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A finite-basis-set method is used to calculate relativistic and nonrelativistic binding energies of
an electron in a static Coulomb field and in magnetic fields of arbitrary strength (0 < B < 10'® G).
The basis set is composed of products of Slater- and Landau-type functions, and it contains the
exact solutions at both the Coulomb limit (B = 0) and the Landau limit (Z = 0). Relativistic
variational collapse is avoided and highly accurate results are obtained with the basis set. The
relativistic corrections obtained for intense magnetic fields (B 2 10° G) differ from the previous
relativistic calculations based on the adiabatic approximations. It is found that the sign of the
relativistic correction changes from negative to positive near B = 10'' G for the ground state and
near B =~ 10'° G for the 2pss2(p = —3/2) excited state of hydrogen. The method is checked
to be very accurate by means of the virial theorem, sum rules, and the relativistic low-B limit
where comparison can be made with perturbation results. In the nonrelativistic limit of the Dirac
equation, our results agree with other accurate nonrelativistic calculations available and with our
own calculations based on the Schrédinger equation, which converge to more significant digits than
previous calculations for the whole range of magnetic fields.
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PACS number(s): 32.60.+i, 31.30.Jv, 31.10.+z

I. INTRODUCTION

There is considerable interest in astrophysics and solid-
state physics to study hydrogenic atoms in intense mag-
netic fields [1-3]. Many nonrelativistic methods have
been used [4-10], including the variational method [4,
6], Hartree-Fock approach [7], finite-element method [8],
and bounds by eigenvalue-moment method [9] and by
Kato’s method [10]. With the increasing accuracy of
the nonrelativistic calculations of hydrogenic atoms in
intense magnetic fields [6-10], relativistic corrections be-
come necessary. The relativistic correction, expected to
be of order («Z)?, was estimated in the adiabatic ap-
proximation [11]. However, the adiabatic approximation
cannot provide accurate relativistic corrections since the
error it introduces can be of the same order or larger
than the relativistic correction itself. A comparison of
the nonrelativistic results obtained using the adiabatic
approximation with the most accurate nonrelativistic cal-
culations indicates that this is the case. Recently, we
reported briefly [12] a relativistic variational calculation
that yields different results than previous adiabatic cal-
culations. In this paper, we present the details of a vari-
ational method that yields very accurate results for both
the Schrodinger and Dirac equations.

A finite-basis-set method is used to calculate both the
relativistic and nonrelativistic binding energies of an elec-
tron in a Coulomb field and an arbitrary magnetic field.
The advantages of this method over single-trial-function
methods are that the size of the basis set can be systemat-
ically increased as a higher accuracy is required and that
excited states can be also obtained simultaneously by the
diagonalization procedure. The basis set that we intro-
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duce in this work has, as its main advantage, the property
that it contains the exact solutions at both the Coulomb
limit (B = 0) and the Landau limit (Z = 0), and that it
transforms from one limit to the other smoothly as one
varies two nonlinear parameters A and 3 which character-
ize the Coulomb and Landau orbitals, respectively. (The
set can be generalized to contain two sets of nonlinear pa-
rameters {);} and {f;} to avoid near linear dependency
for very large basis dimensions.) In the nonrelativistic
case, the basis set gives an accurate upper bound on the
energies. In the relativistic case, the basis set avoids vari-
ational collapse and converges to the exact energies both
with the nonlinear parameters and with the size of the
basis set.

Using this basis set we have obtained the most accu-
rate relativistic and nonrelativistic binding energies of an
electron in a Coulomb field and in intense magnetic fields
to date, with an accuracy better than 1 part in 107 for
B ~ 103 G and better than 1 part in 10'6 for B < 108 G
for hydrogen and higher accuracies for larger Z. This
level of accuracy is obtained with less than 200 basis vec-
tors in the relativistic case and less than 50 basis vectors
in the nonrelativistic case (the size of the basis vectors
for the Dirac equation is about four times the size for the
Schrodinger equation because of the coupling of spin-up
and spin-down states in the small and large components
of the Dirac wave function). The binding energies ob-
tained by the nonrelativistic limit of the Dirac Hamilto-
nian agree, to all converging digits, with the results given
by the Schrodinger Hamiltonian and with other previous
accurate nonrelativistic calculations. It is found that the
sign of the relativistic correction changes from negative
to positive near B ~ 10'! G for the ground state and
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near B & 10'° G for the 2p3/,(u = —3/2) excited state
of hydrogen.

II. NONRELATIVISTIC APPROACH

The nonrelativistic Hamiltonian for an electron in a
uniform magnetic field B = BZ with vector potential
A = 1B x r is given by (atomic units will be used
throughout this paper except in certain physical discus-
sions)

Hs=%%/2—Z/r +0,B/2
=-V?/2+ B?p*/8 = Z[r + (B/2)(l; + 0.), (1)

where # = p+ A/c, p? = 22 + 42, and [, and o, are the
z components of the orbital angular momentum and the
Pauli matrix, respectively. The magnetic field is given
in units of (e/h)3m2c ~ 2.35 x 10° G, where m, is the
mass of the electron and ¢ is the speed of light; thus
B =1 corresponds to (hwg)/(e?/ao) = 1, where aq is
the Bohr radius and wp = eB/(m.c) is the cyclotron fre-
quency of the electron. When B 2 1, the Landau radius

po = \/2he/eB is of the same order as or smaller than the
Bohr radius, and the magnetic field will be called intense
in this case [4]. The Hamiltonian commutes with the z
component of the orbital angular momentum [, and the
parity operator, so that the corresponding quantum num-
bers m and m are good quantum numbers. (The Hamil-
tonian is unchanged under the transformations z — —z
as well as r — —r, therefore some authors use z parity to
label the eigenstates. We employ the full parity notation
in this paper in order to use the conventional labeling of
eigenstates in the limit B = 0.)

In order to choose a proper basis set for variational
calculations, we first consider two limit cases. When B =
0, the exact solutions can be constructed by the Slater-
type basis functions

exp(=Ar)r"Yim (0, ¢), (2)

where n = 0,1,2..., N, XA is a nonlinear variational pa-
rameter, and Y1,,(0, ¢) is the spherical harmonic. In the
other limit, when Z = 0, the exact solutions are the
Landau orbitals which can be written in cylindrical co-
ordinates as [13]

Yo = EMIP LI (€) exp(—£/2) exp(imé + ip. 2)xo,
(3)

where
& =(p/po)?,

LL":' are the associated Laguerre polynomials, and y, is a
two-component spin function with & = +1 corresponding
to spin-up and spin-down states. The energy eigenvalues
are given as

2
E‘:p—z+B(n,,+

|m|+m+a’+1)
2 b

> ()

where
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n,=0,1,..., m=0,%1,... .

The ground state is infinitely degenerate with p, = 0,
c=-1,n,=0,and m = 0,-1,-2,... . The exact
solutions in this case can therefore be constructed as a
linear combination of the functions

Im|

p*" pI™ exp(—pBp?) exp(imé + ip,2)x,, (5)

with
n=20,1,2,..., N,

and § a nonlinear variational parameter.
Combining the above two limit cases, we thus choose
a set of basis functions of the form

@ = r™(cos 0)' "1™ (sin )™ exp(—Ar — Bp?)
7NT7 (6)

where for even- (odd-) parity states, { takes even (odd)
integer values greater than or equal to |m| up to 2N,
(for even parity) or 2N + 1 (for odd parity). The vari-
ational procedure [14] consists of orthonormalizing the
above basis set by the diagonalization of the overlap ma-
trix (®,:|®,/), and then diagonalizing the Hamiltonian
in the orthonormal basis set so that the optimal linear pa-
rameters in the trial function are determined (Hylleraas-
Undheim procedure). The nonlinear parameters A and
[ will then be determined by minimizing the variational
eigenvalues.

The nonrelativistic Hamiltonian is bounded from be-
low, therefore the variational eigenvalues calculated by
the Hylleraas-Undheim procedure are upper bounds of
the true eigenvalues of the Hamiltonian. The nonrela-
tivistic results obtained by the basis set given by Eq. (6)
are shown in Table I for the ground state and in Table
IT for the 2p3/o(p = —3/2) excited state, where com-
parison is made with previous accurate nonrelativistic
calculations and with the results obtained by taking the
nonrelativistic limit of the Dirac equation (discussed in
Sec. III). In all cases, our results, calculated with less
than 50 basis vectors, have better convergence than any
previous results.

The optimized nonlinear parameters A and [ are
closely related to the two limits. As B increases, the
value of the optimized  gets closer to the exact value
B/4 for the Z = 0 limit. In the Coulomb limit, where B
is very small, the optimized S is close to 0 and A is close
to Z for the ground state and Z/n for the excited states.

If we change r to r/Z in the Hamiltonian of Eq. (1),
we obtain a simple scaling relation for the energy [15]

E(Z,B) = Z?E(1,B/Z%). (7)

x exp(imd)x,, n=0,1,2,...

Thus it will suffice to consider only the case Z = 1 in the
nonrelativistic calculations.

III. RELATIVISTIC APPROACH

A. Variational method

The Dirac Hamiltonian for the problem is given by

Z
HD=ca~1r+éc2—-7, (8)
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where a and G are the standard 4 x 4 Dirac matrices.
The Hamiltonian commutes with the z component of the
total angular momentum and with the parity operator,
so that the corresponding quantum numbers g and 7 are
conserved. Unlike the nonrelativistic Hamiltonian, the
Dirac Hamiltonian is not bounded from below. The vari-
ational method may have difficulties of variational col-
lapse, spurious roots, and continuum dissolution in the
case of systems with more than one electron. Some theo-
rems and techniques have been developed in recent years
to overcome these difficulties [16-19]. It has been shown
[19,20] that the problems of variational collapse and spu-
rious roots can be avoided by an appropriate choice of
basis sets, and a rigorous proof of bounds can be ob-
tained for the Coulomb case [20]. As a result, finite-
basis-set techniques have been very successful for calcu-
lations involving the one-electron Dirac-Coulomb Hamil-
tonian or the many-electron Dirac-Hartree-Fock Hamil-
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tonian (based on screened central potential approxima-
tions) [21]. In this paper, we extend the method to the
case of a potential that has cylindrical symmetry only
and apply it to hydrogenic atoms in intense magnetic
fields.

The choice of basis set is based on the following con-
siderations.

(i) Exact solutions at both Z = 0 and B = 0 can be
constructed from the basis set.

(i1) The basis set satisfies the boundary conditions at
r — 0 and oo. In fact, these conditions have been in-
cluded with the conditions at the B = 0 and Z = 0
limits.

(ii1) Properly balanced small- and large-component ba-
sis functions are used in the basis set, as can be achieved
by considering the coupling of the Hamiltonian between
large and small components. (We do not use kinetic bal-
ance [19] here, but plan to apply it to the case of finite

TABLE I. Nonrelativistic ground-state binding energies (—Exr) (divided by Z2, in atomic units) of hydrogenic atoms in
an intense magnetic field B (in units of 2.35 x 10° G). For Z # 1, Enr in columns 3 and 4 is obtained by the scaling relation of
Eq. (7), while Exr & is obtained in each case by taking the nonrelativistic limit of the Dirac equation. The numbers in column

3 give the previous most accurate nonrelativistic results.

Z B —Enr —Exrf —Eng &
a
0.54752648040109
1 0.1 0.54752648040110} 0.5475264804010945 0.5475264804011
0.8311688966 |
1 1 0'8311688973} 0.83116889673 0.831168897
a
. 1.022213908
1 2 1.022213910} 1.02221390766 1.022213908
a
1.16453299
1 3 1.16453307} 1.1645329893 1.164532989
a
2.215396
1 20 2'215913} 2.215398515 2.2153985
2.215398°
2.215393¢
1 200 4.7266° 4.727145108 4.7271451
4.727134¢
4.72708¢
1 500 6.25708765 6.2570877
9.2754 ) ©
1 2000 {9.3102 } 9.3047650 9.304765
9.30448"
9.30464¢
1 5000 11.873408 11.87341

0.8311688966 |
5 25 0.8311688973}
1.022213908
1.022213910
1.022213908
1.022213910

5 50

20 800

0.83116889673 0.831168897

1.02221390766 1.022213908

1.02221390766 1.022213908

*Lower and upper bounds in Ref. [10].

P Reference [7].

Reference [6).

dReference [8].

¢Lower and upper bounds in Ref. [5].

fPresent results by the Schrédinger equation.

8Present results by nonrelativistic limit of the Dirac equation.
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nuclear size.)

(iv) The basis functions have the correct nonrelativistic
limit.

Similarly to the Schrédinger equation, the Dirac equa-
tion is exactly solvable at the B = 0 limit and the Z =0
limit. The exact solutions for the Coulomb potential can
be obtained from the superposition of functions of the

form [16]

¥ = (¢j(’")(>)<w/’°) ’

0 .
YN+ = <i¢j("')X—n;¢/T'>’ i=12,...,N (9)

where
¢i(r) = r" e My = \/k?2 — (aZ)?,

A is a nonlinear parameter, « is the Dirac quantum num-
ber, and X, is a two-component spherical spinor:

Xep = Z(j/‘lma)YImXo-

mo

(10)

(11)

When Z = 0, the solution of the Dirac equation can be
obtained by considering [22] the square of the Hamilto-
nian in Eq. (8), which can be written as
HY =c?x?+c* + c%0,B
=2¢%(Hs + ¢%/2). (12)

TABLE II.
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Thus H} has a spectrum similar to that of Hg with an
eigenfunction given by

X &5%.0) (13)
npymo — 0 b
and eigenvalues
EL =c*+cp? + c2B(2n, + 1 + |m| 4+ m + o), (14)

where m and o/2 are the z components of the orbital
angular momentum and the spin for the large component.
Using the method given by Johnson and Lippman [22],
the eigenfunctions for Hp can be expressed in terms of
Xn,mo by the second-order equation

(le) - E]?))Xn,mo = (HD - ED)(HD + ED)anma =0.

(15)
The solution for Hp can therefore be written as
WP, = (Hp + Ep) X s (16)

Based on the above considerations, we choose the fol-
lowing basis set:
Qsll&;,)‘ — pY=l4n =Ar—p(rsin 6)2((:05 0)Ik"|mk|

x (sin 0)|m*|eim*¢wk,

k=1,2,3,4 (17)

Relativistic (—E) and nonrelativistic (—Enr) binding energy (in atomic units) for the 2p3 /(g = —3/2) excited

state of hydrogen in an intense magnetic field B (in units of 2.35 x 10° G). The relativistic correction is given by §E =

(E — Exr)/|Enrl.

B —ExNr —Exr —Ef SE!
0.2008456723729 | © 0.200845672¢ —6
0.1 { 0.2008456723746 } 0.20084567237333¢ 0.200845897 —1.12x10
0.2008457°
0.2008456¢
0.45659706 | 0.45659706¢ _7
1 . -3.
{0.45659710} 0.4565970584° 0.45659724 3.94 %10
0.4565971°
0.4565969°¢
a
1.12542 1.125422344
10 . . -7
{ 1.12627 1.1254223418° 1.12542204 2.67x 10
1.125422°
1.125422°
b
2.63474 2.634760669
100 -6
{2.63480 2.634760665° 2.63475395 255 %10
2.634758¢
b
5.63841 5.6384211¢ —8
1000 {5'63844 5 62842105¢ 5.6383673 9.54 x 10
5.638416°

*Lower and upper bounds in Ref. [10].
P Reference [7).
“Reference [8].

dPresent results by the nonrelativistic limit of the Dirac equation.

“Present nonrelativistic results by the Schrédinger equation.
{Present relativistic results.
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where my = p—0y/2, 01 =03 =1, 03 = 04 = —1,
A and S are nonlinear variational parameters, and the
parameter vy is determined by the boundary condition
as 7 — 0 to be /%2 — («Z)? with « taking the values
corresponding to the B = 0 limit. The four-component
spin functions w; have the form

w=(8) == (3)
= (0) == ()

For even- (odd-) parity states, the value of I for the
large components (k = 1,2) takes an even (odd) number
greater than or equal to |my| up to 2Ny (for even parity)
or 2Ny + 1 (for odd parity), while for the small compo-
nents (k = 3,4) it takes an odd (even) number greater
than or equal to |my| up to 2N, + 1 (for even parity)
or 2Ny (for odd parity), since the small component has
a different nonrelativistic parity than the large compo-
nent. For example, for the ground state (with = = 1,
pu = —1/2), the powers I, are given by

11 =2,4,...,2N9, 12:0,2,...,21\7‘9,

(18)

1321,3,...,2N9+1, 4, =1,3,...,2Ng + 1.

Note that for the ground state when Ny = 0, there will
be no vectors corresponding to k£ = 1; the total number
of vectors will be M = (4Ny + 3)(N, + 1).

The basis set has a form similar to that for the spher-
ical case: f,(r)Yim(6,¢). The radial function f,(r)
is replaced by fn(r,0) = rY~1#me=37=Br" which in-
cludes the radial dependence for the Coulomb poten-
tial and the exponential cylindrical dependence for the
magnetic field. For the angular part, Yim(0,¢) is re-
placed by (cos8)'~1™I(sin §)I™leim?  so that through the
diagonalization of the Hamiltonian, it can reproduce the
(cos8)?"(sin §)I™le’™¢ term for the Z = 0 case and
Yim(0,¢) for the B = 0 case, yielding a proper mixing
in the intermediate case. This approach is very efficient
for intense magnetic fields. In this case, the excitation
energies of the Landau levels are larger than those of
the Coulomb potential, so that the major contributions
to the ground-state energy are the ground state of the
Landau levels and many low-lying Coulomb states.

The variational procedure is similar to that for the
Schrodinger equation. The basis set is first orthonor-
malized by the diagonalization of the overlap matrix

(<I>(k) |® k) ), which yields M orthonormal basis vectors

ﬂlk n’lk’
of the form

k k) gk
¥ =3 e, el

n.Ik

(19)

The matrix elements of the Hamiltonian in the basis set
of Eq. (17) can be expressed in terms of a double integral
which can be reduced to a single integral of a confluent
hypergeometric function. The details of the calculations
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are given in the Appendix.
The variational solutions to the Hamiltonian in Eq. (8)
are then obtained with trial functions of the form

i k k
¥, = 3 aPyh)

ik

(20)

Since we are looking for stationary states, we diagonal-
ize the Hamiltonian in the orthonormal basis vectors to
determine the linear variational parameters a,(-]’-C for cer-
tain values of N, Ny, A, and B. This procedure yields
N4 + N_ = M variational eigenvalues and eigenstates,
where N and N_ are the number of basis vectors for
positive-energy and negative-energy states, respectively.

The procedure to optimize the nonlinear parameters
needs to be generalized since the Dirac Hamiltonian is no
longer bounded from below. Instead of simply minimiz-
ing the variational energy with respect to the nonlinear
parameters, we use the stationary property of the varia-
tional eigenvalues to determine the nonlinear parameters.
If the basis set is complete when N — oo, then in the
vicinity of the true energy, the change of the variational
eigenvalue E(), §) with the nonlinear parameters A and
[ should be at its minimum and should decrease as the
size of the basis set increases. Thus a smoother range of
E(X,B) against A and 3 should be achieved as the powers
N, and Ny are increased as shown in Fig. 1. We therefore
determine the optimal value of the energy by searching
for the most stable range of the variational eigenvalue
E(X,B) against A and S for certain values of N, and N,.
This procedure yields variational eigenvalues which con-
verge to the exact energies but are not necessarily upper
bounds of the energies. As expected from the results for
the two limit cases, the optimized value of A is close to Z
for the ground state when B is small, while the optimized
value of 3 is close to B/4 when B is large.

The results obtained by the above procedure have con-
verged to more than 16 digits for B < 0.1 (10® G),
and to more than 7 significant digits accuracy for
0.1 < B <5000 (108 < B £ 103 G) with less than 200
basis vectors. Note, however, that there is no upper

0 T T 1 T
a1k — <Hvar
e R Nt
3 W
S 2 S N=5 |
> NGRS ]
s
g AN SN N=5
53] AN ' 1
-4} AR N=4 N E
\ N
A N
A N
_5 L L I Al
0 2 4 6 8 10
A
FIG. 1. The variational energies (H)var and (U)var de-

fined in Eq. (24) plotted against the nonlinear variational
parameter A for the ground state of hydrogen with B =
2 (4.7 x 10° G). The size of the basis set is given by N, = N
and Np = 2.
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bound on the energy globally: the convergence can be
achieved from both sides of the true energy. A compar-
ison with previous results for hydrogenic atoms is made
in Table III for the ground state and in Table II for an
excited state. Our relativistic results differ substantially
from the previous relativistic calculations performed us-
ing adiabatic approximations [11].

The dependence of the relative relativistic corrections
on B for the ground state and the 2ps/o(u = —3/2) ex-
cited state of hydrogen is plotted in Fig. 2. It shows
that the relativistic correction changes sign near B = 40
(~ 10! G) for the ground state and near B = 4.5
(= 10 G) for the 2ps/5(p = —3/2) excited state of hy-
drogen. The relativistic correction for the ground state
is generally larger than that for the excited states, which
is expected from the fact that the inner-shell electron
moves faster than the outer-shell electron.

B. Methods used to check the relativistic results

1. Sum rule

Starting from the Dirac Hamiltonian and related com-
mutation relations, we can derive various sum rules [23].
For example, starting from the commutation relation

(Ol[[H, ], 7]I0) = O, (21)
we have
S Knlrl0)*(En — Eo) =0, (22)

where )" denotes summation over discrete states and
integration over the continuum states. This sum rule can
be used also to check the completeness of the basis set

TABLE III.
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when the infinite sum is replaced by the sum over finite
basis vectors. The results of the sum rule of Eq. (22)
is given in Table IV. They indicate that the basis set is
approaching completeness as the size of the basis set is
increased. Note that the variational calculation of the
sum rule is not optimized, but rather performed using
the basis set that optimizes the ground state.

2. Vairial theorem

The virial theorem can also be used to check the com-
pleteness of the basis set [24]. It follows from the Dirac
Hamiltonian Eq. (8) that

(H)exact = (_@_)exact"nec2 + 26((1 . A)exacty (23)

where ()exact denotes the expectation value for an ex-
act energy eigenstate. [Note that Eq. (23) will not be
valid in general for an arbitrary variational state.] For a
variational state to be a good approximation of the en-
ergy eigenstate, it is necessary, but not sufficient, that
the difference

(-H)va.r - (U)var,

where

(U>var = (é)varrn»e(«'2 + 25((1 . A)var (24)

should be small. In Eq. (24) the symbol ()yar denotes
the expectation value for a variational state. We found
that the difference between (H)yar and (U)yar indeed de-
creases as N, and Ny increase as shown in Fig. 1 and
Table IV. Moreover, the minimum of the difference is
consistently in the most stable range of E(A,3). This

Relativistic (—E) ground-state binding energies (divided by Z2, in atomic units)

of hydrogenic atoms in an intense magnetic field B (in units of 2.35 x 10° G). The relativistic

correction is given by § E = (E — Enr)/|Enr|.

Z B —E* S§E? —E® SE®

1 0.1 0.5475324083429 —1.08 x 10>
1 1 0.831173226 —5.21x 10~°
1 2 0.89977712 0.57 x 1078 1.022218029 —4.03 x 107°
1 3 1.164537038 —3.48 x 107
1 20 2.1493075 0.23 x 105 2.21540091 —1.09 x 10~°
1 200 4.6916844 0.77 x 1073 4.7271233 4.61 x 107
1 500 6.2570326 8.81 x 10¢
1 2000 9.2867088 0.215 x 10~* 9.304593 1.85 x 10~°
1 5000 11.87308 2.78 x 1075
5 25 0.831277196 —1.303 x 10™*
5 50 1.022317006 —1.009 x 10~*
20 800 1.023879534 —1.629 x 1073

* Adiabatic approximations, Ref. [11].
®Present results.
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TABLE IV. For fixed A and 3, the relativistic variational
energy (H)var, virial energy (U)var defined in Eq. (24), and
the sum of Eq. (22) for the ground state of hydrogen in a
magnetic field B = 20 (in units of 2.35 x 10° G) for different
sizes of the basis set.

N, 2Ny _<H)var "(U)var Sum

3 2 2.210739078 2.296827516 1.1 x 10~%
4 4 2.215126434 2.214880767 1.8 x 1072
5 4 2.215253245 2.216075286 8.7x107*
6 6 2.215375385 2.215136890 1.4 x 107*
7 6 2.215393789 2.215332504 6.5 x 107°
8 8 2.215399761 2.215378719 1.2 x 107°
9 8 2.215400728 2.215396096 7.2 x 1076
10 10 2.215400912 2.215400317 3.2%x107°
11 10 2.215400913 2.215401060 1.4 x 107°

property can also be used to optimize the variational en-
ergies with respect to nonlinear parameters A and 8 [25].

8. Perturbation and low-B limit

The variational results are also checked by compar-
ing with the relativistic perturbation results (relativis-
tic general Paschen-Back effect) of hydrogen for low and
intermediate magnetic field B. Using the perturbation
method, by diagonalizing ca - A in the subspace of hy-
drogenic states with fixed n, the relativistic energy eigen-
values are given by [26]

Ef = (n=1)/e® = B(2n +1)/6 (25)
for the ground state and

E3 = (y2/2-1)/a® = B(2y: +1)/5 (26)
for the 2ps/p(p = —3/2) excited state, where v =

k2 — (aZ)?. The relative relativistic corrections on the

energies can then be written as

SEFP = EIP_E‘{;'NR:_l(az)ZZZ/Ll-‘B/:3 (27)
! |Ef\R 2 Z2/2+ B/2
and
EY — EX Z%/64— B
P _ 2 2NR __
By =g - e gy

for the ground state and the excited state, respectively,
where Efyg and Ef g are the corresponding nonrela-
tivistic energies. The quadratic term in the nonrelativis-
tic case is implicitly included in the approximation, while
it will vanish when taking the nonrelativistic limit « — 0.
Figure 2 and Table V show that our variational results
agree very well with the perturbation results for the range
of B where the perturbation method is valid. Note that
although the perturbation results for Ef and Ef g are
accurate to 107° a.u. only for B < 10~2, their differ-
ence yields correct results up to B < 1071 for the ground
state.
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FIG. 2. Relative relativistic correction 6E = (£ —
Exr)/|Exnr] for the energy eigenvalues of hydrogen as a func-
tion of the magnetic field B (in units of 2.35 x 10° G). The
results of the present paper are given by the solid line with
open circles for the ground state and by the dashed line with
crosses for the 2ps 2(p = —3/2) excited state. The pertur-
bation results given by Egs. (27) and (28), valid for the rel-
ativistic correction only for B < 1072, are plotted as a solid
line and a dashed line for the ground state and the excited
state, respectively.

4. Nonrelativistic limit

The nonrelativistic limit for strong B is obtained by
taking « — 0 in the Dirac Hamiltonian but keeping aB
fixed. In the framework of the Schrodinger equation, the
nonrelativistic binding energies with Z # 1 can be calcu-
lated by the scaling relation Eq. (7). In the case of the
Dirac equation, however, there is no such scaling relation
and it is then necessary to perform separate calculations
for different values of Z.

In the nonrelativistic limit, however, unlike the adia-
batic calculations, our results agree with the most ac-
curate nonrelativistic calculations available as shown in
Table I for the ground state and in Table II for an excited
state. Moreover, for B > 20, our results taking the non-
relativistic limit converge to more significant digits than
previous nonrelativistic calculations and agree with our

TABLE V. Comparison of the relativistic ground-state
binding energy |E| (in atomic units) of hydrogen, calculated
in the present paper, with relativistic hydrogenic perturba-
tion results Ef given by Eq. (25) for low and intermediate
magnetic field B (in units of 2.35 x 10° G).

B |EY| |E]|
0 0.500006657 0.500006657
1077 0.500006707 0.500006707
1073 0.500011657 0.500011657
1073 0.500506648 0.500506398
107! 0.550005769 0.547532408
1 0.999997781 0.831173226
2 1.499988906 1.022218029
3 1.999980031 1.164537038
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more accurate results based on the Schrédinger equation.
Note that, as shown in Table I, the previous nonrelativis-
tic calculations do not agree to their quoted precision for
B > 200.

IV. CONCLUSION AND DISCUSSIONS

Given the absence of an upper bound to the relativistic
energy spectrum, we have paid special attention to the
convergence and stability of our results. The variational
method we used has avoided variational collapse, other-
wise the variational eigenvalues would not converge with
the nonlinear parameters and the size of the basis set,
and the virial theorem would not be satisfied. The vari-
ational eigenvalues could have still converged to wrong
values due to the incompleteness of the basis set or the
possible presence of spurious roots. This possibility has
been eliminated by checking that the results have the
correct nonrelativistic limit, relativistic low-B limit, and
satisfy the sum rule and the virial theorem.

We have also confirmed our previous relativistic results
[27] which were obtained using Slater-type basis functions
for B < 10. The present method, however, yields a much
higher precision with fewer basis vectors for the full range
of values of B.

Our calculations indicate the necessity to include rela-
tivistic corrections given the current numerical accuracy
of the nonrelativistic calculations. For a complete de-
scription of a hydrogenic atom to the level of accuracy
presented, it is also necessary to include other small ef-
fects, such as the effects of finite nuclear mass and finite
nuclear size, the interaction between the magnetic mo-
ments of the electron and nucleus, and other radiative
corrections. The finite-nuclear-size correction can be cal-
culated exactly in the context of the method presented
here by replacing the Coulomb potential by an appropri-
ate finite-nuclear-size potential, while the effect of finite
nuclear mass can be obtained to lowest order by introduc-
ing the reduced mass in the nonrelativistic Hamiltonian.
The other corrections can be calculated perturbatively
using the optimized variational wave functions obtained
in the present work.
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APPENDIX

We write our basis functions as

k L) im
o, = Frle™, (A1)
with
Fil = NS fo(rpyrx 1™ sing)mel, - (A2)
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fo(r,p) = r7=temAr =0, (A3)

where x = cos#, and N,(lfk)

satisfying

/|F,£f3|'~’r2dr dx = 1.

is a normalization constant

(A4)
The Dirac Hamiltonian of Eq. (8) has the matrix form

(S =-Z/r co-w
Hp —< —cz—Z/'r>'

co -
The matrix elements of the Hamiltonian between basis
vectors with the same spin function can then be simply
written as

(A5)

k
(@5 [H|ol), ) = c2(@l|elf) ) - Z<<I>(") a®), >
(A6)
for the large components (k = 1,2) and
k k
( '(‘l;lelQ( ’I’> = _cz(q)( )lq)(q/) - <q>( ) (D(:p >
(A7)

for the small components (k = 3,4). In order to calcu-
late the matrix elements between large and small com-
ponents, it is convenient to write o - 7 as

o T=0,T,+0LT_ +0_T4, (A8)
where
oy = (0p £i0y)/2, 7wy =m,Lim, (A9)
thus
Oz Xo = 0Xo,
T4+ X-1= X1,
0-X1=X-1- (A10)
In cylindrical coordinates we have
. . 0 i 0 B
7y = —iexp(kig) (8p + 558 F EP) ,
(A11)
ry = il
z = az

Using the above relations, we obtain the nonvanishing
matrix elements of the Hamiltonian between basis vectors
with different spin functions as
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(@ 1H1e8),) =

¢ / ( ly —
@D = [ rar e, ((7—1+n R zlml),

@110, = ¢ [ rar d RS, (- 14— 1)

(<I>(2)

c/rzdrdxF,E?l)F(?,)s ((7 —14n - lg)% —Ax +

D 1HIeS) ) = c/ﬁdrdxF,(ij,E?,)s [( —1+n' —I3)

Since the Hamiltonian is Hermitian and all the matrix elements are real, we have the symmetry property

k k
@ 1HI8%) ) = (2, 1H18)

All the matrix elements can be expressed in terms of the integral

00 1
T(a,l,m):/ dr/ dyrx'(1 = xH)™
0 -1

1
=(8ﬁ)‘[(“+1>/21r(a+1)/ dx x'(1 — x?)m-letDi2y (““ 1__X )),
-1

exp[—2\r — 267%(1 - x3)]
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la —
2= sl 'm‘*]) , (A12a)
Z
(A12b)
- ~
A Asind— <2ﬁ + E) o+ M] . (A120)
r 2 p
Sinb _ \sing — (w - 5) p+ w] . (A12d)
2 p
(A13)
SRR T e (A14)

where T is the gamma function and U(a, b, z) is the confluent hypergeometric function which can be evaluated by

Kummer’s formula or by an asymptotic expansion [28].

However, in some cases, the cancellations occurring in the
evaluation of U(a,b,z), due to oscillations in the summation, can reduce the accuracy.

If this happens, we then

perform the double integral numerically. The radial integral from 0 to oo is mapped to the integral from 0 to 1, which
can then be evaluated accurately by Gaussian quadrature. Generally, quadruple precision is needed when more than
150 vectors are used in the basis set to avoid the problem of near linear dependence. The matrix elements in the
orthonormal basis vectors are then obtained through the transformation given by Eq. (19).
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