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Binding energy and triplet-singlet splitting for the hydrogen molecule in ultrahigh magnetic fields
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The energy difference of triplet and singlet states due to exchange coupling, the energy levels, the
ground binding state, and the wave functions is calculated for a hydrogen molecule in an ultrahigh mag-
netic field when the distance between the Landau levels e#iH /mc exceeds the Coulomb unit (Rydberg)
me*/2#%. The results are asymptotically exact at the interatomic distance R, which is large compared
with the atomic size and for high magnetic fields. It is shown here that the triplet electron term has a
minimum at large interatomic distances corresponding to the formation of the ground state of a stable
H, molecule. For the hydrogen molecule in an ultrahigh magnetic field, the energy of the singlet state
also has a deep minimum at R <1, which is much higher than the triplet one and may be a metastable

state only.

PACS number(s): 31.90.+s, 31.10.+z, 03.65.Ge

I. INTRODUCTION

We will consider hydrogen atoms in an ultrahigh mag-
netic field H which exceeds the atomic magnitude
H,=m?3c/#*=2.35X10° Oe (in what follows the mag-
netic field H will be measured in precisely these units;
other quantities will be expressed in atomic units). The
atoms in such a field are elongated along the direction of
the magnetic field and possess a large electric quadrupole
moment. The forces of attraction acting between these
quadrupole moments should lead to the formation of a
hydrogen molecule. This problem was treated by Ka-
domtsev [1,2]. He obtained the solution using the
Hartree-Thomas-Fermi approximation without taking
into account the exchange coupling of the spins and the
atomic interaction for a large interatomic distance. It
was shown by Kadomtsev [1,2] that atoms in an ul-
trahigh magnetic field form dense molecules when the
distances between protons are smaller than the atomic
size. It is known that the energy difference of the singlet
and triplet states of the hydrogen molecule measures the
exchange coupling of the spins of the two atoms. For the
hydrogen molecule without the magnetic field it was
shown by Gor’kov and Pitaevskii [3] and by Herring and
Flicker [4] that for the case of the large interatomic dis-
tance R, when the overlap of the wave functions of the
different atoms is slight, the leading term in the expres-
sion for the energy difference of singlet and triplet states
can be evaluated exactly.

In this paper we shall perform the explicit evaluation
of the energy difference of the singlet and triplet states for
the hydrogen molecule in an ultrahigh magnetic field
which is large compared to the Coulomb binding energy.
The solution shows that for an ultrahigh magnetic field
the formation of a stable H, molecule occurs at an intera-
tomic distance R, which is larger than the atomic unit of
length if the magnetic field is not too high ( =1000). In
the ground state the total spin of the hydrogen molecule
in an ultrahigh magnetic field is one, S=1, i.e., the
ground state is a triplet. In the singlet state (S =0), the
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energy has a minimum that may correspond to the for-
mation of a metastable state of the H, molecule. The
singlet energy level is much higher than the triplet
ground one.

II. SCHRODINGER EQUATION: WAVE
FUNCTIONS FOR THE HYDROGEN MOLECULE

Let us consider two hydrogen atoms in an ultrahigh
magnetic field such that the following inequality holds:

m2edc /HH <1, (1)

where m denotes the electron mass, H is the magnetic
field, and all other designations are conventional. Since
the atoms in an ultrahigh magnetic field possess a large
electric quadrupole moment, their axis of symmetry need
not coincide with the direction of the magnetic-field lines.
Let us choose the coordinate system with the X axis
directed along H, and atoms 1 and 2 lying in the plane
XZ. The coordinates of atoms 1 and 2 are

where R is the interatomic distance between atoms 1 and
2, and 0 is the angle between axis of molecule and direc-
tion of the magnetic field.

The Schrodinger equation for the electrons will be (all
quantities are expressed in atomic units)

1

1
P+ AP+LP,+AP—F —— -3 R,
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where R; and R,; denote the distances between the elec-
trons with subscript i and proton 1 and 2, respectively,
ry, is the distance between the electrons, &, and &, are
Pauli matrices.
Let us choose the vector potential A in the form
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A=1(HXr), so that Eq. (2) takes the form

[(#(1,2)+36 H+ 18, H|V=EV , (3)
where
H(1,)= | 1A —1a -3 -3 4 L
’ poh e T Ry T Ry T2
2+ 2
+i+P1 P2 ’
R gA*

and pi=y}+(b+z,)% p3=yi+(b—z,)? are the coordi-
nates of motion for the electrons 1 and 2 in the plane per-
pendicular to H; A=V'c#i/eH is the atomic size in the
same plane, or using the atomic units (i=m =c=e=1)
A=V1/H.

We will consider two energy levels, which are the sing-
let term and the triplet term. Let W, be the exact solu-
tion of the two-electron coordinate wave equation that is
symmetrical in the coordinates of the two electrons. The
singlet wave function is thus a product of ¥ and an ap-
propriate spin function for the sum of the electron spins
that is equal to zero, S =0. As a result of the Hamiltoni-
an operator acting on the spin function, we obtain zero,
i.e., the Pauli matrices disappear from the Hamiltonian.
Thus, for the singlet wave function ¥, the Schrédinger
equation is

FH(1,2)¥,=E, ¥, . @)

The triplet wave function is the product of the exact
solution of the two-electron wave function that is an-
tisymmetrical in the coordinates of the two electrons and
an appropriate spin function for the sum of the electron
spins, S=1. The possible spin projections are +1, O,
—1, and the lowest energy level corresponds to spin pro-
jection equal to —1. Thus, the Schrodinger equation for
the triplet term will be

#(1,2)————— |y, =E,¥, . (5)
202 2A

Using the new variable E;;=E,—1/A% one can reduce
Eq. (4) to the form identical to Eq. (5):

#1,2)——— — L |y =pF

22 g | Ve T Este e ©

sl,a

Let us consider the functions ¥,=(¥,+V¥,)/2 and
¥,=(¥,_W¥,)/2, which will be large only when electron
1 is localized near proton a and electron 2 is near proton
b. If the phases of ¥, and ¥, are properly chosen, the
function ¥ (r,,r,) for r,—>—R /2, and r,—>R /2 and
W,(ry,r,) for ri—R /2; r,— —R /2 will be the product
of the two hydrogen single-atom wave functions in an ul-
trahigh magnetic field. To obtain the ground-state wave
function of the hydrogen atom in the ultrahigh magnetic
field one can consider the electron motion along H as a
one-dimensional motion in the Coulomb field but in the
plane (YZ) perpendicular to H it moves like a free elec-
tron in a magnetic field. Since electron motion along the
X axis is limited by the length of order a, and in the plane

perpendicular to H their motions are constrained by the
cylindrical shell whose radius is of order of A <<R, then
the above-mentioned approximation for the wave func-
tion is reasonable. According to results obtained in [5,6],
we can write the ground-state wave function of the hy-
drogen atom in an ultrahigh magnetic field in the follow-
ing form:

Y(r)=¢(p(x),

where

_ P

4)?

d(p)=

1
oy exp

is the wave function of the zeroth Landau level that cor-
responds to the motion in the plane perpendicular to the
magnetic field (p?=y2+22), and for the function ¥(x) we
have the following expression:

Y= =W | Slx 1)

>

where W, |, is the well-known Whittaker function. The
main peculiarities of this solution compared to the wave
function of the pure Coulomb field are due to the one-
dimensional Coulomblike motion of the electron along
the direction of the magnetic field.

The energy of the ground state, which is related to the
quantity a, can be written with logarithmical accuracy in
the following form [5-7]:

£=———z—%ln2H . (7)

For the wave function #(x) at large distances along the
direction of the magnetic field in comparison with the
atomic size a, we have the following asymptotic expres-
sion:

|x |

a

(8)

1
Plx )= V—a—exp

Thus, we finally have the following expression for the
ground-state wave function of the hydrogen atom in an
ultrahigh magnetic field:

1 2

=1
Y(r) Ve Voo exp

yie 2 (x +1)

w =
a,1/2 a

9)

We then seek the wave function ¥, in the next form:

24 2
Pitp: 2
‘I’1=B2X1exp - 4}‘2 Wa,1/2 ;—(a+x1+k)
2
XWain ;(a—x2+7») ) (10)

where B?=(1/a)(1/27A?), and Y, is a slowly varying
function compared with the exponential decay. Expres-
sion (10) is the product of the two hydrogen-atom wave
functions, for the first electron being near the first proton
and for the second electron near the second proton. Sub-
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stituting expression (10) in Eq. (6) and after
differentiation, taking into account the terms of zero-
degree a only, we obtain the following equation for y;:

to these derivatives, only terms of order a appear. They

are smaller than the terms of order 1, which appear due

to the derivatives )y, with respect to x; and x,.
Introducing the new variables £=(x,+x,)/2 and

19 193 1 1 +L+_1. X;=0. M=X;—X;, we can write the solution of Eq. (11) in the
adx, adx, R, Ry, r, R following form:
1n
a
For the derivation of Eq. (11) we do not take into account  y,= |C(&,2,,2,,y;,y,)exp | — o x) G, (12a)
the terms that have the derivatives of ), with respect to R
Zy, 25, 1, and y,, because by substituting the expression
(12a) written below for y, into (11), one can see that, due where
J
xy—x; H[(x —x P +(z, =2 P+ (p, =y, ]2 1 o2
G= 2 271722 2 271722 ’ (12b)
{a+x,+[(a+x,)"+(b+2z,)7]7%) {a—x;+[(a—x)+(b—2z,) ]}

and where C(§,2,,2,,y,,),) is an arbitrary function of variables §, z,, z,, y,, and y,. To determine this function we can
use the condition that Y, tends to 1 for x,— —a and z,— —b, or for x,—a and z,—b. That is, after some calcula-
tions, we finally have the following expression for the wave function:

W,(r;,0,) =T exp —f% i %(a+x1+x> Wi %(a—xﬁx) FG , (13a)
where
oo [ 2atxi a0 ) Qb bz 42, Y r”exp _ alatx)) l 13
2a+x,+x,+[(2a+x,+x,)*+2b+z,+z,)?+y3 12 (a*+b2)!"?
forx, +x,<0and z,+z, <0,
. {2a —x,—x,+[(2a —x, —x,)*+(2b—z,—2,)*]"/*}? a/zexp _ala—x,) ] 130
2a—x;—x,+[(2a —x, —x,)*+(2b—z,—2z,)*+y3]'/? 2a’+b?)17?

for x,+x,>0 and z,+2z,>0. Here '=B?%{2[a+(a?
+b52)1/21}%, and y,, =y, —y,. Function ¥, follows from
the expression for ¥, by replacing the variable 1 by 2.

II1. THE BINDING ENERGY AND TERMS SPLITTING

We are now ready to evaluate the singlet-triplet energy
difference. Let us introduce a coordinate system that is
the result of a rotation through the angle 6 about the Y
axis:

x=x'cos@—z’'sinf, z=x'sinf+z'cosO .

(We will omit designations by hatch in what follows.)

It was shown by Gor’kov and Pitaevskii [3] that the
singlet-triplet energy splitting due to the exchange cou-
pling of the spins for the hydrogen molecule can be
represented with the exponential accuracy in the follow-
ing form:

E, —E,=2$; (V,V,¥,—¥,V,¥,)dS , (14)

where S is the hyperplane (x,=x,) in the six-
dimensional space {r;,r,}. The scalar product in Eq. (14)
will reduce to differentiation with respect to the variable
x, only, since the gradients in (14) are projected on the

[

direction of the hyperplane dS.

Since we are interested in the systems with the large in-
teratomic distance between two protons in the hydrogen
molecule in comparison with the atomic size ~a, we use
the asymptotic expression (8) for the wave function ¥(x).
After the differentiation of the exponent factor in the ex-
pression (10) with respect to x,, we can reduce Eq. (14) to
the following form:

2 cosf + b sinf
a A2

+ oo
XfOR/zdxff_f fdyldyzdzldzz

X(WlWZ)xl+x2>0 N

X‘ :X2

E

s1

a

(15)

Substituting the expression ¥, and ¥, in Eq. (15) gnd us-
ing the condition 0 <a <<1, we obtain the following ex-
pression, if @ is in the range 0 <0 <7/2—€ (where e~ a):
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_ 2R 2cosf , R sin’0
Eq—E=— a’cos’ a * 2)2
)
Xexp | —R 2cosf R sn; 0 (16)
a 4\

Thus, for the part of the energy difference AE between
the singlet and triplet states due to the exchange coupling
of the spins of two atoms, we have the following expres-
sion (in atomic units):

AE=(Eg—H)—E,
2
= —EE;—H(ZlnH cosf+LRH sin®6)
cos”6
Xexp[ —R(21nH cos6+1RH sin’0)] .  (17)

Calculations are similar to the above for the case 0=m/2,
which gives the following expression:

- R’?
e T

__ R
T

For large distances R between the two hydrogen atoms in
an ultrahigh magnetic field, the atoms interact like two
quadrupoles. Since the electron density distribution is
¥2(x ), and the quadrupole moment for the atoms is equal
to Q =2{x?)=a?/2, the energy of interaction of the two
quadrupoles at large distance R is therefore

lan 7{1—5P4(cos()) : (18)

U,

=3
a9 8

where
P,(cosf)=1(35cos*0—30 cos?6+3)

is the Legendre polynomial.

Taking into account the quadrupole interaction as well
as the exchange coupling of the spins as the singlet-triplet
splitting, we can write the final expression for the energy
levels of the hydrogen molecule [with the condition
R>({(x)12~a].

For the singlet term

U=E,—Ey=—4AE+H+Uqq . (19)
For the triplet term
U=E,—E,=+1AE+U, , (20)

where E, is the ground-state energy of the two isolated
hydrogen atoms.

Since the energy of the quadrupole interaction has a
deep negative minimum for 6=49°, binding states are
possible for both singlet and triplet states. However, for
the condition H >>1, the triplet energy level lies much
deeper than the singlet level, which means that the triplet
is the ground state for the hydrogen molecule in an ul-
trahigh magnetic field.

The results of the numerical calculation according to
Eqgs. (19) and (20) are shown in Fig. 1. The curves in the
figure correspond to the singlet level (Fig. 1, top) and the
triplet level (Fig. 1, bottom), respectively, where the num-
bering 1, 2, and 3 on the curves corresponds to the
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different values of the magnetic field, 20, 50, and 100, re-
spectively, for 6=49°. All the values are in atomic units.
At a very small distance R <a the quadrupole interac-
tion U,, is replaced by the Coulomb repulsion. For the
distance a <<R =1 the interaction energy has a deep
minimum for both singlet and triplet terms, which may
be the ground or exited states of the hydrogen molecule.
In any case the triplet level lies below the singlet one; i.e.,
the triplet state is the ground state of the hydrogen mole-
cule in an ultrahigh magnetic field. As one can see from
Fig. 1, the depths of the potential wells for the two terms
are increasing with increasing magnetic field. For exam-
ple, the binding energy for the ground state varies from

150
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0.0 1.0 2.0 3.0
R

FIG. 1. The potential energy in the singlet state !X (top) and
the triplet state >3 (bottom). Curves 1, 2, and 3 correspond to
magnetic fields 20, 50, and 100, respectively. All quantities are
expressed in atomic units.
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€,=2.86X107* (2 Ry) for H=20 upto g, =4.4X 1072 (2
Ry) for H=500, and the depth of the potential well for
the singlet level varies from Ag;, =7 (2 Ry) for H=20 up
to Ag; =40 (2 Ry) for H=500. With increasing values of
the magnetic field the molecular size decreases; for exam-
ple, the energy minimum U,(R) localized at R =0.46 for
H=300. As long as the molecular size remains compara-
ble to or larger than the atomic size in an ultrahigh mag-
netic field, the solutions obtained above are asymptotical-
ly exact. This result will be true up to a value for mag-
netic field of about 1000, where the atomic size will be ap-
proximately equal to the molecular size.

IV. CONCLUSION

Thus our investigation, carried out above, indicates
that a substantial change in the physical properties of
matter occurs in the presence of an ultrahigh magnetic
field. In particular, the hydrogen atoms can form a mole-
cule with a ground state that is a triplet state but not a
singlet state, as it is for a H, molecule in the absence of a
magnetic field. The binding energy of the molecule in the
triplet ground state is not too large; it is just about 1 eV,
where as the depth of the potential well for the metasta-
ble singlet term may be of order of a few hundred eV.
This value is about two orders of magnitude larger than
the binding energy of the hydrogen molecule without
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magnetic field.

The behavior of such atoms in a magnetic field and the
creation of spin-oriented molecules, which can strongly
interact, creating a long polymeric chain or structures of
the liquid crystal type, are of significant interest for astro-
physics. Magnetic fields of the scale, which are interest-
ing for our problem, of 10'°~10'%2 Qe, could exist on the
surface of the neutron stars and pulsars.

Another subject of interest might be the behavior of a
hydrogenlike system of excitons in semiconductor or
dielectrics. The characteristic value of the ‘“atomic”
magnetic field for such a system is defined by the condi-
tion H, >>u’e®c /#°k? (here p is a reduced mass, « is the
dielectric constant) and it is available in laboratories. For
example, the value of a few kOe is an “ultrahigh” field for
InSb. This means that for low temperature and for
definite conditions, the spin-oriented structure can be
created due to the strong interaction of excitonic mole-
cules in a strong magnetic field. The study of this prob-
lem is planned to be the subject of a separate paper.
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