y (Q) —=Rd Y,(Q), Rd =— (17c)

(N/S)Sz =—s, (N/R)Rz ——g, (P/R)Rt, —= 1 —y . (16b)

s is between 1 and 2 for radiative spontaneous recombina-
tions but may reach the value of 3. At room tempera-
ture, the differential gain factor g is usually between 1

and 4, but at low temperatures g is almost equal to zero
below the peak gain frequency (because an increase of N
raises the quasi-Fermi level without affecting much the
gain at a constant frequency) and almost infinite above
the peak-gain frequency. The relative gain compression
y is not accurately known. It may be of the order of 0.1.

Let us further introduce the spontaneous-to-stimulated
rate ratio g and the spontaneous lifetime r„

where U denotes the electrical voltage across the intrinsic
diode and NU~ is of the order of 3kT/e =0.075 V. The
denominator eS in the expression of Rd, where e denotes
the absolute value of the electron charge, is the threshold
current in the absence of gain compression because the
spontaneous recombination rate is then clamped at its
threshold value. With gain compression, S increases
slightly above threshold. The y parameter is real at low
frequencies.

It is also useful to define a normalized baseband fre-

Equation (13a) can be written in a more detailed form:

b J+j b,S—s jQb, N =b,R +~ =—EQ—+y+j Qb,P,
(13b)

if we separate the classical parts and the fluctuations,
where

(14a)AJ =J~AX, AS =S~4N,
AR =R~AN+RI hP,
b, Q =Qt, EP, Qp ——I/rp,
S.=gJ, S,=g,S,
4„=(2n —1)R, 4 =(2n, —1)Q,

(14b) quency,

(18)(14c)

(14d)

(14e)
where fo denotes the cold cavity linewidth. In terms of
f„,y=y'+iy" reads
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(19)

where y =y'+ jy" may depend on f„.
With this notation, Eq. (15) is simply

—yx+z =x+(1—y)p+~ =(1+jf„)p+y (20a)

The spectral densities of the reduced independent noise
sources introduced in Eq. (20a),

z =(g' —s)/R, ~ =I /R—, y =y/Q (20b)

(R =Q, but the distinction between R and Q is main-
tained for later convenience}, are

RS~=g+g(1+(),

RS O=2nq —1,
4 0=1.

(20c)

If x from the first equality in Eq. (20a) is substituted in
the middle term, we obtain an expression for 5R/R pro-
portional to p plus noise terms. The relative photon-
number fluctuation p follows by comparison with the last
expression in Eq. (20a). Relative photonic noise then fol-
lows from

5Q o
y (20d)

In this expression, p is a weighted sum of the independent
noise sources 8,~,y and is therefore correlated with y .

A useful concept is that of relative intensity noise (N„)
defined according to

QN&& —= QcVsgyg 1 (20e)

We allow the relative intensity noise to be negative in
some cases for the reason discussed later in Sec. V.

Equivalent electrical circuits are often convenient as
visual aids and they may be constructed to simulate laser
diodes in systems. An equivalent electrical circuit can al-
most be read off Eq. (15), hN and hP being represented
by electrical voltages, while the rates are represented by
electrical currents. The optical cavity is represented by a
capacitor of value unity submitted to a voltage AI'. The
electrical current flowing through this capacitor is indeed
the rate j Qb P given in the last term of Eq. (15). The rate
5Q going from the cavity to the absorbing load is
represented by a conductance Qp in parallel with a
current source y. The active part of the laser diode
delivering a rate 5R to the cavity is described by the first
two terms in Eq. (15). The middle term can be represent-
ed by a quadripole whose output voltage is hP (see above)
and the input voltage ( Rz/R~)hN is pr—oportional to
the electrical voltage hU=UzhN across the intrinsic
diode. The quadripole consists simply of a series conduc-
tance —Rz and current source ~. It is easy to verify
from Ohm's law that the input and output current of this
quadripole are indeed equal to 5R. Electron storage cor-
responding to the term —jQEN is represented by a ca-
pacitance —Rz/Rz connected at the input port of the
quadripole. The other terms (Jz, SN,&',s ) are conduc-

tances and current sources at the input port of the qua-
dripole

In this equivalent electrical circuit, independent noise
sources enter only once, and generalization to multiple
elements connected to the optical cavity is straightfor-
ward. One drawback is that negative conductances and
capacitances (usually BR/BP)0) can be realized only
with active electronics. By duality (current-voltage)
transformation, this circuit can be reduced in the absence
of gain compression to the one given in Chap. 11 of Ref.
[1]that involves only positive reactive elements.

To conclude this section, the circuit theory based on
Nyquist's currents [13] can be expressed in the case of
frequency-independent gain and losses in the form of a
corpuscular theory that postulates that the rates of
electron-hole recombination into photons are classical
functions of N (number of electrons) and P (number of
photons} plus independent fluctuations whose spectral
densities are equal to the average rates. Gain compres-
sion is accounted for. This theory is in full agreement
with quantum theory but does not coincide with the
particle-rate theories usually presented in which the
photon-number fluctuations are independent of the
"detector shot noise. "

III. PHOTONIC NOISE AT ZERO FREQUENCY

It is assumed in this section that the frequency is equal
to zero, that is, we set f„=0in Eq. (20), and the y pa-
rameter is real. The formulas derived in this section are
valid for laser diodes from about 1 to 50 MHz. Optical
losses are neglected here but they are easily restored, as
we shall see in Sec. V.

Without gain compression, @=0, p =AP/P drop—s out
from the last two equations in Eq. (20a) and thus

p pX=g
N

and from the first and last expressions in Eq. (20a)

5 —+( 0 0)+go

(21)

(22)

The spectral densities are, therefore, using Eq. (20c),

2'
Q+ANiN

g
2

2n g
g

QN„=g+g((+1)—1+2n y

(23a)

(23b}

(23c)

Let us recall our notation: Q denotes the average pho-
tonic rate with dimension s and 4 double-sided spec-
tral densities. Because the carrier number N is clamped
to its threshold value in the case of linear gain, the pa-
rameters g, n, and s are constant above threshold. The
population inversion factor n is infinite at zero optical
gain, but usually comprised between 1 and 3. The dimen-
sionless differential gain g is usually between 1 and 4, and
s =2. Usually, /=0. g denotes the spontaneous-to-
stimulated emission ratio whose reciprocal is the ratio
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C —= ~ = — 1+S~U s 2

UQ
2n gs

' —1/2

(24)

Measurements of CU& have been reported in Refs. [23]
and [24].

Let us now consider the effect of nonlinear gain, yAO.
We obtain by solving Eq. (20):

5Q ~+x-'+(y-1)x&
1+rX

g+ g( 1+g) —1 2y X+2( n
p
——

y )X
QN„= (1+rx}'

Equation (26) gives the relative intensity noise. Modified
rate equations lead to an expression which is identical to
Eq. (26) for linear gain (y =0), but in the general situation

y does not appear in the numerator of Eq. (26) as it
should.

According to Eq. (17}, the case of a zero impedance
electrical drive corresponds to the limit y~ao in Eq.
(26). We obtain

(26}

2(n —y)
y'

(27}

This is exactly the result obtained by Karlsson [3] from
quantum theory. It difFers from the result obtained from
MRE unless y is negligible compared with unity. The
current fiuctuation is s+5Q.

The result in Eq. (27) also applies to the case of pure
gain compression (R& =0 or QN=0), e.g., to laser diodes
operating below the peak-gain frequency at T =0 K [see,
e.g., Eq. (11.46} in Chap. 11 of Ref. [1],where s/2 corre-
sponds to our y factor and only the case n =1 is con-
sidered. The maximum output power corresponds to
y= 1.] However, the quasilinear approximation breaks
down if the diode is driven by a constant current and
spontaneous recombination is neglected.

It is interesting that Eq. (26) predicts that photonic
fluctuations below the shot-noise level can be obtained
even when the injected-current fluctuations are at the

I, /I, h of injected to threshold current minus one. Final-
ly, X=gs/g if the electrical driver has infinite internal im-
pedance.

Equation (23a) gives the fiuctuations of the electrical
voltage U across the diode since b U= UNKY. The spec-
tral density of these voltage fluctuations decreases as the
laser output increases and becomes negligible compared
with the thermal voltage fluctuation associated with the
diode series resistance (not considered here) at large
powers.

Equation (23c) gives the relative intensity noise. For
large constant injected currents, we find by taking the ap-
propriate limit that the spectral density of 5Q tends to a
constant value equal to S.

Finally, Eq. (23b} gives the cross spectral density be-
tween electrical voltage fluctuation and relative photonic
noise. The quantity SzN/&5&/& can be shown to be in-
dependent of the optical attenuation. The correlation is,
for a constant injected current [13],

From the first two expressions in Eq. (20a), x can be
obtained and substituted in the rniddle term to get

5R (1—y )xp+x~ + i'
R 1+y

(28)

This relation incidentally is applicable to the linear load
as well, in which case, g =y=0, and thus y~ao, with
the change of notation, ~~ —y, R ~—Q.

If we specify that 5R/R in Eq. (28) is equal to
(1+jf„)p+y,we find that p is multiplied by the factor

I+Jf.+(r+—Jf.)x, (29)

where x is defined in Eq. (19}. The relaxation frequencyf„is the real part of a root of 2)(f). We have approxi-
mately

1/2

2~f„= dQ
dN

(30)

Gain compression strongly enhances the relaxation oscil-
lation damping but does not affect their frequency much.

The relative photonic noise is, from the above equa-
tions,

5Q/Q =p+y
= [~+x' '+ bf. +(if.+y —1)x]y'] /& . (31)

Using the expressions for the spectral densities in Eq.
(20c), we finally obtain after much simplification the

shot-noise level (g= 1) by a combination of gain compres-
sion and spontaneous emission and/or finite drive im-
pedance. For example, if we set in Eq. (26) n~ =y =x= 1,
we obtain a photonic spectral density relative to shot
noise equal to (1+()/2. At large injected currents
((=0), photonic noise is half the shot-noise level, that is,
sub-Poissonian photon statistics has been generated.
(Under the same conditions, standard rate equations pre-
dict a photonic noise at 1.5 the shot-noise limit). If the
electrical drive impedance is infinite, we have explicitly
X=gs/g, and a small g value implies a large s/g value
that may not be plausible at room temperature. But an
alternative is to reduce the electrical drive impedance
(thermal noise remains negligible). Equation (17) shows
that X= 1 and (=0.2 are consistent with s =2, g =1, if
the series resistance R, is equal to 25 0, for a threshold
current of 1 mA and NU&=3kT/e. Since the internal
resistance of a laser diode is of the order of 10 0, the 25-
0 total value can be achieved without negative resis-
tances. The y value of unity assumed in this example is
not plausible, however. But there are spatial inhomo-
geneity effects (lateral diffusion, induced grating, . . . )

that may lead to a large efFective gain-compression factor
(it is not entirely clear at the moment, though, whether
the present noise theory applies also to effective gain
compression). Equation (26) predicts sub-Poissonian
photon statistics for small y values at large injected
currents and small R, values, but the noise reduction is
too small to be of practical interest.

IV. PHOTONIC NOISE AT ARBITRARY
BASEBAND FREQUENCIES
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double-sided relative intensity noise 1V„., Lp+Dp =Qt (37)

C+uC+I} —I —2rr+2(., -) )IXI'

( I+l'X' X—"f.)'+ IXX"+( I+a')f. ]' (32)
holds, Qt, bP is unaff'ected, and ff(t) can be replaced by
the equivalent term P(t}+Qt).

The detected rate fluctuation 5D (t) can be written
where Q denotes the total generated photonic rate. The
relative intensity noise is independent of internal or exter-
nal linear losses even if it is negative. Thus the result in
Eq. (32) is fully general for cold detectors.

V. LINEAR LOSS: CONCEPT
OF INTENSITY NOISE

5D —=DphP+I
Dp D

(Qt, hP )+Z= —[u+B(8+&]+Z.
Qt

'
Q

(38a)

The concept of intensity noise, or that of relative inten-
sity noise (N„),is often used in optical engineering. In
this context, "intensity" refers to classical rates and does
not include fluctuations relating to the corpuscular be-
havior of light flows (y). This intensity-noise concept is
shown here to be a valid one provided the losses are
linear. It is immaterial whether the losses are internal or
external to the laser cavity. However, if losses are intro-
duced in the cavity, it is understood that the mirror
reflectivities are modified to keep the photon lifetime un-
changed. The average rate Q of total photon generation
(not the output power) must also remain the same. Intra-
valence-band absorptions do not qualify as linear losses,
while free-carrier absorption does, approximately. In the
following discussion only external losses are considered
explicitly to simplify the wording.

Let Q(t) be the photonic rate leaving the laser diode
and y(t) the corresponding shot-noise fluctuations. Once
all the equations have been solved, the fluctuation bP of
the photon number P is expressed as a weighted sum of
elementary noise sources. We have, therefore, in the
most general situation,

Qt hP =u(t)+By(t), (33)

where u(t) is a noise term independent of y(t) and B a
generally complex constant.

According to the corpuscular or circuit theories
presented previously, the total rate fluctuation is

5Q =Qt, bP+f/(t)

and the spectral density of 5Q is therefore

s,~ =s.+
I
I+BI'g

or, using the definition in Eq. (20e),

II+BI'
ri9 sQ&Q g 2 gg Q Q

(34)

(35a}

(35b)

L~hP+P(t)+Dt, bP+Ht) . (36}

Thus, since for linear losses (LP=L/P, Dt, =D/P) the
condition

Consider now the situation in which the total flux Q(t)
is split into L (t)+D (t), where L may represent the loss
rate and D the detected rate. In particular, for the aver-
age rates, Q=L+D. The corpuscular equations remain
unchanged except that the right-hand side of Eq. (34} is
now

Because u, 8, and Ware uncorrelated, the spectral den-
sity of 5D is

Ss~ =(D/Q) S +(D/Q}'IBI'L +
I I+(D/Q)B I

D

II+BI'
NriD =SSD/D D p

+
g g

=Nrig (39)

The above result also holds when photonic noise is
below shot noise, in which case a negative intensity-noise
spectral density can be formally introduced. This, of
course, reflects on the fact that "light intensity" is not a
valid concept of the quantum level.

The relative intensity noise is measured by subtracting
from the detected current spectral density the shot-noise
contribution equal to the average rate D and dividing the
result by D . When the attenuation is large, the intensity
noise must be extracted from a much larger shot-noise
level and in that case it is preferable to employ a beam
splitter and two detectors. The shot-noise term disap-
pears when the correlation between the two photo-
currents is measured (Hanburry-Brown and Twiss experi-
ment).

Using the previous equations, it can be shown that the
cross spectral density between the electrical fluctuations
and the relative detected noise 5D/D is independent of
the attenuation. The detector is supposed to be perfectly
matched optically. If some reflexion occurs, the reflected
light should not be reflected to the laser diode. Room-
temperature detectors do not radiate appreciably at opti-
cal and near-infrared wavelengths. But at wavelengths
larger than approximately 4 JMm, the thermal photonic
flow propagating from the detector to the laser may im-
portantly affect the laser operation. Similarly, an
optical-amplifier spontaneous emission may flow back to
the laser diode unless this is prevented by a large optical
fiber attenuation or an optical isolator.

VI. LINEAR ACTIVE MEDIUM

When the active medium is linear (at a fixed carrier
density), the electron-hole —to—photon conversion is pro-
portiona1 to the square of the optical-field strength or,
equivalently, for a given laser structure, to the photon
number. It turns out that for linear active media (y =0)
the modified rate equations give results that agree exactly

(38b)

and the relative intensity noise is, according to the above
expression,
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for every measurable quantity with the corpuscular and
quantum theories.

Let the corpuscular equations be written in the form
usually given to rate equations, lumping together the
noise sources relating to N and P:

[25—27], if they are radially inhomogeneous, the diffusion
length of the order of 1 pm being much smaller than the
active area diameter. The parameter p—=AP/P is the
same for all the elements.

Equation (28),

jBEN = —hS —AR +F„,F„=&'—s —~

j QbP=BR —Eg+F, F =~—
y

AS =S~61V, hR =R~AN+RJ hP,
Eg =(Q/P)bP, 5Q =6Q+y .

(40a)

(40b)

(40c)

(40d)

5R (1—y)gp+yr +t
R y+1 (42)

applies to each element with the subscripts k = 1, . . . , n
omitted for brevity. Therefore, the fluctuation of the to-
tal photonic rate entering into the cavity, relative to the
total generation rate Q, is

From the above definitions, the nonzero spectral densi-
ties of the noise sources F„,F, and y are (remembering
that J—S=R =Q=g)

S„=(gg+g+g+2n —1)g;
4 =2ng,

g 5R k /Q —=Q I k 5R k /R k
——Ap +a,

where I k
——Rz /Q, and

(1—yk )yk
k

(43a)

(43b)

g =Q,

S„~=(1—2n~)g,

q= —Q.

(40e)

/ I+yk/'
It remains to solve the relation

(43c)

MRE are based on the concept of a classical field inten-
sity. Spontaneous emission is supposed to add a power
n /r to the oscillating field. They differ from the above
equations only by the expressions of the spectral densities
given in the second line of Eq. (40e). According to MRE,

2n~g—, 4 =0 (MRE) . (41)

It is remarkable that in spite of these drastic differences
MRE give an exact result in the absence of gain compres-
sion (see Appendix B of Ref. [13]). The proof is lengthy
but straightforward. The standard rate equations given,
e.g. , in [7] are the same as the above MRE except that
only the case in which g= 1 is considered. The observa-
tion made earlier concerning the concept of intensity
noise applies here as well: MRE are applicable formally
to sub-Poissonian statistics if the concept of negative
intensity-noise spectral densities is accepted.

If MRE spectral densities in Eq. (41) were used for the
case of gain compression: y )0, we would obtain Eq. (26)
without the terms proportional to y in the numerator.
The error made in using MRE is therefore significant un-
less y is very small compared with unity.

(1+jf„)p+q = Ap+a, (43d)

which is the same as for a single element, namely,

z+2A' —1

(1—A') +(f„—A") (44)

where z is given in Eq. (43c) and A —= A'+iA" in Eq.
(43b).

When all the active elements have the same parameters
(but, of course, not the same noise sources), the result in

Eq. (44) is the same as for a single active element. We
further verify that for a single active element and at zero
frequency, Eq. (44) coincides with Eq. (26), with (=0.
After much simplification, we find that for a single active
element, Eq. (44) also coincides with Eq. (32).

When the active elements are connected in series rath-
er than in parallel, the result is quite different from the
one given above unless the elements are identical. If
diffusion occurs between the active elements, the algebra
becomes complicated, but it remains true that for a large
constant total injected current, the photonic rate does not
fluctuate at low frequencies.

VII. MULTIPLE ACTIVE ELEMENTS

It is easy to generalize formally the corpuscular theory
to any number of electron and photon reservoirs connect-
ed in arbitrary manner. One must ascertain, however,
that the resulting expression for photonic noise is applic-
able to some specific situation. In this section we consid-
er n active elements connected in parallel with a single
cavity. We consider n electron reservoirs with electron
numbers Xk, k =1,2, . . .n. It is assumed that they are
driven by constant electronic rates Jk and that the car-
riers do not diffuse from one reservoir to another. This
formalism (extended to the continuum) is applicable for
example, to vertical-cavity surface-emitting diodes

VIII. MULTIPLE MODES

Modern laser diodes oscillate on a single mode because
the cavity is short or because frequency-selective Bragg
reflectors have been introduced. Low-power side modes
are excited, nevertheless, by spontaneous emission. Their
total power is often 30 dB below the main-mode power.
These low-power side modes can be treated in the linear
approximation and are therefore exponentially distribut-
ed. The total power does not fluctuate much, but the
main-mode power fluctuations may be large since the
side-mode rates are subtracted from a constant injected
rate.

In this section we consider the case where two modes
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have almost the same power but are suFiciently far apart
frequency wise that the carrier number cannot follow the
beat frequency, as is usually the case for adjacent longitu-
dinal modes. The two-mode case occurs when a longitu-
dinal mode is about to stop oscillating while another one
is coming up (mode hopping}. Photons at frequency vi
and photons at frequency v2 may in that case be con-
sidered as two different corpuscles. The two-mode situa-
tion considered may also correspond to two polarization
states, TE and TM, which do not interfere even if the fre-
quencies are similar.

From the point of view of the present corpuscular
theory, the configuration with two identical modes is
stable when gain compression is taken into account but
photonic noise goes to infinity as y~0. We find indeed
from the previous equations,

n
Ql ri 1 Q2 ri2

y
(45)

for large constant injected currents, y &&1, and identical
modal parameters. Of course, 5Q, +5Q2 =0.

The linearization procedure leading to Eq. (45) would
be invalid if photonic noise were too large. Equation (45)
offers perhaps a way of measuring the gain compression
factor y.

IX. APPLICATION

The theory of photonic noise presented in this paper is

applied to a GaAs vertical-cavity surface-emitting laser
diode of the type proposed by Iga [25—27] at room tem-

perature. Because of short cavity lengths and frequency-
selective mirrors, such diodes exhibit high main-to —side-

mode power ratios. (More than 50 dB have been mea-
sured [26]. In conventional diodes, side modes may
render the present single-mode theory inapplicable. )

Furthermore, the high mirror reflectivities ensure that
the field fluctuations are essentially the same everywhere
in the active material. Because of the high internal field,
the gain-compression factor y is likely to be higher than
in conventional diodes for the same output power, partic-
ularly in the case of quantum wells.

Let us assume that the electrical current is injected
with the help of a circular coating of 5 pm in diameter
that conducts electricity but lets light go through. If
confinement in the radial direction is ensured by chemical
etching, it is reasonable to assume that the active area is
radially homogeneous. This area contains about 20 cells
of the size of the diffusion length, but we have seen that a
multiple-active-element diode exhibits the same photonic
noise as a single-element diode if it is homogeneous. Let
the active layer thickness d be 0.5 pm and the mode
volume 10 pm . The mirror spacing is supposed to be
such that the laser operates at peak gain. The voltage ap-
plied to the intrinsic diode is the band-gap energy divided
by the electron charge, U=1.42 V. We assume that the
rear mirror reflectivity is unity and that the front mirror
reAectivity R =0.96. With these values of d and R, the
gain in the active medium is g =400 cm '. According
to Ref. [14], this gain value corresponds at low fields to a
carrier density of 2X 10' cm and a threshold current

I,h =1.1 mA. Internal losses (mainly due to free-carrier
absorption in the doped Bragg reflectors) are neglected.

To go further, we need to know the specific form of
gain compression. Agrawal [8] has proposed that the ac-
tive medium gain be of the form

g OC

+1+I,/I,
(46)

The ratio of threshold to transparency carrier numbers is

N,h/No=1. 66. I&=eQ is the detected current (for an

ideal detector and no optical losses) and I, the corre-
sponding saturation value. Somewhat arbitrarily, we take
I, =7 mA. According to this expression, the relative gain
compression y is

—1
1

' 1+I,/Ig
(47)

We further assume that the spontaneous-recombination
current is proportional to the square of N,

N, h

(48)

+ 2

I '4 =1+2
d (1+7'X}'

(49)

The g parameter is, according to Eq. (17) and with
s —2~

TABLE I. Photonic noise of a GaAs room-temperature laser
diode. This table gives for various ratios of injected to thresh-
old currents (I,/I, h) the photonic noise relative to the shot-
noise level as given in Eq. (26} of this paper, and from modified
rate equations (MRE). R, is the electrical driver resistance.

I, /I, h

N/Nth

g
Plp

Iq (mA)

x
Ig 'Sgi [Eq. (26)]

Ig '4'gi MRE

R, (0)

2.5
1.7
0

5
1.1
0.33
2.2
1.5
4
0.3
1.7

1.75

15
1.3
0.13
1.85
1.2

14
0.2
1.16

1.3

48

75
2
0.055
1.4
1

78
0.4
0.94

1.3

2.1

where I, =eJ denotes the injected current. Then we have
s =2. Reference [14] shows that this "bimolecular" ap-
proximation is not very accurate, but it will suSce for
our purposes. From Eqs. (47) and (48) we easily obtain
the carrier density for various ratios of injected to thresh-
old currents. The values of the differential gain factor g
and the population inversion factor nz [14] are repro-
duced in Table I, together with the detected current Iz
and the ratio g of spontaneous to stimulated emission.

Next we evaluate from Eq. (26) the photonic noise rela-

tive to shot noise at low frequencies for injected-current
fluctuations at the shot-noise level (/= 1}:
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2g NUx= +
g gIdR,

(50)

The general theory of laser-diode noise can be based on
the Nyquist formula only (circuit theory). The expres-
sions obtained appear to coincide with those obtained
from quantum theory in all cases. When the gain and
losses are frequency independent, quantum or circuit
theories can be expressed in the form of a corpuscular
theory, electron or photon numbers (N and P) being treat-
ed as continuous classical variables. The rate of
electron-hole —to—photon conversion (or the converse)
consists of a classical function of N and P, plus a shot-
noise fluctuation. The shot-noise fluctuations, which are
equivalent to the Nyquist currents of the circuit theory,
are independent of each other. Previous simple corpus-

where NU~ =0.075 V and the electrical resistance R, in-

cludes the laser-diode series resistance. For each value of
the injected current, R, is adjusted to minimize the noise.
The optimum R, is given in Table I, as well as the noise
value. The noise calculated with the modified rate equa-
tion is also shown.

Table I shows that for sufficiently high injected
currents, sub-Poissonian photon statistics can be ob-
tained, even for injected-current fluctuations at the shot-
noise level. Because y according to Eq. (47) never
exceeds 0.5, photonic noise, admittedly, cannot be re-
duced much below the shot-noise level (factor 0.94).
More favorable conditions can perhaps be found at lower
temperatures. In any event, gain compression should be
considered in precise evaluations of photonic noise.

X. CONCLUSION

cular theories postulate that the classical flow from the
optical cavity to the detector is uncorrelated with the
shot-noise term, from which it follows that the detected
fluctuation is at best at the shot-noise level.

The corpuscular theory has been applied to a simple
laser model with gain compression (explicit dependence
of the gain on the optical field, or photon number). We
have shown that sub-Poissonian photon statistics can be
obtained even if the injected-current fluctuation is at the
shot-noise level. Without gain compression, the results
obtained coincide with those obtained from modified rate
equations. The actual mechanism behind gain compres-
sion remains a matter of investigation. One should dis-
tinguish "effective gain compression" that may express
transverse diffusion or induced longitudinal gratings and
have inherent time constants of the order of 1 ns, and the
fundamental gain-compression mechanism that has time
constants of the order of 0.2 ps [28]. The theory present-
ed in this paper is of practical interest when y is of the
order of 0.1 and above.

Frequency-dependent losses are encountered, in partic-
ular, in gain-guided and external cavity lasers. In that
case MRE may be in error by large factors. The theory
of photonic noise in the case of frequency-dependent
losses has been given by Lax in 1967 [10],but is restricted
to the case of pure compression. Further discussion con-
cerning the effect of frequency-dependent loss or gain, in-
cluding gain compression, will be presented elsewhere.
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